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Abstract: The conditions defining a stationary fluid flow may lead to a multiplicity of solutions. This
circumstance is widely documented in the literature when mixed convection in a vertical channel or
duct is accompanied by an important effect of viscous dissipation. Usually, there are double stationary
solutions with a parallel velocity field which satisfy given temperature boundary conditions and
with a prescribed mass flow rate. However, in a vertical internal flow, the dual solutions can be
determined only numerically as they do not have a closed analytical form. This study shows that,
in a horizontal channel, stationary mixed convection with viscous dissipation shows up dual flow
branches whose mathematical expressions can be determined analytically. The features of these dual
flows are discussed.

Keywords: mixed convection; viscous dissipation; stationary regime; parallel flow; analytical solution

1. Introduction

There exists a wide literature pointing out that the governing equations of fluid flow
may allow multiple solutions for a given properly conditioned problem. In fact, it is widely
assumed that the stationary and fully developed flow of a fluid in a duct or channel with
assigned wall conditions for the temperature and for the velocity (typically no slip) is
unique provided that a given mass flow rate or pressure gradient is prescribed. This is
the case of some elementary solutions for isothermal flow available in all textbooks of
fluid dynamics, such as the Poiseuille flow or the Poiseuille–Couette flow, as well as for
less known solutions relative to natural or mixed convection heat transfer, such as the
Batchelor’s profile [1]. However, this widely assumed behaviour is not a general feature
of stationary fully–developed internal flows. Significant counterexamples exist when the
nonlinear nature of the governing equations for fluid flow emerges in the stationary fully–
developed regime. There are typical conditions leading to such a situation; one is the
non–negligible viscous dissipation effect in a buoyant flow. There are well–documented
case studies of this type addressing situations where steady natural or mixed convection
dual flows arise in vertical channels or ducts [2–7]. A general feature of such solutions is
that they are not expressed in a closed analytical form, but they are obtained by numerical
methods, usually the shooting method implemented, for example via a Runge–Kutta solver
or a power–series technique yielding a recursive determination of the series coefficients.

The analysis of viscous dissipation effects in forced convection and mixed convection
flows has a significant impact for both engineering and geophysical applications. Engi-
neering applications are oriented to the analysis and the design of the thermal treatment of
fluids, important to the food processing industry and to the chemical engineering analysis
of organic and/or polymeric fluid flows. Geophysical applications are devised as typical
of the interplay between buoyancy and viscous dissipation effects, as pointed out in the
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classical papers by Gebhart [8] and by Gebhart and Mollendorf [9]. These authors intro-
duced the dissipation parameter (now widely known as the Gebhart number) as the key
parameter governing the phenomenon.

The aim of this paper is to examine the stationary mixed convection flow with viscous
dissipation in a horizontal channel, where the channel boundary walls are adiabatic and
the velocity field is parallel. It will be shown that there exist dual solutions for every
possible assignment of the mass flow rate, expressed in non–dimensional terms through
the Péclet number. The striking feature of this flow problem is that the dual solutions are
expressed in a closed form as polynomials in the transverse coordinate. This paper mirrors
an analogous study carried out for a fluid saturated porous medium governed by Darcy’s
law [10]. The novel feature of the investigation presented here is that a Newtonian fluid
flow is considered instead of the seepage flow in a porous medium.

2. Governing Equations

Let us consider a horizontal channel bounded by rigid walls at y = 0, H. The y axis
is vertical, while the (x, z) axes are horizontal. As shown in Figure 1, the gravitational
acceleration is g = −g êy, where êy is the unit vector along the y axis. The rigid boundary
walls are modelled as perfectly adiabatic.

Figure 1. A sketch of the channel with adiabatic walls.

We assume the validity of the Boussinesq approximation and we assume the effect of
viscous dissipation as non–negligible. Thus, a dimensionless formulation of the local mass,
momentum and energy balance equations for a Newtonian fluid flowing in the channel
can be expressed as [8,9]

∇ · u = 0, (1)

1
Pr

[
∂u
∂t

+ (u ·∇) u
]
= −∇p + T êy +∇2u, (2)

∂T
∂t

+ (u ·∇) T = ∇2T + Ge Φ. (3)

In Equation (3), Φ denotes the dissipation function,

Φ =
∂ui
∂xj

∂ui
∂xj

+
∂ui
∂xj

∂uj

∂xi
, (4)

where ui and xi are the ith Cartesian components of the velocity vector and of the position
vector, respectively, while repeated indices i and j are implicitly summed over.

