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Efficacy of MRI data harmonization 
in the age of machine learning: 
a multicenter study across 36 
datasets
Chiara Marzi   1,2, Marco Giannelli3, Andrea Barucci   2, Carlo Tessa4, Mario Mascalchi5,6  
& Stefano Diciotti   7,8 ✉

Pooling publicly-available MRI data from multiple sites allows to assemble extensive groups of 
subjects, increase statistical power, and promote data reuse with machine learning techniques. The 
harmonization of multicenter data is necessary to reduce the confounding effect associated with non-
biological sources of variability in the data. However, when applied to the entire dataset before machine 
learning, the harmonization leads to data leakage, because information outside the training set may 
affect model building, and potentially falsely overestimate performance. We propose a 1) measurement 
of the efficacy of data harmonization; 2) harmonizer transformer, i.e., an implementation of the 
ComBat harmonization allowing its encapsulation among the preprocessing steps of a machine learning 
pipeline, avoiding data leakage by design. We tested these tools using brain T1-weighted MRI data from 
1740 healthy subjects acquired at 36 sites. After harmonization, the site effect was removed or reduced, 
and we showed the data leakage effect in predicting individual age from MRI data, highlighting that 
introducing the harmonizer transformer into a machine learning pipeline allows for avoiding data 
leakage by design.

Introduction
In recent years there has been an increasing trend toward data sharing in neuroimaging research communi-
ties, leading to a rising number of public neuroimaging databases and collaborative multicenter initiatives1–4. 
Indeed, pooling MRI data from multiple sites provides an opportunity to assemble more extensive and diverse 
groups of subjects2,3,5,6, increase statistical power3,7–10, and study rare disorders and subtle effects11,12. However, 
a major drawback of combining neuroimaging data across sites is the introduction of confounding effects due 
to non-biological variability in the data, typically related to image acquisition hardware and protocol. Indeed, 
properties of MRI such as scanner field strength, radiofrequency coil type, gradients coil characteristics, hard-
ware, image reconstruction algorithm, and non-standardized acquisition protocol parameters can introduce 
unwanted technical variability, also reflected in MRI-derived features13–15.

The harmonization of multicenter data, defined as applying mathematical and statistical concepts to reduce 
unwanted site variability while maintaining the biological content, is, therefore, necessary to ensure the success 
of cooperative analyses. Currently, among the harmonization methods for tabular data available to the neu-
roimaging scientific community, ComBat is one of the most widely used7,12,16–34. The ComBat model was first 
introduced in gene expression analysis as a batch-effect correction tool to remove unwanted variation associated 
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with the site and preserve biological associations in the data35. In general, ComBat applies to situations where 
multiple features of the same type are measured for each participant, i.e., expression levels for different genes or 
imaging-derived metrics from different voxels or anatomical regions. The success of ComBat and derivatives has 
been measured compared to other harmonization techniques3,5,6 and through simulations of the site effect from 
single-center data2. Previous literature has primarily focused on assessing the maintenance of biological varia-
bility in harmonized data2,3,5. However, less effort has been put into quantitative measurements of the efficacy of 
harmonization in removing the unwanted site effect.

Moreover, the pooling of multicenter data and the consequent availability of large sample sizes paves the way 
for data reuse with machine and deep learning techniques17,19,22,23,25. In the case of multicenter data, harmoniza-
tion is thus added to conventional data preprocessing steps, including, e.g., data cleaning and imputation, feature 
extraction, and reduction. Similar to other procedures, the harmonization parameters should be optimized on 
training data only and subsequently applied to test data. Indeed, this approach avoids data leakage, which hap-
pens when information from outside the training set is used to create the model, potentially leading to falsely 
overestimated performance. Crucially, this aspect has sometimes been overlooked in previous applications of 
ComBat by harmonizing the entire data sample before data splitting (training and test sets) used for training and 
testing machine or deep learning techniques2,5,17,19,22,23,25,36–41.

To the best of our knowledge, the harmonization techniques for neuroimaging data have been applied with-
out paying attention to avoid data leakage, and this effect has not been quantified. In addition, despite the Python 
package neuroHarmonize2 and the R code provided by Radua and colleagues3 include functions that estimate the 
harmonization model on the training data and apply it separately to the test data, they have not been conceived 
to be executed on a machine learning pipeline, i.e., an end-to-end framework that orchestrates the flow of data 
into a machine learning model and allows to speed-up the development and test of machine learning systems, 
natively avoiding data leakage by design.

For these reasons, in this study, we propose 1) a measurement of the efficacy of data harmonization in reduc-
ing the site effect by the performance of a machine learning classifier trained to identify the imaging site, 2) a 
ComBat implementation using a harmonizer transformer, i.e., a method that, combined with a classifier/regres-
sor, forms a composite estimator, to be used in a machine learning pipeline, thus simplifying data analysis and 
avoiding data leakage by design (the source code of the efficacy measurement and harmonizer transformer are 
publicly available in a GitHub repository at https://github.com/Imaging-AI-for-Health-virtual-lab/harmonizer).  
First, we showed and measured the effect of data leakage when harmonization is performed before data split-
ting using simulated neuroimaging data with known site effect. Then, we estimated the efficacy of data harmo-
nization in reducing the site effect using the harmonizer transformer on brain T1-weighted MRI data from  
1787 healthy subjects aged 5–87 years acquired at 36 imaging sites. The morphological features of cortical thickness 
(CT) and fractal dimension (FD), a descriptor of the structural complexity of objects with self-similarity proper-
ties42, are extracted to characterize brain morphology. To the best of our knowledge, this is the first time that meas-
ures of brain structural complexity, such as FD, have been studied on such a large, multicenter, and harmonized data 
sample. Finally, we investigated the age prediction using neuroimaging variables harmonized in the entire dataset 
before machine learning and using the harmonizer transformer to estimate the effect of data leakage in in vivo data.

Methods
MRI datasets.  We gathered brain MR T1-weighted images of 1787 healthy subjects aged 5–87 years belonging 
to 36 single-center datasets of various studies. These include the Autism Brain Imaging Data Exchange (ABIDE) 
(https://fcon_1000.projects.nitrc.org/indi/abide/) first and second initiatives (ABIDE I and ABIDE II, respec-
tively)43,44, the Information eXtraction from Images (IXI) study (https://brain-development.org/ixi-dataset/), the 
1000 Functional Connectomes Project (FCP) (https://fcon_1000.projects.nitrc.org/fcpClassic/FcpTable.html), and 
the Consortium for Reliability and Reproducibility (CoRR) (https://fcon_1000.projects.nitrc.org/indi/CoRR/html/
index.html). From each study, we drew several specific datasets of brain MR T1-weighted images acquired in the 
same place with the same scanner and acquisition protocol (see Table 1). Both ABIDE I, and II initiatives contrib-
uted with 17 datasets, and we named them with the initiative prefix (ABIDEI or ABIDEII) followed by the insti-
tution name that collected the images (e.g., ABIDEI-CALTECH and ABIDEII-BNI_1). For the institution names, 
we used the same nomenclature as reported online45 with the following exceptions: (i) we merged LEUVEN_1 
and LEUVEN_2 data in ABIDEI-LEUVEN, UCLA_1, and UCLA_2 data in ABIDEI-UCLA, UM_1 and UM_2 
data in ABIDEI-UM, because the acquisition parameters were the same, (ii) we split the data from ABIDEII-
KKI_1 into ABIDEII-KKI_8ch and ABIDEII-KKI_32ch, because the acquisitions were performed using an 
8-channel or a 32-channel phased-array head coil, respectively. The IXI study provided three different datasets 
named with the prefix IXI followed by the institution name that collected the images (e.g., IXI-Guys). From the 
1000 FCP and CoRR studies, we used the International Consortium for Brain Mapping (ICBM) and the Nathan 
Kline Institute - Rockland Sample Pediatric Multimodal Imaging Test-Retest Sample (NKI2) datasets, respectively.

In each single-center dataset, baseline MRI scans of typically developing and aging brain (one for each sub-
ject) with available age and sex information were included. The lack of a recognized neurological or psychiatric 
disorder diagnosis was used to define normal development and aging. The leading institutions, at each site where 
the MR images were collected, had obtained informed consent from all participants, and were authorized by the 
local Ethics Committees. Table S1 shows the general characteristics of each single-center dataset. In this study, 
we grouped the single-center datasets into three multicenter meta-datasets based on age and the amount of 
overlap between age distributions. We have considered the following age ranges: childhood (5–13 years), ado-
lescence (11–20 years), and adulthood (18–87 years). We measured the overlap between age distributions by the 
n-distribution Bhattacharyya coefficient (BC)46, an extension of the 2-distribution BC47. The BC coefficient is  
0 when there is no overlap and 1 when the overlap is complete. In our study, n is the number of the single-center 
datasets grouped in the meta-dataset covering the above-mentioned age ranges and may be different in every 
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meta-dataset. Therefore, we constructed the CHILDHOOD meta-dataset containing 11 single-center datasets, 
whose subjects’ age varies between 5 and 13 years, and age distributions have a BC = 0.71. The ADOLESCENCE 
meta-dataset includes 9 single-center datasets whose subjects’ age ranges from 11 to 20 years, and age distri-
butions have an overlap amount equal to 0.45. Finally, the ADULTHOOD meta-dataset consists of all data 
belonging to subjects aged between 18 and 87 years old (12 single-center datasets), whose age distributions have 
a BC = 0. A detailed description of the composition of each meta-dataset and their age distributions are shown 
in Table 2 and Fig. 1, respectively. In addition, we also merged all single-center datasets, creating a meta-dataset, 
called LIFESPAN, that covers the entire age range (5–87 years). In this meta-dataset, composed of 36 imaging 
sites, the single-center age distributions have a null overlap (Fig. 1).

