## Supporting information

## Optics determines the electrochemiluminescence signal of bead-based immunoassays

Dongni Han, ${ }^{\text {a,b }}$ Dechen Jiang, ${ }^{\text {c }}$ Giovanni Valenti, ${ }^{\text {d }}$ Francesco Paolucci, ${ }^{\text {d }}$ Frédéric Kanoufi, ${ }^{\text {e }}$ Patrick Chaumet, ${ }^{\text {f }}$ Danjun Fang, ${ }^{*},{ }^{\text {b }}$ Neso Sojic*,a

a Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP, 33607, Pessac, France<br>${ }^{b}$ School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211126, China<br>${ }^{c}$ State Key Laboratory of Analytical Chemistry for Life Science and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China<br>${ }^{d}$ Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy<br>e Université Paris Cité, ITODYS, CNRS, F-75013 Paris, France<br>${ }^{f}$ Institut Fresnel, Aix Marseille Univ, CNRS, Centrale Marseille, 13013, Marseille, France<br>Emails: sojic@u-bordeaux.fr; djf@njmu.edu.cn

## Table of Contents

1. Experimental PL and ECL lateral views 2
2. COMSOL simulation details and parameters of the ECL mechanism 3
3. Comparison of the simulated ECL images 20
4. (Top) Simulated ECL images of a single $2.8-\mu \mathrm{m}$ diameter $\mathrm{Ru} @$ bead 21
5. (Top) Simulated ECL images of a single $12-\mu \mathrm{m}$ diameter $\mathrm{Ru} @$ bead 22
6. Experimental section 23
7. References 24

## 1. Experimental PL and ECL lateral views



Figure S1. Experimental a) PL and b) ECL images of a single $12-\mu \mathrm{m}$ diameter Ru@bead deposited on the electrode surface and recorded in the side-view configuration. c) Side-view of the simulated distribution of the ECL intensity (i.e. $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]^{2+*}$ excited state) considering only the ECL mechanism. The hatched zone represents the luminescence reflection of the $\mathrm{Ru} @$ bead on the electrode surface. ECL images were recorded in PBS solution containing 180 mM TPA when imposing a potential of 1.4 V vs $\mathrm{Ag} / \mathrm{AgCl}$ at the GC electrodes.

## 2. COMSOL simulation details and parameters of the ECL mechanism

The reactions simulated here were fully described in the main text (see Figure 1d). The heterogeneous electron-transfer reactions and, since those occur at the electrode surface, were simulated in the boundary (flux electrode section). The reaction with the $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]^{2+}$ attached to the beads were simulate in the surface reaction section. Otherwise, chemical reactions are considered in the subdomain settings. Dependent variables are TPA (named A in the simulation), $\mathrm{TPA}^{\circ}$ (named E in the simulation), $\mathrm{TPA}^{\circ+}$ (named I in the simulation), HTPA (named C in the simulation), other products (named X in the simulation), $\mathrm{H}^{+}$(named H in the simulation) for the transport diluted species section and $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]^{2+}$ (named G in the simulation), $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]^{+}$ (named G1 in the simulation), $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]^{2+*}($ named F in the simulation), and photons (named s_L in the simulation). In order to improve the mesh quality, we also divided the bulk subdomain in two part one close to the electrode (before " $z$ ") and another one far from the electrode (after " $z$ "). Those two different subdomains allow to have a precise resolution without a very time-consuming calculation.