The dimensionless boundary conditions are formulated as

u = 0,
∂T
∂y

= 0 for y = 0, 1. (5)
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The scaling adopted for the dimensional quantities in order to obtain Equations (1)–(3)
and (5) is given by

x
H

= xnd,
t

H2/α
= tnd,

u
α/H

= und,
p

ραν/H2 = pnd

T − T0

∆T
= Tnd,

Φ
α2/H4 = Φnd, (6)

where the subscript “nd” denotes the dimensionless quantities. In Equations (1)–(3) and in
the forthcoming equations, such a subscript is omitted for the sake of simplicity. Most of
our study, starting from Equation (8), involves dimensionless quantities and, when some
dimensional field or quantity is used, this will be explicitly stated to avoid any confusion.

In Equation (6), ∆T = αν/(gβH3) and T0 is the reference temperature employed
to evaluate the fluid properties within the Boussinesq approximation. The Prandtl and
Gebhart numbers are defined as

Pr =
ν

α
, Ge =

gβH
c

. (7)

In Equations (1)–(7), u is the velocity, p is the dynamic pressure, i.e., the local difference
between the pressure and the hydrostatic pressure, T is the temperature, and t is time.
Furthermore, α is the thermal diffusivity, ν is the kinematic viscosity, β is the thermal
expansion coefficient, ρ is the constant reference density and c is the specific heat.

We said that the scaling defined by Equation (6) involves the reference temperature
T0. The reliability of the model based on the Boussinesq approximation greatly depends
on the choice of T0. The optimal choice is one that minimises the error in the substitution
of the variable density with its reference value. Such a choice of T0 is the average value
over the spatial domain where the flow is studied [11]. The dimensionless spatial region
where the flow solution is to be determined can be defined, in terms of (x, y, z), as the
Cartesian product [−a, a]× [0, 1]× [−b, b] where the geometric aspect ratios a and b are
chosen arbitrarily at this stage. In its dimensionless formulation, the choice of the reference
temperature is expressed by the constraint

a∫
−a

dx
1∫

0

dy
b∫
−b

dz T = 0, (8)

to be satisfied by the dimensionless temperature T.

3. Flow Duality

Equations (1)–(3) and (5) admit stationary two–dimensional solutions, where the
velocity field u = (u, v, 0), the dynamic pressure field p and the temperature field T
depend only on the coordinates (x, y). Among such solutions, we seek those satisfying the
requirement

u = Pe F(y), v = 0, (9)

where F(y) is a function satisfying an integral normalisation condition,

1∫
0

F(y)dy = 1, (10)
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so that the Péclet number, Pe, expresses the dimensionless average velocity along the
x direction. In other words, if we denote by U0 the dimensional average velocity in a
x = constant cross–section, we can write

Pe =
U0H

α
, (11)

since α/H is the velocity scale employed in Equation (6).

3.1. The Velocity Field and the Temperature Field

Equation (9) identically satisfies Equation (1), while Equations (2) and (3) are drastically
simplified to

−∂p
∂x

+ Pe
d2F(y)

dy2 = 0, (12)

−∂p
∂y

+ T = 0, (13)

Pe F(y)
∂T
∂x

=
∂2T
∂x2 +

∂2T
∂y2 + Ge Φ, (14)

where, on account of Equations (4) and (9), the dissipation function Φ is given by

Φ = Pe2
[

dF(y)
dy

]2

. (15)

We now derive Equation (12) with respect to y, we derive Equation (13) with respect
to x and subtract the two resulting equations so that the mixed second–order partial
derivatives of p cancel out. Thus, we obtain

∂T
∂x

= Pe
d3F(y)

dy3 . (16)

On account of Equation (9), the boundary conditions (5) yield

F(0) = 0 = F(1). (17)