MR image processing.  For each brain MR T1-weighted image, we performed a cortical reconstruction and a 
volumetric segmentation. In this work, we analyzed cerebral structures only, and we extracted neuroimaging fea-
tures from various regions of the cerebral cortex: the entire cerebral cortex, separately the left/right hemispheres 
of the cerebral cortex, and left/right frontal, temporal, parietal, and temporal lobes. In particular, for each region, 
we computed the average cortical thickness (CT) and the fractal dimension (FD).

Cortical reconstruction and volumetric segmentation.  We used the FreeSurfer package to perform completely 
automated cortical reconstruction and volumetric segmentation of each subject’s structural T1-weighted scan. 

Dataset Manufacturer and model
Magnetostatic 
field (T)

In-plane resolution 
(mm × mm) Slice thickness (mm) TR (ms) TE (ms) TI (ms) FA (°)

ABIDEI-CALTECH Siemens MAGNETOM Trio 3 1.0 × 1.0 1.0 1590 2.73 800 10

ABIDEI-CMU Siemens MAGNETOM Verio 3 1.0 × 1.0 1.0 1870 2.48 1100 8

ABIDEI-KKI Philips Achieva 3 1.0 × 1.0 1.0 8.0 3.7 843 8

ABIDEI-LEUVEN Philips Intera 3 0.98 × 0.98 1.20 9.6 4.6 885 8

ABIDEI-MAX_MUN Siemens MAGNETOM Verio 3 1.0 × 1.0 1.0 1800 3.06 900 9

ABIDEI-NYU Siemens MAGNETOM Allegra 3 1.3 × 1.0 1.3 2530 3.25 1100 7

ABIDEI-OHSU Siemens MAGNETOM Trio 3 1.0 × 1.0 1.1 2300 3.58 900 10

ABIDEI-OLIN Siemens MAGNETOM Allegra 3 1.0 × 1.0 1.0 2500 2.74 900 8

ABIDEI-PITT Siemens MAGNETOM Allegra 3 1.1 × 1.1 1.1 2100 3.93 1000 7

ABIDEI-SBL Philips Intera 3 1.0 × 1.0 1.0 9.0 3.5 144 8

ABIDEI-SDSU GE Discovery MR750 3 1.0 × 1.0 1.0 11.08 4.3 600 45

ABIDEI-STANFORD GE Signa 3 0.859 × 1.500 0.859 8.4 1.8 NA 15

ABIDEI-TRINITY Philips Achieva 3 1.0 × 1.0 1.0 8.5 3.9 1060 8

ABIDEI-UCLA Siemens MAGNETOM Trio 3 1.0 × 1.0 1.2 2300 2.84 853 9

ABIDEI-UM GE Signa 3 NA 1.2 NA 1.8 NA 15

ABIDEI-USM Siemens MAGNETOM Trio 3 1.0 × 1.0 1.2 2300 2.91 900 9

ABIDEII-BNI_1 Philips Ingenia 3 1.1 × 1.1 1.2 6.7 3.1 799 9

ABIDEII-EMC_1 GE Discovery MR750 3 1.1 × 1.1 1.2 6.7 3.1 350 9

ABIDEII-ETH_1 Philips Achieva 3 0.9 × 0.9 0.9 8.4 3.9 1150 8

ABIDEII-GU_1 Siemens MAGNETOM Trio 3 1.0 × 1.0 1.0 2530 3.5 1100 7

ABIDEII-IP_1 Philips Achieva 1.5 1.0 × 1.0 1.0 25 5.6 NA 30

ABIDEII-IU_1 Siemens TrioTim 3 0.7 × 0.7 0.7 2400 2.3 1000 8

ABIDEII-KKI_32ch Philips Achieva 3 0.95 × 0.96 1.0 8.2 3.7 753 8

ABIDEII-KKI_8ch Philips Achieva 3 1.0 × 1.0 1.0 8.0 3.7 843 8

ABIDEII-NYU_1 Siemens Allegra 3 1.3 × 1.0 1.33 2530 3.25 1100 7

ABIDEII-OHSU_1 Siemens TrioTim 3 1.0 × 1.0 1.1 2300 3.58 900 10

ABIDEII-SDSU_1 GE Discovery MR750 3 1.0 × 1.0 1.0 8.136 3.172 600 8

ABIDEII-TCD_1 Philips Intera Achieva 3 0.9 × 0.9 0.9 8.4 3.9 1150 8

ABIDEII-UCD_1 Siemens TrioTim 3 1.0 × 1.0 1.0 2000 3.16 1050 8

ABIDEII-UCLA_1 Siemens TrioTim 3 1.0 × 1.0 1.2 2300 2.86 853 9

ABIDEII-USM_1 Siemens TrioTim 3 1.0 × 1.0 1.2 2300 2.91 900 9

ICBM NA 3 1.0 × 1.0 1.0 NA NA NA NA

IXI-Guys Philips Gyroscan Intera 1.5 NA NA 9.813 4.603 NA 8

IXI-HH Philips Intera 3 NA NA 9.6 4.6 NA 8

IXI-IOP NA NA NA NA NA NA NA NA

NKI2 NA 3 1.0 × 1.0 1.0 NA NA NA NA

Table 1.  Scanning parameters for each single-center dataset. FA, flip angle; NA, not available; TE, echo time; TI, 
inversion time; TR, repetition time.
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We used version 7.1.1, except in a few cases: (i) for T1-weighted images belonging to ICBM and NKI2 datasets, 
we used FreeSurfer version 5.3, and (ii) for the ABIDEI datasets, we used the FreeSurfer version 5.1 outputs 
previously made available online by Cameron and colleagues48 (http://preprocessed-connectomes-project.org/
abide/index.html). Even though different FreeSurfer versions may affect neuroimaging variables49–53, such vari-
ability is considered part of the site variability and handled by the harmonization procedure. Indeed, all subjects 
in each center have been processed with the same version of FreeSurfer. FreeSurfer is extensively documented 
(see ref. 54 for a review) and publicly accessible (http://surfer.nmr.mgh.harvard.edu/). In addition to the standard 
FreeSurfer outputs, we performed a parcellation of the cortical lobes using the mri_annotation2label tool with 
the–lobesStrict option.

All Freesurfer outputs used in this study were visually inspected for quality assurance by two experienced 
radiologists (M.M. and C.T., with 35 and 30 years of experience, respectively) following an improved version of 
the ENIGMA Cortical Quality Control Protocol 2.0 (http://enigma.ini.usc.edu/protocols/imaging-protocols/). 
Firstly, we created an HTML file for each single-center dataset showing, for each subject, the segmentation of 
the cortical regions overlayed on the T1-weighted images. Then, we scrolled the HTML file to determine gross 
segmentation errors in any cortical regions visually. For each single-center dataset, we estimated the statistical 
outliers for CT features, defined as any data points below or above the mean by 2.698 standard deviations.  

Meta-dataset
# of single-center 
datasets included

# 
participants

Females 
(%)

Age range min-
max in years

Age median (IQR) 
in years Age distributions BC

CHILDHOOD 11 442 34.39 5.89–13.0 9.91 (2.08) 0.71

ADOLESCENCE 9 222 15.32 11.0–20.0 14.22 (3.3) 0.45

ADULTHOOD 12 814 47.42 18.0–86.32 42.5 (30.74) 0

LIFESPAN 36 1787 35.65 5.89–86.32 19.98 (27.94) 0

Table 2.  Description of the demographic characteristics of each meta-dataset. BC, Bhattacharyya coefficient, 
IQR: interquartile range.

CHILDHOOD meta-dataset ADOLESCENCE meta-dataset

ADULTHOOD meta-dataset LIFESPAN meta-dataset

Fig. 1  Age distributions. Age distributions of participants for CHILDHOOD, ADOLESCENCE, 
ADULTHOOD, and LIFESPAN meta-datasets, grouped by single-center dataset and sorted by median age.

https://doi.org/10.1038/s41597-023-02421-7
http://preprocessed-connectomes-project.org/abide/index.html
http://preprocessed-connectomes-project.org/abide/index.html
http://surfer.nmr.mgh.harvard.edu/
http://enigma.ini.usc.edu/protocols/imaging-protocols/


5Scientific Data |          (2024) 11:115  | https://doi.org/10.1038/s41597-023-02421-7

www.nature.com/scientificdatawww.nature.com/scientificdata/

For each subject, we carefully inspected the cortical segmentations that showed features values labeled as statisti-
cal outliers to assess whether the outlier was an actual segmentation error. In this case, the subject was excluded 
from further analyses.

Extraction of cortical thickness and fractal dimension features.  For each subject, using FreeSurfer tools, we com-
puted the average CT of each cortical region as the average distance measured from each vertex of the gray/white 
boundary surface to the pial surface55.

The FD is a numerical representation of shape complexity56. The FD is normally a fractional value and is con-
sidered a dimension because it gives a measure of space-filling capacity57. An FD value between 2 and 3 is typical 
of a complex and heavily folded 2-D surface buried in a 3-D region, such as the human cerebral cortex. The FD is 
a very compact measure of shape complexity, combining cortical thickness, sulcal depth, and folding area into a 
single numeric value58,59. In this study, the fractal analysis was carried out using the fractalbrain toolkit version 1.1 
(freely available at https://github.com/chiaramarzi/fractalbrain-toolkit) and described in detail in Marzi et al.59.  
The fractalbrain toolkit processes FreeSurfer outputs directly, computing the FD of various regions of the cer-
ebral cortex: the entire cerebral cortex, separately the left/right hemispheres, and left/right frontal, temporal, 
parietal, and temporal lobes. Fractalbrain performs the 3D box-counting algorithm60, adopting an automated 
selection of the fractal scaling window59 – a crucial step for establishing the FD for non-ideal fractals59,61.

