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Two-Intervals Hardening Function in

a Phase-Field Damage Model for the

Simulation of Aluminum Alloy

Ductile Behavior. Metals 2021, 11,

1685. https://doi.org/10.3390/

met11111685

Academic Editor: Alain Pasturel

Received: 21 September 2021

Accepted: 19 October 2021

Published: 22 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 University of Kragujevac, Faculty of Engineering, 34000 Kragujevac, Serbia; dunic@kg.ac.rs (V.D.);
jelena.zivkovic@kg.ac.rs (J.Ž.); vladicka@kg.ac.rs (V.M.); miroslav.zivkovic@kg.ac.rs (M.Ž.)

2 Department of Industrial Engineering, University of Bologna, 40136 Bologna, Italy
3 Mechanical and Metallurgical Laboratory, IMW Institute, 34325 Kragujevac, Serbia;

andreja.radovanovic@imw.rs
* Correspondence: ana.pavlovic@unibo.it

Abstract: The aluminum alloys (AA) are among the most utilized materials in engineering structures,
which induces the need for careful investigation, testing, and possibilities for accurate simulation
of the structure’s response. AA 5083-H111 specimens were used to investigate the possibility of
employing a Phase-Field Damage Model (PFDM) for the simulation of AA structures’ behavior.
The specimens were mechanically tested by uniaxial tensile loading tests. Based on the obtained
results, the PFDM was employed with a von Mises plasticity model, implemented in the Finite
Element Method software. The plasticity model was extended by modification of the hardening
function defined in two-intervals: a linear hardening and a Simo-type hardening. An excellent
superposition of the simulation and experimental force-displacement response was recorded. These
findings suggest that the AA structures’ response can be successfully simulated in the elastic-plastic
domain, as well as its failure by damage being controlled.

Keywords: aluminum alloys; two-intervals hardening function; von Mises plasticity; phase-field
damage modeling; ductile fracture

1. Introduction

Although steel is the most represented metal material in engineering structures due
to its high strength, Aluminum Alloys (AA) are also strong materials that are opening up
possibilities in the engineering design of advanced structures. In exploitation, engineering
structures can exhibit non-allowed deformation, which can cause damage of the material
and the structure’s collapse. These situations need to be predicted to extend the structure’s
life and to increase safety. In studies [1–3], numerical and experimental investigation
of the materials was the best way to verify the captured results. For that purpose, it is
necessary to investigate the material response experimentally and to provide necessary
observations for mathematical modeling of the material’s behavior and Finite Element
Method (FEM) simulations.

AA5083 is one of the most used AA in the engineering practice (including in shipbuild-
ing, railroad cars, pressure vessels, and aluminum armor), so experimental testing has to be
conducted to provide enough information necessary for developing the simulation model.
Researchers have widely investigated AA due to its desired mechanical characteristics,
such as high strength, being lightweight, and corrosion-resistance, especially in seawater.
Recently published articles in scientific journals offer various results on experimental test-
ing and numerical simulation of aluminum alloys. Gao et al. [4] showed, in 2009, that the
stress state has strong effects on AA5083 behavior through the experimental and numerical
investigation of AA. The results suggest that it is necessary to incorporate hydrostatic
stress and the third invariant of the stress deviator in constitutive models. A few years
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later, Zhou et al., in [5], investigated plastic behavior and a ductile fracture of AA5083 by
experimental tests and FEM analyses. They used a specific I1–J2–J3 plasticity model to
simulate the plastic response. For the fracture simulation, the failure criterion, based on a
damage parameter, was defined. The damage model was local, which took into account the
relation between the accumulated plastic strain and the damage state. Darras et al., in [6],
investigated the damage state of AA5083 under different loading rates throughout tensile
tests at room temperature. They used a scanning electron microscope (SEM) to record the
damage at different deformation stages. The energy-based model was utilized to predict
isotropic damage values. Lee and Basaran, in [7], offered a review of degradation, damage
evolution, and fatigue models for various metals. They discussed various approaches,
including, among others, a possibility to simulate the behavior of AA5083 by using the
Phase-Field Damage Model (PFDM). One of the latest articles published on this topic in
scientific journals is [8]. The degradation of the mechanical characteristics of AA5803 plates
was investigated at various temperatures, from room temperature up to 300 ◦C. It was
found that the yield strength did not change up to 150 ◦C. Furthermore, the temperature
influence at the Young modulus was examined, and they concluded that up to 200 ◦C, the
reduction is relatively small (25%). This hot topic has also been covered by Bouhamed et al.
in [9]. The possibility of using a coupled plasticity-damage model was presented. It was
based on non-associative plasticity equations for simulation of the anisotropic behavior of
AA5083. They also investigated the AA5083 material by a uniaxial tensile test. As can be
observed in this short literature overview, AA5083 is very interesting to researchers, and
many publications have explored its behavior by experimental testing or FEM simulations.