Let us derive Equation (14) with respect to x by taking into account that, from Equa-
tion (15), Φ depends only on y. Thus, we have

Pe F(y)
∂2T
∂x2 =

∂3T
∂x3 +

∂2

∂y2
∂T
∂x

. (18)

Equation (16) implies that ∂T/∂x depends only on y, so that both ∂2T/∂x2 and ∂3T/∂x3

are identically zero. Therefore, the substitution of Equation (16) into Equation (18) yields

d5F(y)
dy5 = 0. (19)

Thus, we can conclude that F(y) is a fourth degree polynomial in y.

F(y) = c0 + c1 y + c2 y2 + c3 y3 + c4 y4, (20)

where c0, c1, c2, c3 and c4 are constants. By using Equations (10) and (17), we obtain

c0 = 0, c1 + c2 + c3 + c4 = 0,
1
2

c1 +
1
3

c2 +
1
4

c3 +
1
5

c4 = 1. (21)
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The general solution of Equation (16) can be written as

T = Pe
d3F(y)

dy3 x + Pe2 G(y) = 6 Pe (c3 + 4 c4 y) x + Pe2 G(y), (22)

where G(y) is a function to be determined, and Equation (20) has been employed.
On account of Equation (22), the boundary conditions (5) yield

Pe
dG(y)

dy

∣∣∣∣
y=0

+ 24 c4 x = 0, Pe
dG(y)

dy

∣∣∣∣
y=1

+ 24 c4 x = 0, (23)

which can be satisfied for every x if and only if

dG(y)
dy

∣∣∣∣
y=0

= 0 =
dG(y)

dy

∣∣∣∣
y=1

, c4 = 0. (24)

Then, Equation (21) yields{
c1 + c2 + c3 = 0
6 c1 + 4 c2 + 3 c3 = 12

=⇒
{

c2 = −3 c1 + 12
c3 = 2 c1 − 12

(25)

We can rewrite Equations (20) and (22) as

F(y) = c1 y− 3 (c1 − 4) y2 + 2 (c1 − 6) y3,

T = 12 Pe (c1 − 6) x + Pe2 G(y). (26)

The integral constraint (8) is satisfied, when T is expressed by Equation (26), if G(y)
has a zero average value,

1∫
0

G(y)dy = 0. (27)

By substituting Equations (15), (16) and (26) into Equation (14), we obtain

F(y)
d3F(y)

dy3 =
d2G(y)

dy2 + Ge
[

dF(y)
dy

]2

. (28)

By employing the expression of F(y) given by Equation (26), we can reformulate
Equation (28) as

d2G(y)
dy2 = − 36 Ge (c1 − 6)2 y4 + 24 (c1 − 6)[3(c1 − 4)Ge + c1 − 6]y3

+ 12
[
30 c1(Ge + 1)− 24 (2 Ge + 3)− c2

1 (4 Ge + 3)
]
y2

+ 12 c1[c1 − 6 + (c1 − 4)Ge] y− c2
1 Ge. (29)

An integration of Equation (29) yields

dG(y)
dy

= − 36
5

Ge (c1 − 6)2 y5 + 6 (c1 − 6)[3(c1 − 4)Ge + c1 − 6]y4

+ 4
[
30 c1(Ge + 1)− 24 (2 Ge + 3)− c2

1 (4 Ge + 3)
]
y3

+ 6 c1[c1 − 6 + (c1 − 4)Ge] y2 − c2
1 Ge y. (30)
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where the condition dG(y)/dy
∣∣
y=0 = 0, prescribed by Equation (24), is identically satisfied.