Briefly, we overlapped a grid composed of 3D cubes of different sizes s (where s = 2k voxels, and k = 0, 1, …, 8)  
onto the segmentation and recorded the number of cubes N(s) needed to fully enclose the structure for each size.  
This process was repeated with 20 uniformly distributed random offsets to prevent the systematic influence 
of the grid placement, and the relative box count was averaged to obtain a single N(s) value62,63. For a fractal 
object, the data points of the number of cubes N(s) vs. size s in the log-log plane can be modeled through a linear 
regression within a range of spatial scales called the fractal scaling window. Fractalbrain automatically selects the 
optimal fractal scaling window by searching for the interval of spatial scales that provides the best linear fit, as 
measured by the rounded coefficient of determination adjusted for the number of data points (R2

adj). If multiple 
intervals have the same rounded R2

adj, the widest interval (i.e., the one that contains the most data points in the 
log-log plot) is selected59. The FD of the brain structure is then estimated as the slope (in absolute value) of the 
linear regression model included in the automatically selected fractal scaling window. As an example, in Fig. 2, 
we reported a log-log plot of the 3D box-counting algorithm optimized for the automatic selection of the best 
fractal scaling window of the cerebral cortex of one subject.

Harmonization of brain cortical features.  We harmonized cortical features using ComBat, a model 
that builds upon the statistical harmonization technique proposed by Johnson and colleagues35 for location and 
scale (L/S) adjustments to the data while preserving between-subject biological variability. Briefly, let yijf be the 
one-dimensional array of n neuroimaging features for the single-center i, participant j, and feature f, for a total 
of k single-center datasets, n participants, and V features. Still, let X be the n × p matrix of biological covariates 
of interest, and Z be the n × k matrix of single-center labels. The ComBat harmonization model can be written 
as follows:

δ ε= + ϑ +y f X Z( ) (1)ijf f ij ij f if ijf

where ff (Xij) denotes the variation of yijf captured by the biologically relevant covariates Xij, ϑf  is the 
one-dimensional array of the k coefficients associated with the single-center labels Zij for the feature f. We 
assume that the residual terms εijf have mean 0. The parameters δif describe the multiplicative site effect of the 
i-th site on the feature f, i.e., the scale (S) adjustment, while the location (L) parameter for the i-th site on the 
feature f, is represented by γif (the empirical Bayes estimates of the term ϑZij f ). Consistent with the ComBat 
model notation used in Fortin et al. (2017), the harmonized y*

ijf
 become:

γ

δ
=

− −
+y

y f X
f X

( )
( )

(2)
*
ijf

ijf f ij if

if
f ij

In this study, we used the ComBat model implemented in the neuroHarmonize v. 2.1.0 package (freely avail-
able at https://github.com/rpomponio/neuroHarmonize) – an open-source and easy-to-use Python module2. 
In particular, neuroHarmonize extends the neuroCombat package5,6 with the possibility of specifying covariates 
with generic nonlinear effects on the neuroimaging feature to harmonize. In particular, the ff (Xij) term in Eq. 
(1) is a Generalized Additive Model (GAM) function of the specific covariates2. Indeed, MRI-derived features 
are known to be influenced by demographic factors, such as age2,3,5,59,64–70 and sex71. In our study, these variables 
were included in the harmonization process as sources of inter-subject biological variability. Finally, since it is 
not evident that the site effect affects all MRI-derived measures in the same way3, we performed a separate har-
monization for each feature group of the same type (i.e., CT and FD).

The harmonizer transformer.  The increased sample size due to the pooling of data acquired in various centers 
necessarily facilitates the application of machine learning techniques. For training and testing machine learn-
ing models, a proper validation scheme that handles data splitting must be chosen (Fig. 3). This choice is cru-
cial to avoid data leakage by ensuring that the entire workflow (preprocessing and model-building steps) is 
constructed on training data and evaluated on test data never seen during the learning phase. Indeed, data 
leakage in the training process may incur falsely high performance in the test set (see, e.g., ref. 72 and ref. 73). 
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Especially in Medicine and Healthcare, where relatively small datasets are usually available, the straightforward 
hold-out validation scheme is rarely applied. In contrast, the cross-validation (CV) and its nested version (nested 
CV) for hyperparameters optimization of the entire workflow74–76 are frequently preferred. Also, repeated CVs 
or repeated nested CVs are suggested for improving the reproducibility of the entire machine learning sys-
tem75. Several training and test data procedures are carried out in all these validation schemes on different 
data split, recalling the need for a compact code structure to avoid errors that may lead to data leakage. In this 
view, machine learning pipelines are a solution because they orchestrate all the processing steps in a short, 
easier-to-read, and easier-to-maintain code structure (Fig. 3). A pipeline represents the entire data workflow, 
combining all transformation steps (e.g., data cleaning, data imputation, data scaling, and general data preproc-
essing) and machine learning model training. It is essential to automate an end-to-end training/test process 
without any form of data leakage and improve reproducibility, ease of deployment, and code reuse, especially 
when complex validation schemes are needed.

In the Scikit-learn library, a popular, open-source, well-documented, and easy-to-learn machine learning 
package that implements a vast number of machine learning algorithms, a pipeline is a chain of “transformers” 
and a final “estimator” acting as a single object. The transformers are modules that apply preprocessing to the 
data, whereas estimators are modules that fit a model based on training data and are capable of inferring some 
properties on new data (https://scikit-learn.org/stable/developers/develop.html). In particular, transformers 
are classes with a “fit” method, which learns model parameters (e.g., mean and standard deviation for data 
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Fig. 2  3D box-counting for computation of the FD. An example of the 3D box-counting algorithm that uses an 
automated selection of the fractal scaling window through the fractalbrain toolkit59. N(s) is the average number 
of 3D cubes of side s needed to fully enclose the brain structure computed using 20 uniformly distributed 
random offsets to the grid origin. The regression line within the optimal fractal scaling window, whose slope 
(sign changed) is the FD, is depicted in red.
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Fig. 3  Machine learning pipeline. A pipeline represents the entire data workflow, combining all transformation 
steps and machine learning model training. It is essential to automate an end-to-end training/test process 
without any form of data leakage and improve reproducibility, ease of deployment, and code reuse, especially 
when complex validation schemes are needed.
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standardization) from a training set, and a “transform” method which applies this transformation model to 
any data. For example, for data standardization (transforming data to have zero mean and unit standard devi-
ation), the mean μ must be subtracted from the data, and the result must be divided by the standard deviation 
σ. Notwithstanding, this procedure must be firstly performed on the training set (using μ and σ computed in 
the training set). In the test set, or any validation set, the same transformation must be applied to data using the 
same two parameters μ and σ computed for centering the training set. Basically, the “fit” method calculates the 
parameters (e.g., μ and σ in our case) and saves them internally, whereas the “transform” method applies the 
transformation (using the saved parameters) to any particular set of data.

For these reasons, in this study, we propose the harmonizer – a Scikit-learn Python transformer that encap-
sulates the neuroHarmonize procedure among the preprocessing steps of a machine learning pipeline. The “fit” 
method of the harmonizer transformer learns the NeuroHarmonize model parameters from a training set and 
saves the parameters internally, whereas the “transform’” method is used to apply the neuroHarmonize model, 
previously learned on the training data set, e.g., to unseen data. The source code of the harmonizer transformer is 
publicly available in a GitHub repository at https://github.com/Imaging-AI-for-Health-virtual-lab/harmonizer.

In the following, we included the harmonizer transformer in a pipeline to learn the harmonization procedure 
parameters on the training data only and apply the harmonization procedure (with parameters obtained in 
the training set) to the test data. This prevented data leakage by design in the harmonization procedure inde-
pendently of the chosen validation scheme.

Statistical and machine learning analyses.  We performed the statistical and machine learning anal-
yses described in the following paragraphs for each feature group of the same type (i.e., CT and FD) and each 
meta-dataset (i.e., CHILDHOOD, ADOLESCENCE, ADULTHOOD, and LIFESPAN).

Visualization and quantification of site effect.  We first performed a series of analyses of increasing complexity 
to explore the actual existence of a site effect in the data. For each region-feature pair, we qualitatively showed 
the site effect on raw data through boxplots, using the site as the independent variable and each region-feature 
pair as the dependent variable. Quantitatively, the site effect was measured by analyzing covariance (ANCOVA) 
– a general linear model that blends analysis of variance (ANOVA) and linear regression. ANCOVA evaluates 
whether the means of a dependent variable are equal across levels of a categorical independent variable while 
statistically controlling for the effects of other variables that are not of primary interest, known as covariates or 
nuisance variables. In this study, we set the single-center dataset as the independent variable, age, age×age, and 
sex as covariates, and each region-feature pair as the dependent variable.

Additionally, to further investigate the site effect on raw data and to measure the success of ComBat harmo-
nization, we predicted the imaging site from the neuroimaging features, grouped by feature type, namely CT 
and FD. Specifically, we used the supervised eXtreme Gradient Boosting (XGBoost) method (with version 0.90 
default hyperparameters for a classification task), a scalable end-to-end tree-boosting system widely used to 
achieve state-of-the-art performance on many recent machine learning challenges77. Using N=100 repetitions 
of a stratified 5-fold CV, we estimated the median balanced accuracy. The statistical significance of prediction 
performance was determined via permutation analysis. Thus, for each features group, 5000 new models were 
created using a random permutation of the target labels (i.e., the imaging site), such that the explanatory neuro-
imaging variables were dissociated from their corresponding imaging site to simulate the null distribution of the 
performance measure against which the observed value was tested78. Since, in this study, single-center datasets 
showed different age groups, the random target labels permutation was performed within groups of subjects of 
similar age79, which were categorized into five-year intervals. The selection of a 5-year value was made to ensure 
it was sufficiently small to discern age differences while being large enough to avoid an excessive reduction in the 
potential permutations within each age group.

Median balanced accuracy was considered significantly different from the chance level when the p-value 
computed using permutation tests was < 0.05. Additionally, we calculated the average confusion matrix over 
repetitions to graphically evaluate the goodness of prediction. The same imaging site prediction was performed 
on raw data (i.e., without harmonization) to confirm the existence of the site effect and on harmonized data 
(with neuroHarmonize and Harmonizer transformer) to investigate if the site effect was reduced or removed.