Simulation details are described below

### 2.1 Global Definition

Table S1. Global definition: Simulation parameters

| Name | Expression | Value | Description |
| :--- | :--- | :--- | :--- |
| alpha | 0.5 | 0.5 | Electron transfer coefficient |
| F | 96485 | 96485 | Faraday constant [C mol-1] |
| R | 8.314 | 8.314 | Gas constant [J mol-1 K-1] |
| T | 298.15 | 298.15 | Temperature [K] |
| fa | 38.92 | 38.92 | F/RT [V-1] |
| E0 | 0.9 | 0.9 | Forward TPA oxidation |
| D | $5 \mathrm{e}-6\left[\mathrm{~cm}^{\wedge} 2 / \mathrm{s}\right]$ | $5 \mathrm{E}-10 \mathrm{~m}^{2} / \mathrm{s}$ | Diffusion coefficient for TPA |
| DH | $5 \mathrm{e}-5\left[\mathrm{~cm}^{\wedge} 2 / \mathrm{s}\right]$ | $5 \mathrm{E}-9 \mathrm{~m}^{2} / \mathrm{s}$ | Diffusion coefficient for H |
| k0 | $0.01[\mathrm{~cm} / \mathrm{s}]$ | $1 \mathrm{E}-4 \mathrm{~m} / \mathrm{s}$ | Heterogeneous ET const $[\mathrm{ms}-1]$ |
| n | 1 | 1 | $\mathrm{n}^{\circ}$ of electrons exchanged |


| Name | Expression | Value | Description |
| :---: | :---: | :---: | :---: |
| Ea | 1.2 | 1.2 | Anodic switching potential [V] (Notice this number may change depending from the switching potential choosed in the simulation) |
| k3 | 3.5e3[1/s] | 3500 1/s | Forward constant for deprotonation of RCtpa |
| k3 | 1e6[1/(s*M)] | $1000 \mathrm{~m}^{3} /(\mathrm{s} \cdot \mathrm{mol})$ | Backward constant for deprotonation of RCtpa |
| k1 | 1e7[1/(s*M)] | $10000 \mathrm{~m}^{3} /(\mathrm{s} \cdot \mathrm{mol})$ | pka of Ctpa |
| k1_ | $8 \mathrm{e}-3[1 / \mathrm{s}]$ | $0.0081 / \mathrm{s}$ | pkb of TPA |
| H0 | 1e-7[M] | $1 \mathrm{E}-4 \mathrm{~mol} / \mathrm{m}^{3}$ | ph 7 |
| E0d | -1.7 | -1.7 | Standard potential for TPA radical oxidation |
| k5 | 1e6[1/M/s] | $1000 \mathrm{~m}^{3} /(\mathrm{s} \cdot \mathrm{mol})$ |  |
| k_5 | $1 \mathrm{e}-3$ | 0.001 |  |
| kem | 1e8[1/s] | 1E8 1/s | Constant for emission |
| DRu | $5 \mathrm{e}-10\left[\mathrm{~cm}^{\wedge} 2 / \mathrm{s}\right]$ | $5 \mathrm{E}-14 \mathrm{~m}^{2} / \mathrm{s}$ |  |
| C0 | 0 | 0 |  |
| Dmin | 1e-50 | 1E-50 |  |
| dC | 0.000001 | 1E-6 |  |
| A0t | 0.180[M] | $180 \mathrm{~mol} / \mathrm{m}^{3}$ | Initial concentration of TPA |
| Ru0 | $1 \mathrm{e}-3 \mathrm{~mol} / \mathrm{m}^{2}$ | $1 \mathrm{e}-3 \mathrm{~mol} / \mathrm{m}^{2}$ | Initial concentration of Ru |
| K | k1/k1_ | $1.25 \mathrm{E} 6 \mathrm{~m}^{3} / \mathrm{mol}$ |  |
| CCO | $\mathrm{A} 0 \mathrm{t} /(1+1 /(\mathrm{K} * \mathrm{H} 0)$ ) | $178.57 \mathrm{~mol} / \mathrm{m}^{3}$ |  |
| A0 | A0t - CCO | $1.4286 \mathrm{~mol} / \mathrm{m}^{3}$ |  |
| Rb | 6[um] | 6E-6 m | Bead radius (Notice this number may change depending from the beads radius in this manuscript we used $1.4 \mu \mathrm{~m}$ or 6 $\mu \mathrm{m}$ ) |

Table S2. Global definition: Variables

| Name | Expression | Unit | Description |
| :--- | :--- | :--- | :--- |
| kI | k0*exp(-alpha*fa*(Ea - EO)) | $\mathrm{m} / \mathrm{s}$ | Forward constant for TPA oxidation |
| kA | k0*exp((1-alpha)*fa*(Ea - EO)) | $\mathrm{m} / \mathrm{s}$ | Backward constant for TPA oxidation |
| kX | k0*exp(-alpha*fa*(Ea -EOd)) | $\mathrm{m} / \mathrm{s}$ | Forward constant for TPA radical <br> oxidation |
| kE | k0*exp((1-alpha)*fa*(Ea -E0d)) | $\mathrm{m} / \mathrm{s}$ | Backward constant for TPA radical <br> oxidation |