The second boundary condition (24), dG(y)/dy
∣∣
y=1 = 0, is satisfied if the constant c1 is a

solution of

Ge c2
1 − 12 c1 (Ge + 5) + 96 Ge + 360 = 0. (31)

There exist two real solutions of Equation (31), if and only if Ge ≤
√

15, namely

c1 = 6 + A− and c1 = 6 + A+, where A± = 2
15±

√
15
(

15−Ge2
)

Ge
. (32)

When Ge =
√

15, the two solutions coincide as A− = A+ = 2
√

15. By further
integrating Equation (30), one can determine G(y) as

G(y) = − 6
5

Ge (c1 − 6)2 y6 +
6
5
(c1 − 6)[3(c1 − 4)Ge + c1 − 6]y5

+
[
30 c1(Ge + 1)− 24 (2 Ge + 3)− c2

1 (4 Ge + 3)
]
y4

+ 2 c1[c1 − 6 + (c1 − 4)Ge] y3 − 1
2

c2
1 Ge y2

+
1

210

[
c2

1 (8 Ge− 21)− 6 c1 (2 Ge + 21) + 72 (4 Ge + 21)
]
, (33)

where the arbitrary integration constant has been chosen so that the integral constraint (27)
is satisfied.

3.2. The Dynamic Pressure Field

After the determination of the velocity and temperature fields, we can determine the
dynamic pressure gradient by employing Equations (12) and (13). In fact, one obtains

∂p
∂x

= 6 Pe [2(c1 − 6) y− c1 + 4],
∂p
∂y

= 12 Pe (c1 − 6) x + Pe2 G(y), (34)

where Equation (26) has also been employed.

3.3. Some Elementary Physics Behind the Dual Flows

One may wonder how the presence of the buoyancy force, together with a non–
uniform temperature profile, can be compatible with the absence of a vertical component
of the velocity vector, i.e., the absence of an upward motion of the fluid, as declared
in Equation (9). The simplest example of a non–uniform temperature profile where the
buoyancy force is unable to generate a stationary motion with a nonzero vertical component
of the velocity is the basic state of a Rayleigh–Bénard system. We consider a horizontal
fluid layer where the plane boundaries are kept at different temperatures with heating
from below. This arrangement yields a basic stationary state where the fluid is at rest
(no motion either vertical or horizontal) and the temperature field is non-uniform in the
vertical direction, with a uniform temperature gradient. Why is the buoyancy force unable
to produce an upward motion? The reason is that the buoyancy force is not sufficiently
intense to counterbalance the friction force caused by the fluid viscosity if not for small
perturbations of the rest state which eventually are damped out in time and do not produce
any permanent (stationary) upward flow. Things become different in the Rayleigh–Bénard
system only when the temperature difference between the plane boundaries of the fluid
layer becomes sufficiently large for the Rayleigh number to exceed its critical value. Then,
the rest state may turn into a system of stationary Rayleigh–Bénard cells and a nonzero
upward component of the velocity is observed.
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The dual flows studied in our paper are stationary and display a zero vertical compo-
nent of the velocity, despite the nonzero buoyancy force and the non–uniform temperature
profile. The physical reason behind this behaviour is exactly the same as that discussed
above for the Rayleigh–Bénard system, namely the buoyancy force is not sufficiently intense
to counterbalance the friction force caused by the fluid viscosity in a permanent (stationary)
manner. As for the Rayleigh–Bénard system, the buoyancy force may eventually overcome
the friction force and establish a cellular flow system superposed to the dual parallel flows,
but this can happen only when the vertical temperature gradient becomes so intense that
the dual flows become thermally unstable. The analysis of the thermal instability is beyond
the scope of our study though it will be an interesting development to be pursued in the
future. For the physics of the Rayleigh–Bénard system, we mention the review paper by
Normand et al. [12]. For the emergence of convection cells in a system similar to that
examined in our paper, but involving a fluid saturated porous channel governed by Darcy’s
law, we refer the reader to Barletta and Rees [10].

4. Discussion of the Results

An analytical solution of the local balance equations for a Newtonian fluid flowing
in a horizontal parallel channel bounded by adiabatic walls has been obtained. The
characteristic feature of this stationary and two–dimensional solution is that it predicts a
duality of flows for a prescribed assignment of the pair (Ge, Pe). It is important to keep in
mind that the Gebhart number, Ge, is the only parameter governing the flow system, as is
shown by Equations (1)–(3) and (5), while the Péclet number, Pe, serves to fix the mass flow
rate associated with the solution. Strictly speaking, the Péclet number plays the role of a
scaling parameter for the dual solutions, so that such dual flows degenerate into a single
trivial solution when Pe = 0. Indeed, on account of Equations (9), (26) and (34), we find
u = 0, T = 0 and∇p = 0 when Pe = 0. This is what is to be expected physically as the
mass flow rate through the channel causes the frictional heating which, in turn, activates
the temperature gradient and the buoyancy force. This chain of physical effects breaks
down in the absence of a forced flow rate across the channel.