We propose to measure the efficacy of harmonization in reducing or removing the site effect through a 
two-step assessment. First, we evaluated whether the site prediction after the harmonization process was not 
significantly different from a random prediction by comparing the median balanced accuracy over repetitions 
with the distribution of balanced accuracies estimated using the permutation test with 5000 permutations (the 
default value in FSL – FMRIB Software library – randomise tool for non-parametric permutation inference on 
neuroimaging data80). Considering, for example, a significance threshold of 0.05 in the permutation test, in the 
case of complete removal of the site effect, the site prediction will not be different from that of a random model 
(i.e., p-value ≥ 0.05). Second, in the case of permutations test p-value < 0.05, we compared the balanced accu-
racy obtained by predicting the site without and with the harmonization procedure. In particular, we assessed 
the site effect reduction by ensuring that the median balanced accuracy obtained predicting the imaging site 
with harmonized data was significantly lower than that estimated with raw data through the non-parametric 
one-sided Wilcoxon signed-rank test, with a significance threshold of 0.0581. The source code for evaluating the 
effectiveness of harmonization using the harmonizer transformer is publicly available in a GitHub repository at 
https://github.com/Imaging-AI-for-Health-virtual-lab/harmonizer.

To estimate the effect of data leakage in the prediction of the imaging site caused by performing the har-
monization on all data before splitting into training and test sets, we tested whether the balanced accuracies 
obtained using neuroHarmonize on all data before any split were consistently lower than those estimated using  
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the harmonizer transformer in the above mentioned stratified CV scheme. Since the same data set splits were 
applied for both CT and FD, the comparison was carried out through a paired test, i.e., the non-parametric 
one-sided Wilcoxon signed-rank test with a significance threshold of 0.0581.

Associations with age.  While it is essential to show that a harmonization method successfully reduces a possible 
site effect, it is equally crucial to note that it preserves the biological variability in the data. Indeed, a harmoniza-
tion method that removes both site and biological effects has no utility. One of the most influential sources of bio-
logical variability in the neuroimaging features of healthy subjects is undoubtedly chronological age. Throughout 
the lifespan, the brain structure changes because of a complex interplay between multiple maturational and neu-
rodegenerative processes. Such processes could yield large spatial and temporal variations in the brain65,82,83.

For these reasons, we attempted to predict individual age from neuroimaging features through an XGBoost 
model (version 0.90 with default hyperparameters for a regression task)77. We estimated the median (over repe-
titions) mean absolute error (MAE) using N = 100 repetitions of a 5-fold CV. Age prediction was performed on 
harmonized data using both neuroHarmonize and the harmonizer transformer in the CV pipeline. To estimate 
the effect of data leakage in the age prediction caused by performing the harmonization on all data before split-
ting into training and test sets, we compared the MAE values obtained using neuroHarmonize on all data before 
any split and the harmonizer transformer in the above-mentioned CV scheme. In particular, since the same data 
set splits were applied for both CT and FD, we assessed whether the median MAE using neuroHarmonize on 
all data before any split was consistently lower than that estimated using the harmonizer transformer through a 
paired test, i.e., the non-parametric one-sided Wilcoxon signed-rank test with a significance threshold of 0.0581.

Moreover, before and after the harmonization procedure, for each region-feature pair, we qualitatively visu-
alized the site effect on the relationship between age and each region-feature pair through scatterplots (with age 
as the independent variable and each region-feature pair as the dependent variable).

Simulation experiments.  The harmonizer transformer prevents data leakage by design in the harmoni-
zation procedure in any machine learning pipeline independently of the chosen validation scheme. Differently, 
applying harmonization before data spitting, data leakage is present, and its severity depends on the specific 
context and the extent of the leakage. In Neuroimaging, the entity and impact of the data leakage effect is still 
an underexplored area. Therefore, we performed simulation experiments (with known site effects) and com-
putational tests for assessing the data leakage effect when the harmonization process is performed before the 
training-test data splitting.

CT and FD data simulation settings.  Let yijf be the one-dimensional array of the simulated feature f, for the 
single-center i, and participant j, for a total of k single-center datasets, ni participants for each center, and V fea-
tures. In this study, we simulated CT and FD data for k = 3, 10, 36 single-centers. Each single-center dataset 
provided the same number of participants (i.e., ni=n), with n assuming the values 25, 50, 100, 250. Totally, we 
did 24 experiments, i.e., we simulated 24 different multicenter datasets (12 for the CT features and 12 for the FD 
measures).

Each yijf was generated based on the model proposed by Johnson and colleagues35 and recently used for neu-
roimaging features’ simulation by Chen and collaborators84:

y x x (3)ijf f f ij f ij if if ijf1 2
2= α + β + β + γ + δ ε

where αf is the average value of the feature f in the single-center ICBM dataset, βf1 = −0.0009 and βf2 = −0.00005 
are the linear and quadratic effects of the age on the feature f, respectively, and xij is a simulated age variable 
drawn from a uniform distribution X ~ uniform([20,90]). Considering the nature of our investigation, which 
examines the relationship between cortical thickness and FD with age, it is reasonable to assume that the rela-
tionship is no more than quadratic59,85. The mean site effect γif was drawn from a normal distribution with zero 
mean and standard deviation equal to 0.1, while the variance site effect δif was drawn from a center-specific 
inverse gamma distribution with chosen parameters. For our simulations, we chose to distinguish the 
site-specific location factors by assuming independent and identically distributed (i.i.d.) normal distributions 
and scaling factors using the parameters described as follows. We set the value of the inverse gamma shape, for 
each center, as {46, 51, 56}, respectively, when k = 3, as {40, 42, .., 58} when k = 10, and as {10, 12, .., 40, 41, .., 50, 
52, .., 70} when k = 36. In all cases, the inverse gamma scale was set to 50.

Measuring the effect of data leakage.  We measured the effect of data leakage for both the site and age prediction 
independently. Hereinafter, we will refer generically to performance, indicating the balanced accuracy for the 
site prediction task and the MAE for the age prediction task. To measure the effect of data leakage, after an exter-
nal hold-out (Fig. 4), firstly, we computed the performance of an imaging site/age prediction estimator trained 
using a) the harmonizer transformer within the machine learning pipeline (internal not leaked test set) and b) 
harmonizing all data with neuroHarmonize before the actual prediction (internal leaked test set). Secondly, 
we compared these performances with that observed on an external test set never used for harmonization and 
training (Fig. 4). In the absence of data leakage, the performance in the internal and external test sets should be 
similar and not significantly different. When data leakage is present, the performance in the internal test set is 
overly optimistic (i.e., significantly better than that on the external test set). In detail, for each experiment, we 
performed the following steps.
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External hold-out.  We randomly split the data into two parts, i.e., a data set containing 50% of the samples and 
an external test set with the other 50% of the instances.

Imaging site/age prediction estimator training and test on the external test set.  We fitted a harmonization 
model with neuroHarmonize using age as a covariate with a nonlinear relationship with individual MRI-derived 
features. To fit the harmonization model, we used the same number of instances adopted for the other two 
approaches (see next analyses), i.e., 80% of samples, randomly chosen, of the data set. Then, we applied the 
harmonization model to the data set and the external test set. Finally, we trained an XGBoost model (with ver-
sion 0.90 default hyperparameters for a classification task) to predict the imaging site/age and tested it on the 
harmonized external test set.

Imaging site/age prediction estimator training and test using harmonizer transformer within the machine learn-
ing pipeline (not leaked internal test set).  We trained and tested a pipeline containing the harmonizer trans-
former and an XGBoost estimator (with version 0.90 default hyperparameters) on the data set to predict the 
imaging site/age through a stratified 10-times repeated 5-fold CV. Thus, we trained the pipeline in the training 
sets of each iteration of the CV and considered the performance within the test sets of the CV.

Imaging site/age prediction estimator training and test harmonizing all data with neuroHarmonize before imag-
ing site prediction (leaked internal test set).  We trained and tested a pipeline containing an XGBoost estimator 
(with version 0.90 default hyperparameters) on the harmonized dataset to predict the imaging site/age through 
a stratified 10-times repeated 5-fold CV. Thus, we trained the pipeline in the training sets of each iteration of the 
CV and considered the performance metric within the test sets of the CV.

For each task, i.e., imaging site and age prediction, we repeated each experiment (i.e., all these steps) 100 
times with random data splits and computed the average performance across the 100 repetitions. Finally, we 
compared the average performance across the 100 repetitions of each internal test set (leaked and not-leaked) 
with that of the external test set. When data leakage is present, the performance in the internal test set is better 
than that on the external test set (i.e., lower balanced accuracy and MAE values for the imaging site and age pre-
diction, respectively). To assess whether the average performance of each internal test set was lower than that of 
the external test set, we conducted a one-tailed t-test, applying Bonferroni correction for multiple comparisons. 
This statistical analysis allowed us to evaluate the significance of any differences observed between the average 
performance of the internal and external test sets.

In addition, we calculated, for each internal test set, the Cohen’s d effect size to estimate the magnitude of the 
differences between performance distributions’ means. Specifically, we used the following Cohen’s d formula: 
d x x

s
e i= −  where xe is the average performance in the external test set, xi is the average performance in the 

Simulated data

Data set External test setExternal hold-out

neuroHarmonize neuroHarmonize 
transform

Site prediction Site prediction 
Internal 5-fold CV Internal 5-fold CV

Harmonization and site 

training in     
and test in     

(not leaked internal test set)

training in     
and test in     

(leaked internal test set)

Performance on the 
not leaked internal test set

Performance on the 
leaked internal test set

Performance on the 
external test set

Fig. 4  Overview of the analysis of simulated data for each experiment. After an external hold-out, we computed 
the performance of a site prediction classifier trained using (a) the harmonizer transformer within the machine 
learning pipeline (internal not leaked test set) and (b) harmonizing all data with neuroHarmonize before 
imaging site/age prediction (internal leaked test set). Secondly, we compared these performances with that 
observed on an external test set never used for harmonization and training.
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internal test set, and s is the standard deviation of the difference between performance obtained in the external 
test set and that achieved in the internal test set.