### 2.2 Model

Table S3. Model, Definitions Variables

| Name | Expression | Unit | Description |
| :---: | :---: | :---: | :---: |
| t1 | 0.1 | S | Pulse width |
| t2 | 0.2 | s | Pulse width |
| dt | 0.01 | s | Resolution time |
| f1 | flc2hs(t-t1, dt) |  | Function used for change the potential in the time |
| f2 | flc2hs(t-t2, dt) |  | Function used for change the potential in the time |
| r_k1 | (-k1*A* $\mathrm{H} 0+\mathrm{k} 1_{-}^{*} \mathrm{C}$ ) | $\mathrm{mol} /\left(\mathrm{m}^{3} \cdot \mathrm{~s}\right)$ | Reaction |
| r_k3 | (k3**I - k3*E*H0) | $\mathrm{mol} /\left(\mathrm{m}^{3} \cdot \mathrm{~s}\right)$ | Reaction |
| fs_E | k5*s_G*E | $\mathrm{mol} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ | Flux on beads |
| fs_I | k5*s_G1*I | $\mathrm{mol} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ | Flux on beads |
| r_G | (-fs_E+kem2*s_L) | $\mathrm{mol} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ | Reaction on beads |
| r_G1 | $\left(-f s_{-} \mathrm{I}+\mathrm{fs}\right.$ _ ) | $\mathrm{mol} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ | Reaction on beads |
| r_L | (-kem2*s_L + fs_I) | $\mathrm{mol} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ | Reaction on beads |
| r_F | (+kem2*s_L) | $\mathrm{mol} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ | Reaction on beads |
| kem2 | kem*1 | 1/s |  |
| fe_A | (-kA*A + kI* ${ }^{\text {a }}$ ) | $\mathrm{mol} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ | Flux on electrode |
| fe_E | $\left(-k E^{*} \mathrm{E}^{*}(\mathrm{E}>=0)\right.$ ) | $\mathrm{mol} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ | Flux on electrode |
| fe_I | $\left(-k I^{*} \mathrm{I}+\mathrm{kA}\right.$ * $)$ | $\mathrm{mol} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ | Flux on electrode |
| fe_X | (kE*E*(E>=0)) | $\mathrm{mol} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ | Flux on electrode |
| r_kd | k1*İE* (E> = 0) | $\mathrm{mol} /\left(\mathrm{m}^{3} \cdot \mathrm{~s}\right)$ |  |

### 2.3 Geometry



Figure S2. Model geometry. The model geometry used for the simulation is reported in the figure.

### 2.4 Transport of diluted species

Under transport diluted species: Diffusion, Axial Symmetry, No flux, Initial values, Reaction, Bulk, Flux electrode, Flux beads

## Table S4. Diffusion domain 1-3

| Description | Value |
| :--- | :--- |
| Diffusion coefficient <br> A | $\{\{D, 0,0\},\{0, D, 0\},\{0,0, D\}\}$ |
| Diffusion coefficient E | $\{\{D, 0,0\},\{0, D, 0\},\{0,0, D\}\}$ |
| Diffusion coefficient I | $\{\{D, 0,0\},\{0, D, 0\},\{0,0, D\}\}$ |
| Diffusion coefficient <br> C | $\{\{D, 0,0\},\{0, D, 0\},\{0,0, D\}\}$ |
| Diffusion coefficient <br> X | $\{\{D, 0,0\},\{0, D, 0\},\{0,0, D\}\}$ |
| Diffusion coefficient <br> H | $\{\{D H, 0,0\},\{0, D H, 0\},\{0,0$, <br> $D H\}\}$ |



Figure S3. Model Domains: Axial symmetry. Blue line represents the axial symmetry in the model domains.

## No flux



Figure S4. Model Domains: No flux. Blue line is the no flux domain in the model.