Beyond the scaling effect of the Péclet number, the phenomenon of flow duality is a
consequence of a third parameter, c1, which depends only on Ge in a double determination
given by Equation (32). In other words, the obtained stationary solution features two
branches which, hereafter, will be denoted as A−–branch and A+–branch.

4.1. Characteristics of the Velocity Profiles

The deep diversity of features between the A−–branch and A+–branch emerges with
the analysis of the velocity profiles. As Pe represents an overall scaling factor for the
x–component of velocity, the velocity distribution in a x = constant cross–section can be
displayed by the function F(y) and by its parametric dependence on the Gebhart number.
This is made evident by Figure 2 where the dual branches A− and A+ are illustrated
for different values of Ge. A very wide range of Gebhart numbers is accounted for in
Figure 2, from the limiting case Ge → 0 to Ge = 2. The latter value of Ge is really huge
for most real-world applications except for geophysical applications where the channel
width can be sufficiently large to achieve these Gebhart numbers. We bear in mind that
Turcotte et al. [13] devised a range of Gebhart numbers up to Ge = 3.

Figure 2 features a left–hand frame with the A−–branch velocity profiles and a right-
hand frame with the A+–branch velocity profiles. The comparison reveals that the two
branches yield quite dissimilar profiles for a given Gebhart number. The A−–branch shows
slight departures from the Poiseuille velocity profile, which is exactly approached in the
limit Ge → 0. This is rigorously proved by considering the lowest orders of a power
series expansion of F(y) with respect to Ge. In fact, from Equations (26) and (32) with
c1 = 6 + A−, one has

F(y) ≈ 6 y (1− y) + y (1− y) (1− 2 y)Ge + . . . , (35)
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where the zero–order term, and hence the limit of F(y) for Ge→ 0, is the Poiseuille profile.
On account of Figure 2, the velocity profiles for the A−–branch display a gradual, yet slight,
loss of symmetry as Ge increases above zero. The cause of the asymmetry is the buoyancy
effect produced by the viscous dissipation. Even when Ge moves close to its largest value
compatible with the existence of the dual solutions, Ge =

√
15, the departure from the

Poiseuille profile becomes marked but not extremely large, as illustrated in Figure 3. The
black line in Figure 3 displays the merging A− and A+ profiles for Ge =

√
15. We note that

the merging velocity profiles display a bidirectional character with a flow reversal region
close to y = 1.

Figure 2. Plots of the velocity profile, function F(y), for the dual branches A− and A+ and different
values of Ge.

Figure 3. Plots of the velocity profile, function F(y), for the dual branches A− and A+ and different
values of Ge.

Flow reversal is a permanent property of the A+–branch, as shown by both Figures 2 and 3.
On the other hand, the A−–branch displays flow reversal close to the upper bound-
ary only in the narrow range 15/4 < Ge ≤

√
15, as it can be easily inferred from

Equations (26) and (32) with c1 = 6 + A−. Figure 2 shows that the velocity profiles of
the A+–branch are bidirectional. The choice of plotting Ge F(y) in this case is a conse-
quence of the singular behaviour of the A+ profile F(y) when Ge → 0. This feature is
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immediately gathered on evaluating, from Equations (26) and (32), the lowest orders of a
power series expansion of F(y) with respect to Ge with c1 = 6 + A+,

F(y) ≈ 60 y (1− y) (1− 2 y)
Ge

+ 6 y (1− y)− y (1− y) (1− 2 y)Ge + . . . . (36)

By employing Equation (36), one obtains

lim
Ge→0

Ge F(y) = 60 y (1− y) (1− 2 y). (37)

The right–hand side of Equation (37) is a cubic polynomial profile describing an odd
function of the shifted coordinate y∗ = y− 1/2.