Results
Measuring the effect of data leakage in simulated data.  Regarding the imaging site prediction, the 
results were similar for both CT (Table 3) and FD (Table 4) simulated features. The performances obtained on the 
leaked internal test set were overly optimistic, i.e., significantly better than those obtained in the external test set, indi-
cating the presence of data leakage. In contrast, the average balanced accuracies recorded on the not leaked test inter-
nal set were statistically not different from those of the external test set (except in one case – see details in Table 4).

Moreover, as the number of samples available in each single-center dataset decreases, the effect of data leak-
age increases (Tables 3, 4 for CT and FD, respectively). This phenomenon is even more evident in Fig. 5, where 
we reported the difference between the average balanced accuracy obtained in the external test set and that 
gained in the internal test sets vs. the number of participants in each single-center site for the CT and FD, 
respectively. When data leakage is present (dashed lines in Fig. 5), the difference between the average balanced 
accuracy in the external test set and that in the internal leaked test set always differs significantly from zero 
(Bonferroni adjusted p-values < 10−9 and < 10−10 for CT and FD, respectively) and increases as the number 
of participants in each single-center dataset decreases. This result has a profound impact because most neuro-
imaging studies (with in vivo data) have single-centers datasets with a number of subjects between 25 and 100. 
Conversely, when data leakage is not present (solid lines in Fig. 5), the difference between the average balanced 
accuracy in the external test set and that in the internal not leaked test set was approximately zero and remained 
constant as the number of participants in each single-center dataset changes.

k n External test set Leaked internal test set Not leaked internal test set

3 25 0.358 (0.078) 0.288 (0.048)* 0.369 (0.046)

3 50 0.324 (0.060) 0.270 (0.045)* 0.333 (0.045)

3 100 0.352 (0.047) 0.296 (0.029)* 0.347 (0.027)

3 250 0.328 (0.021) 0.292 (0.019)* 0.325 (0.017)

10 25 0.084 (0.026) 0.049 (0.014)* 0.089 (0.017)

10 50 0.104 (0.017) 0.068 (0.011)* 0.105 (0.013)

10 100 0.098 (0.013) 0.072 (0.008)* 0.097 (0.009)

10 250 0.097 (0.008) 0.084 (0.005)* 0.100 (0.005)

36 25 0.024 (0.007) 0.010 (0.002)* 0.026 (0.004)

36 50 0.028 (0.005) 0.013 (0.002)* 0.026 (0.002)^

36 100 0.028 (0.003) 0.017 (0.002)* 0.028 (0.002)

36 250 0.028 (0.003) 0.021 (0.001)* 0.028 (0.001)

Table 4.  Imaging site prediction results with FD simulated data. Average balanced accuracy (standard 
deviation) obtained in the external and internal test sets. k is the number of single-center datasets, each one 
containing n participants. FD: fractal dimension. *One-tailed paired t-test Bonferroni adjusted p-value < 10−10 
for the comparison with the external test set average balanced accuracy. ^One-tailed t-test Bonferroni adjusted 
p-value = 0.003 for the comparison with the external test set average balanced accuracy.

k n External test set Leaked internal test set Not leaked internal test set

3 25 0.330 (0.080) 0.253 (0.050)* 0.340 (0.049)

3 50 0.330 (0.052) 0.269 (0.035)* 0.335 (0.034)

3 100 0.347 (0.037) 0.299 (0.033)* 0.347 (0.032)

3 250 0.321 (0.023) 0.288 (0.016)* 0.320 (0.015)

10 25 0.096 (0.026) 0.054 (0.016)* 0.100 (0.020)

10 50 0.098 (0.019) 0.072 (0.012)* 0.108 (0.013)

10 100 0.096 (0.013) 0.071 (0.007)* 0.097 (0.007)

10 250 0.100 (0.008) 0.085 (0.005)* 0.102 (0.005)

36 25 0.025 (0.007) 0.010 (0.002)* 0.027 (0.004)

36 50 0.027 (0.005) 0.014 (0.002)* 0.027 (0.002)

36 100 0.028 (0.004) 0.018 (0.001)* 0.029 (0.002)

36 250 0.027 (0.002) 0.021 (0.001)* 0.028 (0.001)

Table 3.  Imaging site prediction results with CT simulated data. Average balanced accuracy (standard 
deviation) obtained in the external and internal test sets. k is the number of single-center datasets, each one 
containing n participants. CT: cortical thickness. *One-tailed paired t-test Bonferroni adjusted p-value < 10−9 
for the comparison with the external test set average balanced accuracy.
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Data leakage was also observed in the age prediction task for both CT and FD features. Similarly to the site 
prediction task, the performance on the leaked internal test set appears overly optimistic (Tables 5, 6 for CT and 
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Fig. 5  Imaging site prediction results with CT and FD simulated data. We reported the difference between the 
average balanced accuracy obtained in the external test set and that gained in the internal test sets (dotted line 
for leaked internal test set and solid line for not leaked internal test set) and Cohen’s d effect size vs. the number 
of participants per single-center dataset n. The cross marker indicates a significant difference between balanced 
accuracy distributions (one-tailed paired t-test Bonferroni adjusted p-value < 10−9 and < 10−10 for CT and FD, 
respectively). The colors and line types in Cohen’s d plots are consistent with those employed in the other plots.
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FD, respectively), and the impact of data leakage becomes more pronounced as the number of samples in each 
single-center dataset decreases (Fig. 6).

Visualization and quantification of the site effect in in vivo data.  Quality control of FreeSurfer’s out-
puts resulted in removing 47 subjects based on the overall low quality of cortical reconstruction or segmentation 
errors in any regions. All brain regions of the remaining 1740 subjects had both CT and FD features. Thus, we 
have been able to analyze the site effect, the harmonization adjustments, and age prediction on the same subjects 
for the CT and FD groups of features. The demographic characteristics of the subjects included in the study after 
the quality control have been reported in Table 7.

The boxplots in Figs. 7, 8 summarize the distribution of the average CT and FD of the cerebral cortex at each 
imaging site. Specifically, the site effect differs between the two features. For example, in the CHILDHOOD 
meta-dataset, the ABIDEI-KKI_32ch, ABIDEI-KKI_8ch, and ABIDEII-NYU_1 single-center datasets show the 
lowest average CT values, while subjects from the ABIDEI-STANFORD dataset have the lowest FD values. 
Also, for the ADOLESCENCE meta-dataset, the site effect has a different behavior for CT and FD features: for 
example, ABIDEI-TCD_1 shows the lowest values of CT, while ABIDEI-LEUVEN shows the lowest values of 
FD. At the same time, in the ADULTHOOD meta-dataset, ABIDEI-SBL has the lowest mean CT values, whereas 
ABIDEII-BNI_1 has the lowest FD values.

The same result was measured quantitatively using ANCOVA analysis. Indeed, all CT and FD features were 
significantly different across the single-center datasets (Table 8), but the site effect, measured by the partial 
η2 was different in the two feature sets. In the CHILDHOOD meta-dataset, for example, each cortical region 
showed a higher partial η2 for FD than for CT, suggesting that, in childhood, acquisition characteristics impact 

k n External test set Leaked internal test set Not leaked internal test set

3 25 6.908 (1.199) 6.561 (0.676) 6.997 (0.621)

3 50 5.409 (0.524) 5.076 (0.322)* 5.279 (0.301)

3 100 5.326 (0.314) 5.273 (0.207) 5.376 (0.196)

3 250 4.596 (0.144) 4.643 (0.137) 4.670 (0.132)

10 25 5.473 (0.402) 5.099 (0.270)* 5.651 (0.273)

10 50 4.930 (0.200) 4.891 (0.166) 5.128 (0.153)

10 100 4.823 (0.163) 4.589 (0.116)* 4.701 (0.109)^

10 250 4.529 (0.097) 4.556 (0.068) 4.604 (0.068)

36 25 8.114 (0.308) 7.272 (0.223)* 7.931 (0.201)^

36 50 7.478 (0.175) 7.117 (0.150)* 7.424 (0.146)

36 100 7.175 (0.129) 7.147 (0.083)* 7.300 (0.083)

36 250 7.118 (0.073) 7.076 (0.054)* 7.139 (0.050)

Table 5.  Age prediction results with CT simulated data. Average MAE (standard deviation) obtained in the 
external and internal test sets. k is the number of single-center datasets, each one containing n participants. CT: 
cortical thickness. *One-tailed t-test Bonferroni adjusted p-value < 10−4 for the comparison with the external 
test set MAE. ^One-tailed t-test Bonferroni adjusted p-value < 10−6 for the comparison with the external test 
set MAE.

k n External test set Leaked internal test set Not leaked internal test set

3 25 6.736 (0.857) 6.060 (0.682)* 6.526 (0.672)

3 50 5.280 (0.500) 4.971 (0.333)* 5.133 (0.322)

3 100 5.069 (0.282) 4.827 (0.225)* 4.896 (0.220)^

3 250 4.423 (0.159) 4.486 (0.138) 4.516 (0.134)

10 25 5.644 (0.462) 5.128 (0.319)* 5.691 (0.299)

10 50 5.263 (0.288) 5.007 (0.269)* 5.254 (0.256)

10 100 4.830 (0.144) 4.599 (0.134)* 4.707 (0.124)^

10 250 4.383 (0.072) 4.422 (0.065) 4.467 (0.062)

36 25 8.199 (0.298) 7.653 (0.162)* 8.281 (0.144)

36 50 7.608 (0.201) 7.398 (0.136)* 7.707 (0.133)