## Initial values



## Description <br> Value

Concentration
$\{\mathrm{AO}, \mathrm{CO}, \mathrm{CO}, \mathrm{CCO}, \mathrm{CO}, \mathrm{HO}\}$
Figure S5. Model Domains: Initial values. Blue area is the model domains where initial values are defined.

## Reaction



| Description | Value |
| :---: | :---: |
| Total rate expression A | $r_{-} k 1+r_{-} k d$ |
| Total rate expression E | r_k3 - r_kd |
| Total rate expression I | -r_k3-r_kd |
| Total rate expression C | -r_k1 |
| Total rate expression $X$ | r_kd |
| Total rate expression H | $\left(r_{-} k 1+r_{-} k 3\right) * 0$ |

Figure S6. Model Domains: reactions. Blue area is the model domains where the chemical reactions are defined.

## Bulk



| Description | Value |
| :--- | :--- |
| Species A | AOt -C |
| Species E | CO |
| Species I | CO |
| Species C | $(\mathrm{AOt}) /\left(1+1 /\left(\mathrm{K}^{*} \mathrm{H} 0\right)\right)$ |
| Species X | CO |
| Species H | HO |
| Concentration | $\left\{\mathrm{AOt}-\mathrm{C}, \mathrm{CO}, \mathrm{CO},(\mathrm{AOt}) /\left(1+1 /\left(\mathrm{K}^{*} \mathrm{H} 0\right)\right), \mathrm{CO}, \mathrm{HO}\right\}$ |

Figure S7. Model Domains: Bulk. Blue line is the bulk of the solution in the model domains.

## Flux electrode



| Description | Value |
| :--- | :--- |
| Flux type | General inward flux |
| Species A | fe_A |
| Species E | fe_E |
| Species I | fe_I |
| Species C | 0 |
| Species X | fe_X |
| Species H | 0 |
|  | \{fe_A, fe_E, fe_I, 0, fe_X, 0 \} |

Figure S8. Model Domains: flux electrode. Blue line is the electrode surface where electrochemical reactions occur in the model.

## Flux beads



| Description | Value |
| :--- | :--- |
| Flux type | General inward flux |
| Species A | fs_I |
| Species E | -fs_E |
| Species I | -fs_I |
| Species C | 0 |
| Species X | fs_E |
| Species H | 0 |
|  | \{fs_I, -fs_E, -fs_I, 0, fs_E, 0$\}$ |

Figure S9. Model Domains: flux beads. Blue line is the beads surface.

### 2.5 Surfaces reactions

Under surface reaction: Surface proprieties, Axial Symmetry, No flux, Initial values, Reaction


| Description | Value |
| :--- | :--- |
| Density of sites | $2 \mathrm{e}-5\left[\mathrm{~mol} / \mathrm{m}^{\wedge} 2\right]$ |
| Site occupancy number | $\{1,1,1,1\}$ |


| Description | Value |
| :--- | :--- |
| Surface material | None |
| Diffusion coefficient G | $\{\{$ Dmin, 0,0$\},\{0$, Dmin, 0\}, $\{0,0$, Dmin $\}\}$ |
| Diffusion coefficient G1 | $\{\{$ Dmin, 0,0$\},\{0$, Dmin, 0$\},\{0,0$, Dmin $\}\}$ |
| Diffusion coefficient F | $\{\{D m i n, 0,0\},\{0$, Dmin, 0$\},\{0,0$, Dmin $\}\}$ |
| Diffusion coefficient L | $\{\{\operatorname{Dmin}, 0,0\},\{0$, Dmin, 0$\},\{0,0$, Dmin $\}\}$ |

Figure S10. Surfaces reactions. Blue line is the beads surface where the luminophore is bound.

## Axial Symmetry



Figure S11. Surfaces reactions: axial symmetry. Blue points are axial symmetry.

## No flux



Figure S12. Surfaces reactions: No flux.

## Initial values



## Description

Value
Surface concentration $\{1 e-3,0,0,0\}$
Figure S13. Surfaces reactions: Initial value.

## Reaction



| Description | Value |
| :--- | :--- |
| Reaction rate for surface species F | $r_{-} F$ |
| Reaction rate for surface species L | $r_{-} L$ |

Figure S14. Surfaces reactions: Reactions. Blue line is the beads surface where the luminophore reactions occur.