4.2. Characteristics of the Temperature Profiles

If function F(y) represents the velocity distribution in a x = constant cross–section,
the temperature profile at x = constant can be displayed by plotting function G(y) as given
by Equations (32) and (33).

Figure 4 shows that the A−–branch yields an asymptotic temperature profile in the
limit Ge → 0. This temperature profile is that corresponding to the forced convection
regime where the Poiseuille profile describes velocity. In fact, this conclusion is supported
by Equations (32) and (33) when we evaluate the lowest orders of a power series expansion
of G(y) with respect to Ge with c1 = 6 + A−,

G(y) ≈ −3
(

6 y4 − 12 y3 + 6 y2 − 1
5

)
Ge

+ 3
(

14
5

y5 − 7 y4 + 6 y3 − 2 y2 +
1

10

)
Ge2 + . . . . (38)

The black line in the left–hand frame of Figure 4 displays the fourth–order polynomial
that appears in Equation (38) multiplied by Ge. Hence, the choice of plotting the scaled
function Ge−1 G(y) for the A−–branch profiles in Figure 4 is meant to capture the forced
convection asymptotic case, where the buoyancy force is neglected with respect to the
dynamic pressure gradient contribution in the local momentum balance. The A− tempera-
ture profiles displayed in Figure 4 for nonzero Ge display a departure from the symmetric
temperature distribution in the forced convection limit, Ge→ 0. As for the velocity profiles,
the asymmetry is induced by the effects of the buoyancy force.

A power series expansion of G(y), analogous to Equation (38), can be written for the
A+–branch,

G(y) ≈
360
(
12 y5 − 30 y4 + 20 y3 − 1

)
Ge2

−
12
(
2520 y6 − 7560 y5 + 8610 y4 − 4620 y3 + 1050 y2 − 17

)
7 Ge

+
(

288 y5 − 720 y4 + 720 y3 − 360 y2 + 36
)
+ . . . . (39)

The singular behaviour of the A+–branch for Ge→ 0 is highlighted by Equation (39).
In the limit Ge → 0, the velocity diverges with Ge−1, as shown by Equation (36), while
the temperature diverges with Ge−2. This limiting behaviour is the reason for the scaling,
Ge2 G(y), used in the right–hand frame of Figure 4.

Figure 5 serves to complete the analysis of the dual temperature profiles in a regime of
extremely large Gebhart numbers close to the upper threshold, Ge =

√
15, above which no

stationary parallel solutions are allowed. The merging of the two branches, A− and A+, is
illustrated by this figure.
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Figure 4. Plots of the temperature profile, function G(y), for the dual branches A− and A+ and
different values of Ge.

Figure 5. Plots of the temperature profile, function G(y), for the dual branches A− and A+ and
different values of Ge.

Figures 4 and 5, together with Equation (26), show that ∂T/∂y is negative in the lower
part of the channel for the A−–branch. Physically, this means a possibly unstable thermal
stratification of the fluid that may give rise to a thermal instability of the flow. As already
pointed out in Section 3.3, a stability analysis is beyond the scope of this paper, but the
possible onset of the instability may be an interesting chance for future developments
of this research. If the possibility of a thermally unstable behaviour of the A−–branch is
realistic, this phenomenon seems much less conceivable for the A+–branch. In fact, for the
A+–branch, an unstable thermal stratification in the lower part of the channel is present,
but it is counterbalanced, to a large extent, by a markedly stable thermal stratification in
the largest part of the channel. If the A+–branch is the physically unexpected feature of the
solution obtained in Section 3, such an unexpected result is unlikely to be ruled out by a
stability analysis. A similar conclusion is drawn in Barletta and Rees [10] with reference to
the fluid flow in a saturated porous channel.