36 100 7.119 (0.144) 7.149 (0.084) 7.307 (0.078)

36 250 7.174 (0.098) 7.102 (0.061)* 7.160 (0.057)

Table 6.  Age prediction results with FD simulated data. Average MAE (standard deviation) obtained in the 
external and internal test sets. k is the number of single-center datasets, each one containing n participants. CT: 
cortical thickness. *One-tailed t-test Bonferroni adjusted p-value < 10−7 for the comparison with the external 
test set MAE. ^One-tailed t-test Bonferroni adjusted p-value < 0.0001 for the comparison with the external test 
set MAE.

https://doi.org/10.1038/s41597-023-02421-7


13Scientific Data |          (2024) 11:115  | https://doi.org/10.1038/s41597-023-02421-7

www.nature.com/scientificdatawww.nature.com/scientificdata/

more on the structural complexity measure, i.e., FD, than on the cortical thickness. On the other hand, in the 
ADOLESCENCE meta-dataset, the frontal and temporal lobes (bilaterally), along with the entire structure, show 
lower partial η2 for FD than for CT, whereas the parietal and occipital lobes (bilaterally) have higher partial η2 for 
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Fig. 6  Age prediction results with CT and FD simulated data. We reported the difference between the average 
MAE obtained in the external test set and that gained in the internal test sets (dotted line for leaked internal 
test set and solid line for not leaked internal test set) and Cohen’s d effect size vs. the number of participants 
per single-center dataset n. The cross marker indicates a significant difference between balanced accuracy 
distributions (see Tables 5, 6 for details). The colors and line types in Cohen’s d plots are consistent with those 
employed in the other plots.
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FD than for CT. Finally, in the ADULTHOOD meta-dataset, only the occipital and temporal lobes (bilaterally) 
have lower partial η2 for FD than CT.

Harmonization efficacy.  To assess whether most of the variation in the data was still associated with the 
site after harmonization, we predicted the imaging site using neuroimaging features grouped by feature type (i.e., 
CT and FD). Figures 9, 10 report the average confusion matrices (over 100 repetitions) for CT and FD features, 
respectively. When predicting the site using the raw data, the main diagonal of the confusion matrix is promi-
nent (i.e., the predicted site is usually the actual site) for both feature groups and each meta-dataset (Figs. 9, 10).  
On the other hand, when the prediction of the site is performed using harmonized data (through neuroHarmo-
nize or harmonizer transformer), the impact of the main diagonal of the confusion matrix is weak. The confusion 
matrices show a vertical pattern indicating that the predicted site is often the same site, regardless of the actual site 
(Figs. 9, 10). Moreover, the confusion matrix obtained using the harmonizer within the machine learning pipeline 
seems similar to that obtained by harmonizing all the data with neuroHarmonize before imaging site prediction. 
This result suggests that the action of the harmonizer resembles that of neuroHarmonize, although the model is 
built on training data only and then applied to test data. The confusion matrices for CT and FD features in the 
LIFESPAN meta-dataset have also been shown in Fig. 11.

Table 9 reports the median balanced accuracies (over 100 repetitions) of imaging site prediction, and the 
efficacy of the harmonization is shown in Table 10. Specifically, we have reported the pair (age-group permuta-
tion test p-value, one-sided Wilcoxon signed-rank test p-value) to statistically assess the removal or reduction of 

Site # participants
Females 
(%)

Age min – 
max (years)

Age mean 
(SD) (years)

Age median 
(IQR) (years)

ABIDEI-CALTECH 19 21.05 17.0–56.2 28.87 (11.21) 23.6 (15.85)

ABIDEI-CMU 13 23.08 20.0–40.0 26.85 (5.74) 27.0 (9.0)

ABIDEI-KKI 32 28.12 8.07–12.77 10.15 (1.28) 9.97 (1.58)

ABIDEI-LEUVEN 35 14.29 12.2–29.0 18.17 (4.99) 16.6 (7.95)

ABIDEI-MAX_MUN 33 12.12 7.0–48.0 26.21 (9.8) 26.0 (9.0)

ABIDEI-NYU 104 24.04 6.47–31.78 15.87 (6.25) 14.4 (8.78)

ABIDEI-OHSU 15 0 8.2–11.99 10.06 (1.08) 10.08 (1.31)

ABIDEI-OLIN 14 14.29 10.0–23.0 16.93 (3.63) 16.5 (5.75)

ABIDEI-PITT 27 14.81 9.44–33.24 18.88 (6.64) 17.13 (8.3)

ABIDEI-SBL 15 0 20.0–42.0 33.73 (6.61) 36.0 (11.5)

ABIDEI-SDSU 21 28.57 8.67–16.88 14.18 (1.94) 14.1 (2.62)

ABIDEI-STANFORD 12 33.33 7.75–12.43 10.2 (1.68) 9.76 (2.9)

ABIDEI-TRINITY 25 0 12.04–25.66 17.08 (3.77) 15.91 (5.25)

ABIDEI-UCLA 42 14.29 9.21–17.79 12.92 (1.96) 12.7 (2.15)

ABIDEI-UM 72 25 8.2–28.8 14.85 (3.64) 14.8 (4.95)

ABIDEI-USM 43 0 8.77–39.39 21.36 (7.64) 19.76 (10.4)

ABIDEII-BNI_1 29 0 18.0–64.0 39.59 (15.09) 43.0 (27.0)

ABIDEII-EMC_1 25 16 6.33–10.12 8.16 (1.03) 8.19 (1.52)

ABIDEII-ETH_1 24 0 13.83–30.67 23.88 (4.5) 24.0 (6.79)

ABIDEII-GU_1 51 49.02 8.06–13.8 10.49 (1.72) 10.43 (3.04)

ABIDEII-IP_1 32 68.75 8.07–46.6 24.05 (11.64) 22.49 (14.71)

ABIDEII-IU_1 20 25 19.0–37.0 23.75 (4.9) 22.0 (4.25)

ABIDEII-KKI_32ch 45 26.67 8.06–12.67 10.42 (1.26) 10.27 (1.67)

ABIDEII-KKI_8ch 107 40.19 8.02–12.9 10.3 (1.17) 10.3 (1.67)

ABIDEII-NYU_1 30 6.67 5.89–23.81 9.52 (3.33) 9.11 (3.12)

ABIDEII-OHSU_1 55 52.73 8.0–14.0 10.4 (1.64) 10.0 (2.5)

ABIDEII-SDSU_1 25 8 8.1–17.7 13.25 (3.04) 13.0 (5.2)

ABIDEII-TCD_1 21 0 10.25–20.0 15.61 (3.12) 15.25 (5.25)

ABIDEII-UCD_1 14 28.57 12.25–17.17 14.8 (1.71) 14.75 (2.65)

ABIDEII-UCLA_1 15 33.33 7.76–14.09 9.81 (2.18) 9.02 (1.93)

ABIDEII-USM_1 16 18.75 11.5–36.15 23.98 (7.8) 23.78 (10.72)

ICBM 86 52.33 19.0–85.0 44.19 (17.92) 44.5 (31.5)

IXI-Guys 309 55.99 20.07–86.2 50.75 (15.83) 53.41 (25.59)

IXI-HH 178 52.25 20.17–81.94 47.12 (16.65) 47.38 (29.16)

IXI-IOP 63 65.08 19.98–86.32 40.58 (15.41) 35.46 (17.33)

NKI2 73 41.1 6.0–17.0 11.85 (3.14) 12.0 (6.0)

Table 7.  Demographic characteristics of the subjects remaining after quality control and who entered into the 
analyses. IQR: interquartile range; SD: standard deviation.
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the site effect, respectively. As expected, the median balanced accuracy of site prediction using the raw data was 
significantly different from the chance level (age-group permutation test p-value ≥ 0.05 for all data), and thus, 
an actual imaging site effect was present on raw data. After harmonization, with neuroHarmonize or harmonizer 
transformer, the site effect was removed (age-group permutation test p-value ≥ 0.05 in Table 10) or only reduced 
(age-group permutation test p-value < 0.05, but with median balanced accuracy reduced on harmonized data, 
as statistically measured by the one-sided Wilcoxon signed-rank test p-value < 0.05 in Table 10). Specifically, 
by performing harmonization using neuroHarmonize on all data, we observe that the site effect removal 
seems to be ensured in all analyses performed except for the imaging site predictions using FD features in the 
ADOLESCENCE and ADULTHOOD meta-datasets (age-group permutation test p-value equal to 0.0188 and 
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Fig. 7  Boxplot of the average CT of the cerebral cortex. The boxplots of the average CT of the cerebral cortex 
without harmonization are shown for the CHILDHOOD, ADOLESCENCE, ADULTHOOD, and LIFESPAN 
meta-datasets.
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0.0002, respectively, in Table 10). We found the same behavior when predicting the imaging site using CT and 
FD features in the LIFESPAN meta-dataset (age-group permutation test p-value equal to 0.0002 in Table 10). In 
the latter cases, although significantly different from a random prediction, the balanced accuracies were signifi-
cantly lower than those obtained using the original data (one-sided Wilcoxon signed-rank test p-values < 0.001 
in Table 10), and this indicates a site effect reduction. When applying the harmonizer transformer to the data 
(within the CV), we observed the actual efficacy of the harmonization, without introducing data leakage, as in 
the previous case. Indeed, we confirmed a complete removal of site effect only in imaging site prediction using 
CT features in ADULTHOOD meta-dataset (age-group permutation test p-value equal to 0.1064 in Table 10). 
In all the other cases, the imaging site prediction was significantly different from the chance level (age-group 
permutation test p-values < 0.05 in Table 10), but the balanced accuracies were significantly lower than those 
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Fig. 8  Boxplot of the average FD of the cerebral cortex. The boxplots of the FD of the cerebral cortex without 
harmonization are shown for the CHILDHOOD, ADOLESCENCE, ADULTHOOD, and LIFESPAN meta-
datasets.
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obtained using the original data (one-sided Wilcoxon signed-rank test p-values < 0.001 in Table 10). Thus, the 
site effect removal measured using data harmonized before the splitting into training and test sets was a clear 
sign of data leakage even in in vivo data.