### 2.6 Mesh

Size: All the mesh size are reported in $\mu \mathrm{m}$


| Description | Value |
| :--- | :--- |
| Maximum element size | 15 |
| Minimum element size | 0.03 |
| Curvature factor | 0.3 |
| Maximum element growth rate | 1.2 |
| Custom element size | Custom |

Figure S15. Model mesh: mesh size.

## Free triangular edge:





| Description | Value |
| :--- | :--- |
| Maximum element size | 6.7 |
| Maximum element size | Off |
| Minimum element size | 0.03 |
| Minimum element size | Off |
| Curvature factor | 0.3 |
| Curvature factor | Off |
| Resolution of narrow regions | Off |
| Maximum element growth rate | 1.05 |
| Custom element size | Custom |

Figure S16. Model mesh: Free triangular.

## Boundary layers:



| Description | Value |
| :--- | :--- |
| Number of boundary layers | 10 |
| Boundary layer stretching factor | 1.02 |
| Thickness of first layer | Manual |
| Thickness | 0.02 |

Figure S17. Model mesh: Boundary layers.

### 2.7 Study

Table S5. Time dependent solver

| Times | Unit |
| :--- | :--- |
| $010^{\wedge}\{$ range $(-7,1,-2)\}$ range $(0.05,0.05,1)$ | s |


| Description | Value |
| :--- | :--- |
|  | $\{0,1.0 \mathrm{E}-7,1.0 \mathrm{E}-6,1.0 \mathrm{E}-5,1.0 \mathrm{E}-4,0.001,0.01,0.05,0.1,0.15000000000000002$, |
| Times | $0.2,0.25,0.3,0.35000000000000003,0.4,0.45,0.5,0.55$, |
|  | $0.6000000000000001,0.6500000000000001,0.7000000000000001$, |
|  | $0.7500000000000001,0.8,0.8500000000000001,0.9000000000000001$, |
| Tolerance | $0.9500000000000001,1\}$ |
| Relative tolerance | User controlled |

## 3. Comparison of the simulated ECL images



Figure S18. Comparison of the simulated ECL images of a single a) $2.8-\mu \mathrm{m}$ and b) a $12-\mu \mathrm{m}$ diameter Ru@bead considering only the ECL mechanism. Corresponding c) ECL intensity profiles and d) angular dependence $\rho(\theta)$ of the ECL signal for both $\mathrm{Ru} @$ beads.

## 4. (Top) Simulated ECL images $12-\mu m$ diameter $\mathrm{Ru} @$ bead



Figure S19. (Top) Simulated ECL images of a single $12-\mu \mathrm{m}$ diameter Ru@bead deposited on the electrode surface in the top-view configuration with different focal planes: a) bottom ( $\mathrm{z}=0$ ), b) middle $(z=6 \mu \mathrm{~m})$ and c ) top $(\mathrm{z}=12 \mu \mathrm{~m})$. (Bottom) Corresponding ECL intensity profiles for different $z$ values. The images were simulated considering the ECL mechanism and the optical effects.

## 5. (Top) Simulated ECL images of a single $2.8-\mu \mathrm{m}$ diameter $\mathrm{Ru} @$,bead



Figure S20. (Top) Simulated ECL images of a single 2.8- $\mu \mathrm{m}$ diameter $\mathrm{Ru} @$ bead deposited on the electrode surface in the top-view configuration with different focal planes: a) bottom $(z=0), b)$ middle $(\mathrm{z}=1.4 \mu \mathrm{~m})$ and c$)$ top $(\mathrm{z}=6 \mu \mathrm{~m})$. (Bottom) Corresponding ECL intensity profiles for different $z$ values. The images were simulated considering the ECL mechanism and the optical effects.