4.3. Are the Dual Flows Compatible with the Boussinesq Approximation?

The governing Equation (2) represents the widely employed Boussinesq approxima-
tion of the local mass, momentum and energy balance equations. As pointed out by several
authors [14–17], the Boussinesq approximation is a correction to a fully–incompressible,
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constant properties flow model where the small effect taken into account is the buoyancy
force. As such, the Boussinesq approximation corresponds to an asymptotic regime where
a dimensionless parameter,

ε = β ∆Te f f , (40)

tends to zero. Here, ∆Te f f is the actual maximum dimensional temperature difference
occurring in the flow domain. We mention that the conceptualisation of buoyancy–induced
flows where the approximate scheme is obtained in the asymptotic case ε→ 0 is already
quite clearly laid out in the pioneering paper by Boussinesq [18].

The often overlooked situation is when the solution of the Boussinesq approximate
equations is incompatible with the smallness of ε. In rare cases, such a situation may arise
even for perfectly reasonable values of the dimensionless parameter(s) governing the flow.
In our case, the governing parameter is the Gebhart number which is assumed to be finite,
though small enough. By considering the small–Ge expansion of the dimensionless temper-
ature for the A+–branch, Equation (39), we can approximate the maximum dimensionless
temperature difference on a x = constant cross–section as

Tmax − Tmin ≈
720 Pe2

Ge2 , (41)

where Equation (26) has been also employed. Thus, Equations (6), (11), (40) and (41) lead to
an expression of ε for the A+–branch at small Gebhart numbers,

ε = β (Tmax − Tmin)
αν

gβH3 ≈
720 Pr Fr2

Ge2 , (42)

where Fr is the Froude number based on the dimensional average velocity across the
channel,

Fr =
U0√
gH

. (43)

Equation (42) discloses the reason why the A+–branch is incompatible with the asymp-
totic regime ε → 0 characteristic of the Boussinesq approximation. In fact, the Gebhart
number is usually small and the smaller is Ge the larger ε is according to Equation (42).
Therefore, the only chance to obtain a compatibility between the A+–branch and the core
assumption of the Boussinesq approximation, i.e., the limit ε→ 0, is considering large Geb-
hart numbers which, as suggested by Figures 4 and 5, yield definitely smaller differences
Tmax − Tmin. However, such large Gebhart numbers can be observed only with extremely
wide flow systems such as those typical of geophysical or astrophysical applications.

5. Conclusions

The analysis of stationary two–dimensional mixed convection in a horizontal plane
channel bounded by adiabatic walls was performed by taking into account the effect of the
viscous dissipation caused by the forced flow rate across the channel. The velocity field was
assumed to be parallel and directed along the horizontal x–axis. Under such conditions,
the buoyancy force yields an effect exploited as a flow duality: two branches of possible
flows exist denoted as the A−–branch and A+–branch.

Dual flows, A− and A+, are allowed for every prescribed pair of input parameters
(Ge, Pe), where Ge is the Gebhart number and Pe is the Péclet number, provided that
Ge ≤

√
15. The dual flows were obtained as completely analytical solutions of the local bal-

ance equations under the Boussinesq approximation. Such solutions have been expressed
as polynomials with respect to the vertical y coordinate.

The dual flows exhibit quite diverse features, with the A−–branch showing up small
departures from the forced convection limit of Poiseuille flow at small Gebhart numbers,
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and the A+–branch displaying bidirectional flows with a singular behaviour as Ge tends
to zero.

The compatibility between the dual flows and the Boussinesq approximation was
discussed. The proposed arguments led us to a scenario where the dual flows yield a
conceivable behaviour, for the A−–branch, which is characterised by small asymmetric
departures from the Poiseuille velocity profile. The other branch, A+, has characteristics to
a large extent incompatible with the asymptotic nature of the Boussinesq approximation
intended as the limiting case where ε → 0, where ε = β ∆Te f f with β the thermal expan-
sion coefficient and ∆Te f f the maximum dimensional temperature difference within the
flow domain.

A challenge for a future development of this analysis is the investigation of a scheme
different from the Boussinesq approximation, which may lead to a self–consistent frame-
work of flow duality, where the features of both branches can be determined in a reliable
way. Among the many possibilities, one can employ the Gay–Lussac approximation out-
lined by Mayeli and Sheard [17] or a more complex fully compressible scheme along the
lines drawn, for instance in the analysis carried out by Chenoweth and Paolucci [19].
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