Age prediction.  Table 11 reports the median MAE values (over 100 repetitions) of the age prediction model. 
Overall, MAE values of age prediction using data harmonized with neuroHarmonize before the splitting into 
training and test sets are significantly lower than those obtained using data harmonized with the harmonizer 
within the CV (one-sided Wilcoxon signed-rank p-values < 0.001 for all the cases, except for CT features in the 
CHILDHOOD meta-dataset, see Table 11). In line with the results of simulations, the data leakage introduced by 
harmonizing the data all at once leads to an overly optimistic performance.

Finally, in Figs. 12, 13, we reported the age-dependent trends of the average CT and FD of the cerebral cortex 
without harmonization and harmonized with the harmonizer transformer, respectively. In line with previous 
literature concerning features such as CT and volumes2,5, also in this study, the harmonized average CT and FD 
values showed less variability than that observed on raw data.

Discussion
In this study, we introduced the harmonizer transformer, which encapsulates the data harmonization procedure 
among the preprocessing steps of a machine learning pipeline to avoid data leakage by design. To this end, we 
explored the ComBat harmonization of CT and FD features extracted from brain T1-weighted MRI data of 1740 
healthy subjects aged 5–87 years acquired at 36 sites and simulated data. We measured the efficacy of the har-
monization process in reducing or removing the unwanted site effect through a two-step assessment comparing 
the performance in imaging site prediction using harmonized data with that of 1) a random prediction and 2) a 
prediction using non-harmonized data. Finally, we confirmed how data leakage related to harmonization per-
formed before data splitting leads to overestimating performance in simulated and in vivo data.

Using simulated data, we showed that the data leakage effect introduced by performing the harmonization 
before data splitting is clearly evident and worse when the single-center dataset size is small and comparable 
with the size of the most common neuroimaging in vivo studies. In these simulated experiments, we paid par-
ticular attention to comparing different harmonization and machine learning approaches in the same condi-
tions, i.e., the same data splits and using the same number of subjects for harmonization (for this reason, we 
adopted 80% of the data set size for fitting the neuroHarmonize model; indeed using the harmonizer approach, 
the harmonization was computed in the training fold of a 5-fold CV, i.e., using 80% of the samples).

We chose the ComBat harmonization method due to its widespread use in the scientific community7,12,16–34 
and its implementation in the neuroHarmonize package, which enables the specification of covariates with 
generic non-linear effects2. The efficacy of ComBat and its variants has been evaluated by comparing their 
performance with other harmonization techniques3,5,6 and by simulating site effects using single-center data2. 
However, various harmonization techniques can be used for features extracted from MRI images. One such 
method is the residuals harmonization, which employs a global scaling procedure to account for the influence of 
each site using a pair of parameters (offset and scale). These parameters can be estimated through a linear regres-
sion model or a more sophisticated approach that considers non-linearities5. Global scaling was initially intro-
duced to harmonize images directly6. The adjusted residuals harmonization, an advancement of the residuals 
harmonization, integrates biological covariates (such as age, sex, and diseases) into the linear regression model, 
facilitating the removal of unwanted site effects while maintaining biological variability5. Lastly, the Correcting 
Covariance Batch Effects (CovBat) method is a recent variant of the ComBat method that aims to address site 
effects in the mean, variance, and covariance of the neuroimaging features84.

It is important to note that this study was the first in which the efficacy of the harmonization procedure of neu-
roimaging data has been evaluated by comparing the accuracy of the imaging site prediction also to the chance 
level. Indeed, previous works have consistently shown a decrease in the accuracy of the imaging site prediction 

Region

CHILDHOOD 
meta-dataset

ADOLESCENCE 
meta-dataset

ADULTHOOD 
meta-dataset

LIFESPAN meta-
dataset

CT FD CT FD CT FD CT FD

Entire cortex 0.42 0.52 0.34 0.32 0.28 0.31 0.33 0.41

lh cortex 0.44 0.49 0.32 0.36 0.28 0.36 0.33 0.43

rh cortex 0.39 0.42 0.34 0.36 0.26 0.27 0.32 0.39

lh cortex frontal lobe 0.34 0.43 0.48 0.42 0.22 0.26 0.35 0.35

lh cortex occipital lobe 0.26 0.37 0.31 0.46 0.44 0.30 0.36 0.41

lh cortex temporal lobe 0.57 0.65 0.25 0.21 0.33 0.25 0.44 0.51

lh cortex parietal lobe 0.26 0.39 0.25 0.39 0.21 0.27 0.24 0.37

rh cortex frontal lobe 0.21 0.34 0.53 0.41 0.18 0.26 0.30 0.33

rh cortex occipital lobe 0.21 0.41 0.30 0.46 0.46 0.34 0.37 0.46

rh cortex temporal lobe 0.59 0.66 0.23 0.17 0.35 0.29 0.48 0.54

rh cortex parietal lobe 0.27 0.47 0.32 0.38 0.24 0.28 0.29 0.39

Table 8.  ANCOVA results on raw data. The partial η2 values are reported for each region/feature pair analyzed 
separately in each meta-dataset. All p-values are < 0.001. CT: cortical thickness; FD: fractal dimension; lh: left 
hemisphere; rh: right hemisphere.
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after harmonization, but without applying a significance test, and thus it was not known whether the site effect 
was removed or only reduced [see, e.g., ref. 2 and ref. 5]. As hypothesized, there was a real imaging site effect on 
the raw data (age-group permutation test p-value < 0.05 for all data). The site effect was either eliminated or only 
reduced after data harmonization with neuroHarmonize or harmonizer transformer. Specifically, the difference 
between the efficacy of harmonization by applying neuroHarmonize on all data or harmonizer within the CV 
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Fig. 9  Confusion matrices of site prediction using CT features. Each confusion matrix was normalized for 
the number of subjects belonging to each site. In this way, the sum of the matrix cells of each row gives 1. The 
confusion matrix obtained using the harmonizer within the machine learning pipeline seems similar to that 
obtained by harmonizing all the data with neuroHarmonize before imaging site prediction, even though the 
model is built on training data only and then applied to test data.
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was expected because, in the former case, data leakage is present leading to a falsely overestimated performance, 
i.e., an age-group permutation test p-value ≥ 0.05 and a lower median balanced accuracy (Tables 7, 8). On the 
one hand, the complete removal of the imaging site measured using the data harmonized with neuroHarmonize  
was only apparent. Indeed, using the harmonizer within the CV, the imaging site effect was completely removed 
only for CT features in the ADULTHOOD meta-dataset. In line with the results of the simulations, we noted that 
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Fig. 10  Confusion matrices of site prediction using FD features. Each confusion matrix was normalized for 
the number of subjects belonging to each site. In this way, the sum of the matrix cells of each row gives 1. The 
confusion matrix obtained using the harmonizer within the machine learning pipeline seems similar to that 
obtained by harmonizing all the data with neuroHarmonize before imaging site prediction, even though the 
model is built on training data only and then applied to test data.

https://doi.org/10.1038/s41597-023-02421-7


20Scientific Data |          (2024) 11:115  | https://doi.org/10.1038/s41597-023-02421-7

www.nature.com/scientificdatawww.nature.com/scientificdata/

the median balanced accuracies obtained by performing site prediction with harmonized data using the neuro-
Harmonize show significantly lower values than those observed using the harmonizer transformer within the 
CV (one-sided Wilcoxon signed-rank p-values < 0.001 for all the analyses). The differences found in the median  
balanced accuracy of imaging site prediction using the harmonizer transformer and neuroHarmonize emphasize 
the importance of introducing the harmonizer transformer into a machine learning pipeline to avoid data leakage, 
a source of bias in prediction results. Notably, the procedure used to measure data leakage on the simulated data  
(i.e., comparing the performance of imaging site prediction between the internal test set of the CV and external test 
set) was not viable for the in vivo data due to the limited sample size in several centers (less than 20 subjects).

Looking at the age-group permutation test p-values for imaging site prediction using data harmonized with 
neuroHarmonize (which were harmonized before splitting into training and test sets), it can be observed that 
the efficacy of harmonization worsened as the overlap of the age distributions in multicenter meta-datasets 
decreased (Table 10). Specifically, for CT features, the age-group permutation test p-value was 0.5023 in the 
CHILDHOOD meta-dataset, which exhibits a good overlap of age distributions (BC = 0.71), but dropped to 
0.0002 in the LIFESPAN meta-dataset, which exhibits a BC = 0. Similar behavior was observed for FD features. 
These results on in vivo data are in line with the simulations performed by Pomponio and colleagues2, which 
suggested that age-disjoint studies should be challenging to harmonize in the presence of nonlinear age effects2. 
The efficacy of the harmonization performed in CV using the harmonizer transformer does not appear seem-
ingly to have a close link to the degree of overlap of the age distributions in the multicenter meta-datasets. This 
may be explained by the fact that the harmonizer transformer handles training data only – randomly chosen 
within the whole meta-dataset – in the different folds of the CV, and the actual BC values may vary.