## 6. Experimental Section

Reagents. All the reagents were purchased from Sigma-Aldrich unless otherwise noted. PS beads were obtained from Kisker Biotech $\mathrm{GmbH} \& \mathrm{Co}$. Phosphate buffer solution ( $\mathrm{pH} 7.4,0.1 \mathrm{M}$ ) was prepared by mixing 0.1 M sodium phosphate monobasic monohydrate and 0.1 M sodium phosphate dibasic heptahydrate solution with degassed solution. TPA was dissolved in PBS and the pH was adjusted to 7.4 with phosphoric acid. Capture antibody specific for interleukin 8 (IL8), the complementary biotinylated detection antibody and IL-8 recombinant protein were obtained from R\&D Systems Inc.

Functionalization of the PS beads. The functionalization of the beads by the ECL labels using both immunoassay and peptidic approaches has been described previously. ${ }^{1-3}$ In the first case, antigen storage aliquots were prepared in PBS 1x/BSA $0.1 \%$ and detection antibody storage aliquots were prepared in tris-buffered saline (TBS StartingBlock). Each washing step was done in $100 \mu \mathrm{~L}$ of TBS with $1 \%$ Tween 20. The assay was performed by incubating for 2 h the microbeads functionalized with a capture antibody (anti-IL-8) first in a sample containing antigen (dilute to the appropriate concentration with PBS Starting Block) and washed. Then they were incubated for 30 min in $50 \mu \mathrm{~L}$ of the biotinylated detection antibodies solution ( $3 \mu \mathrm{~g} / \mathrm{mL}$ of antibody in PBS StartingBlock) and washed. Finally, the ECL label was attached to form immunocomplex by exposing the beads to a solution containing a streptavidin-modified $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]^{2+}$ label. In the second case, the surface of the PS beads beared $-\mathrm{NH}_{2}$ groups which allow further functionalization with the ECL $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]^{2+}$ label. $10 \mu \mathrm{~L}$ of beads suspension ( $2.5 \%$ ) was washed with PBS ( pH 7.4) and re-suspended in 1 mL of PBS. In the same time, 1 mg of $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]^{2+}$-NHS ester (bis( $2,2^{\prime}-$ bipyridine)-4'-methyl-4-carboxybipyridine-ruthenium $\quad \mathrm{N}$-succinimidyl esterbis(hexafluorophosphate) was dissolved in $100 \mu \mathrm{~L}$ of dimethyl sulfoxide and this solution was added to the bead suspension. This mixture was incubated on $+4{ }^{\circ} \mathrm{C}$ for 3 h with continuous stirring. After the incubation the beads were washed from reaction solution with PBS 10 times by the centrifugation for 10 min at $10,000 \mathrm{rpm}$ to separate the beads from the solution. Finally, beads were suspended in 1 mL PBS and kept at $4^{\circ} \mathrm{C}$.

Instrumentation. The electrochemical cell was a 3-electrode system where the working electrode was glassy carbon (GC). A platinum wire was used as the counter electrode and $\mathrm{Ag} / \mathrm{AgCl} / \mathrm{KCl}$ ( 3 M ) electrode was used as the reference electrode. The experiments were performed using a $\mu$ Autolab type III potentiostat. The PL and ECL images were recorded using an epifluorescence
microscope from Leica (DMI6000, Leica Microsystems) and an Electron Multiplying Charge Coupled Device (EM-CCD 9100-13) Camera from Hamamatsu. The working electrode was placed in two different configurations inside the electrochemical cell for top-view and side-view study.

## 7. References

(1) Deiss, F.; LaFratta, C. N.; Symer, M.; Blicharz, T. M.; Sojic, N.; Walt, D. R. Multiplexed Sandwich Immunoassays using Electrochemiluminescence Imaging Resolved at the Single Bead Level. J. Am. Chem. Soc. 2009, 131, 6088-6089.
(2) Sentic, M.; Milutinovic, M.; Kanoufi, F.; Manojlovic, D.; Arbault, S.; Sojic, N. Mapping
electrogenerated chemiluminescence reactivity in space: mechanistic insight into model systems used in immunoassays. Chem. Sci. 2014, 5, 2568-2572.
(3) Dutta, P.; Han, D.; Goudeau, B.; Jiang, D.; Fang, D.; Sojic, N. Reactivity mapping of luminescence in space: Insights into heterogeneous electrochemiluminescence bioassays. Biosens. Bioelectron. 2020, 165, 112372.