LIFESPAN meta-dataset: CT features
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Fig. 11  Confusion matrices of site prediction using CT and FD features in the LIFESPAN meta-dataset. Each 
confusion matrix was normalized for the number of subjects belonging to each site. In this way, the sum of 
the matrix cells of each row gives 1. The confusion matrix obtained using the harmonizer within the machine 
learning pipeline seems similar to that obtained by harmonizing all the data with neuroHarmonize before 
imaging site prediction, even though the model is built on training data only and then applied to test data.
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The goodness of age prediction using the data harmonized with neuroHarmonize before the splitting into 
training and test sets is falsely increased compared with the use of data harmonized with the harmonizer within 
the CV. Indeed, the median MAE values obtained in predicting age using data harmonized with neuroHarmo-
nize before splitting into training and test sets were significantly lower than those estimated using data harmo-
nized with harmonizer within the CV (one-sided Wilcoxon signed-rank p-values < 0.001 for all the cases, except 
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Fig. 12  Scatterplot of the average CT of the cerebral cortex vs. age. The plot of the average CT of the cerebral 
cortex vs. age is shown for the CHILDHOOD, ADOLESCENCE, ADULTHOOD, and LIFESPAN meta-datasets 
without and with harmonization using the harmonizer transformer. In the latter case, we considered only the 
first CV among the 100 repetitions. Specifically, for each subject, we plotted the harmonized value obtained in 
the fold when the subject was included in the test set.
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for CT features in the CHILDHOOD meta-dataset, see Table 10). These results confirm how data leakage related 
to data harmonization before splitting them into training and test sets leads to performance overestimation even 
for in vivo data and underlines the importance of encapsulating the data harmonization procedure among the 
preprocessing steps of a machine learning pipeline.
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Fig. 13  Scatterplot of the FD of the cerebral cortex vs. age. The plot of the FD of the cerebral cortex vs. age is 
shown for the CHILDHOOD, ADOLESCENCE, ADULTHOOD, and LIFESPAN meta-datasets without and 
with harmonization using the harmonizer transformer. In the latter case, we considered only the first CV among 
the 100 repetitions. Specifically, for each subject, we plotted the harmonized value obtained in the fold when the 
subject was included in the test set.
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In previous single-centers studies, we observed that the computation of the FD using the box-counting algo-
rithm with the automated selection of the optimal fractal scaling window implemented in fractalbrain best predicted 
chronological age in two datasets of healthy children and adults among various FD approaches, and more conven-
tional features, such as CT, and gyrification index59. In this large multicenter study, we confirmed the more remark-
able ability of the FD of the cerebral cortex to predict individual age better than the average CT. In the LIFESPAN 
meta-dataset, for example, the error in age prediction using CT features (MAE = 7.55 years) was reduced by more 
than 25% using FD features (MAE = 5.60 years) in line with previous literature59,68. This result furtherly confirms 
that FD conveys additional information to that provided by other conventional structural features58,59,67,68,86–99.

This study has some limitations. Firstly, to show the utility of encapsulating the data harmonization pro-
cedure among the preprocessing steps of a machine learning pipeline to avoid data leakage, we used only the 
ComBat harmonization method. However, other harmonization techniques are available and could be similarly 
effective, including the recent CovBat model, which adds harmonization of covariance between sites84. Future 
research may consider comparing and contrasting the performance of different harmonization methods to iden-
tify the optimal approach for specific research questions and data sets.

Secondly, we showed and measured the data leakage effect using simulated and in vivo data of CT and FD of 
the cerebral cortex only. Various other morphological and functional MRI-derived features might be considered. 

Meta-dataset and 
feature type

Balanced accuracy median (IQR)

Without 
harmonization

Harmonization with 
neuroHarmonize

Harmonization with 
harmonizer transformer

CHILDHOOD

CT 0.45 (0.03) 0.09 (0.01) 0.13 (0.02)

FD 0.35 (0.02) 0.09 (0.01) 0.13 (0.02)

ADOLESCENCE

CT 0.45 (0.03) 0.13 (0.02) 0.15 (0.03)

FD 0.43 (0.04) 0.16 (0.03) 0.22 (0.04)

ADULTHOOD

CT 0.40 (0.03) 0.09 (0.01) 0.09 (0.01)

FD 0.29 (0.02) 0.12 (0.01) 0.13 (0.01)

LIFESPAN

CT 0.28 (0.01) 0.06 (0.01) 0.07 (0.01)

FD 0.22 (0.01) 0.08 (0.01) 0.10 (0.01)

Table 9.  Site prediction results. The median and the interquartile range of the balanced accuracy over 100 
repetitions of the 5-fold CV have been reported. In bold, we have highlighted significant falsely overestimated 
performance due to data leakage (the median balanced accuracy in imaging site prediction using data 
harmonized with neuroHarmonize is lower, i.e., better performance, than that estimated using data harmonized 
with the harmonizer transformer within the CV – one-sided Wilcoxon signed-rank test p-values < 0.001 for all 
the analyses). CT: cortical thickness; CV: cross-validation; FD: fractal dimension; IQR: interquartile range.

Meta-dataset and feature type

Harmonization efficacy (age-group permutation test 
p-value, One-sided Wilcoxon signed-rank test p-value)

Harmonization with 
neuroHarmonize

Harmonization with harmonizer 
transformer

CHILDHOOD

CT (0.5363, 10−18) (0.0036, 10−18)

FD (0.5853, 10−18) (0.0268, 10−18)

ADOLESCENCE ADOLESCENCE

CT (0.3559, 10−18) (0.0484, 10−18)

FD (0.0090, 10−18) (0.0002, 10−18)

ADULTHOOD ADULTHOOD

CT (0.4545, 10−18) (0.4727, 10−18)

FD (0.0042, 10−18) (0.0006, 10−18)

LIFESPAN

CT (0.1128, 10−18) (0.0006, 10−18)

FD (0.0002, 10−18) (0.0002, 10−18)

Table 10.  Harmonization efficacy. The age-group permutation test p-value and one-sided Wilcoxon signed-
rank test p-value have been reported. The permutation test p-value indicates whether the site effect has been 
removed (i.e., p-value ≥ 0.05 means that the imaging site prediction is not different from a random prediction). 
One-sided Wilcoxon signed-rank test p-value indicates whether the site effect has been reduced (i.e., p-value 
less than 0.05 means that the prediction of imaging site using the harmonized features obtains a balanced 
accuracy significantly less than that estimated using raw data). CT: cortical thickness; FD: fractal dimension.
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However, the focus of the study was mainly to measure the efficacy of the harmonization and show a possible 
detrimental effect of data harmonization on the entire dataset before machine learning analysis, and this effect 
is not relative to the features considered.

Lastly, for site/age prediction, we adopted an XGBoost decision tree with default parameters. It is well known 
that classification/regression performances may be affected by the value of the hyperparameters, and proper 
hyperparameter optimization, e.g., through a nested CV, could be adopted. However, this procedure was not 
feasible in our study because of the relatively small size of data in many centers – an undesired but common 
scenario in many publicly available datasets. Thus, though this choice was arbitrary, we feel that using the same 
hyperparameters for both neuroHarmonize and Harmonize transformer data was reasonable.

In conclusion, we showed that introducing the harmonizer transformer, which encapsulates the harmoni-
zation procedure among the preprocessing steps of a machine learning pipeline, avoided data leakage. Using in 
vivo data, after Combat harmonization, the site effect was completely removed or reduced while preserving the 
biological variability. We, therefore, suggest that future multicenter imaging studies will include the data har-
monization method in the machine learning pipelines and measure the efficacy of the harmonization process.

Data availability
The brain MR T1-weighted images that support the findings of this study are available from the following online 
repositories:

- Autism Brain Imaging Data Exchange (ABIDE): https://fcon_1000.projects.nitrc.org/indi/abide/
- Information eXtraction from Images (IXI) study: https://brain-development.org/ixi-dataset/
- 1000 Functional Connectomes Project (FCP) – ICBM dataset: https://fcon_1000.projects.nitrc.org/fcpClas-

sic/FcpTable.html

- Consortium for Reliability and Reproducibility (CoRR) - NKI 2 - Nathan Kline Institute (Milham): https://
fcon_1000.projects.nitrc.org/indi/CoRR/html/index.html

The CT and FD features, derived from brain MR T1-weighted of 1740 subjects, that support the findings of this 
study, are freely available on Zenodo100,101. The simulated CT and FD features that support the findings of this 
study are freely available on a Zenodo repository102.

Code availability
The source code of the efficacy measurement and harmonizer transformer is publicly available in a GitHub 
repository at https://github.com/Imaging-AI-for-Health-virtual-lab/harmonizer. The following are the versions 
of software and Python libraries used to obtain the results presented in this study:

�- FreeSurfer version 7.1.1. For T1-weighted images belonging to ICBM and NKI2 datasets, we used FreeSurfer 
version 5.3. ABIDEI T1-weighted images were already processed using FreeSurfer version 5.1.
- fractalbrain toolkit version 1.1
- neuroHarmonize v. 2.1.0 package
- eXtreme Gradient Boosting (XGBoost) version 0.90.

Meta-dataset and 
feature type

MAE median (IQR)

Harmonization with 
neuroHarmonize

Harmonization 
with harmonizer

One-sided Wilcoxon 
signed-rank test p-value

CHILDHOOD

CT 1.31 (0.03) 1.28 (0.03) 1

FD 1.16 (0.02) 1.18 (0.02) 10−13

ADOLESCENCE

CT 1.69 (0.06) 1.76 (0.07) 10−15

FD 1.56 (0.06) 1.59 (0.06) 10−6

ADULTHOOD

CT 10.85 (0.12) 10.88 (0.14) 0.007

FD 8.68 (0.13) 8.73 (0.13) 10−5

LIFESPAN

CT 7.35 (0.06) 7.55 (0.09) 10−18

FD 5.48 (0.04) 5.60 (0.07) 10−18

Table 11.  Age prediction results. The median MAE and the relative standard deviation over 100 repetitions 
have been reported. In bold, we have highlighted significant falsely overestimated performance due to data 
leakage (the median MAE in predicting age using data harmonized with neuroHarmonize is lower than that 
estimated using data harmonized with the harmonizer transformer within the CV – one-sided Wilcoxon 
signed-rank test p-values < 0.05 for all the analyses, except for the CT features of the CHILDHOOD meta-
dataset). CT: cortical thickness; CV: cross-validation; FD: fractal dimension; IQR: interquartile range; MAE: 
median absolute error.
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