There are various possibilities for the material parameters’ investigation. Christopher
et al. [10] investigated the ultimate strength of aluminum composites by advanced tech-
niques, such as neural networks and acoustic emission parameters. Fragassa et al. [11]
and Babič et al. [12] also presented machine learning techniques to identify the material
parameters. Furthermore, in another article, Fragassa et al. [13] suggested methods for
determining the fracture toughness of metallic materials. Dauber et al. [14] correlated the
fracture toughness with the erosion resistance to identify fracture mechanisms and crack-
ing in aluminum Al2O3. Thus, the material parameters of aluminum alloys are generally
interesting for further investigation.

In the previous article by the authors of [1], a fracture phenomenon was explained in
detail as cracking of the material for the simulation of steel S355N+J2 structures, which
could be simulated by the PFDM. The presented phase-field damage theory is based on the
articles of Miehe et al. [15–17] and Ambati et al. [18–20], which have been well established
in the literature. Moreover, all algorithms necessary for easy implementation in the FEM
software are available in the previous author’s article [1]. However, in this article, the
necessary modifications will be presented along with the theoretical background to show
the possibility of using a PFDM coupled with von Mises plasticity, with a modification of
the hardening function for the AA5083 behavior simulation.

Two types of metal plasticity constitutive models can be distinguished: micro and
macro models. For some specific applications, there is also a combination, known as
micro–macro models [21]. The micro models take into consideration the changes in the
material at the micro-scale. For that purpose, a deep analysis of the material microstructure
is necessary. On the other side, macro (phenomenological) models follow the material’s
behavior at a macro-scale, taking into account the material’s response from an engineering
point of interest by averaging the micro phenomena. AA5083 specimens cut from a plate
used to produce wagons and railroad cars were experimentally investigated. The material
parameters were identified to fit the stress-strain response by using the new two-intervals
hardening function and comparing the simulation and experimental results. In the end, the
experimental testing results and simulation results obtained by the proposed coupling of
the PFDM and the von Mises plasticity phenomenological (macro) model and modified two-
intervals hardening function were compared, and the verification was successfully done.
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In Section 2, the details of the experimental testing are given with the necessary results.
The force-displacement responses of uniaxial tensile tests are given as the results of the
experimental investigation. Finally, a discussion of the obtained results is given in light
of further modifications of the von Mises plasticity hardening function, coupled with
thee PFDM.

In Section 3, a short overview of the coupled PFDM–von Mises plasticity approach
is repeated to provide the necessary understanding of the stress integration algorithm
and iterative procedure and to show a modification of the hardening function for the
AA5083 specimens. Furthermore, a comparison of the experimental and simulation results
is given as verification of the proposed work.

In Section 4, the main conclusions, along with the main contributions, are presented. In
the end, the stress integration algorithm presented in [1] is repeated with appropriate mod-
ifications, as seen in Appendix A. Finally, in the Nomenclature section, the nomenclature
of the variables used in the algorithms is given.

2. Experimental Investigation of AA5083-H111 Specimens

AA5083 has a high corrosion resistance, excellent weldability, and high strength and
toughness, and it is used in the naval, automotive, and aerospace industries [22]. It is one
of the alloys with the highest strength. It absorbs a lot of energy during fracture, so it is
used in situations where high strength is vital.

Specimens required for the static uniaxial tensile tests were cut off from a rolled 8mm
thick plate of AA5083-H111. The H111 temper means that the basic material is annealed
and slightly strain-hardened. Specimens were mechanically tested on a servo-hydraulic
testing machine, EHF-EV101 K3-070-0A (Shimadzu Corporation, Tokyo, Japan), with a
force of ±100 kN and stroke of ±100 mm at the Centre for Software Engineering and
Dynamical Testing, Faculty of Engineering, University of Kragujevac, Serbia. The chemical
composition of the investigated AA5083-H111 from a solid sample was tested on an optical
emission spectrometer, SpektroLab LACM12 (SPECTRO Analytical Instruments GmbH,
Kleve, Germany), at the IMW Institute Luznice. The obtained values are given in Table 1.

Table 1. Chemical composition of the examined AA5083-H111 specimens (wt%).

Si Fe Cu Mn Mg Cr Zn Ti Al

0.172 0.360 0.036 0.639 4.651 0.074 0.094 0.021 balance

The specimen’s microstructure was observed at the IMW Institute by using a LEICA
DM4 M specialized metallurgical microscope (Leica microsystems, Wetzlar, Germany). The
images from an optical microscope with a magnification of ×500 and ×1000 are given in
Figure 1a,b, respectively.’

Uniaxial tensile tests were performed on three representative flat specimens (Figure 2a),
with the same thickness of all cross-sections, to investigate the material properties. The
tests were carried out according to the standard of ASTM E646-00 [23] at room tempera-
ture (23 ± 5 ◦C) for a strain rate of 10−3 s−1 (constant stroke control rate of 3 mm/min).
The specimen’s shape and dimensions are given in Figure 2b. For the measurement of
elongation and identification of Young modulus, the extensometer MFA25 (MF Mess- &
Feinwerktechnik GmbH, Velbert, Germany), with a gauge length of 50 mm, was used.

The three investigated AA5083-H111 specimens are presented in Figure 3a (the num-
bers 26, 27, and 28 written on the specimens were internal markings of the specimens), as
well as the recorded force-displacement responses in Figure 3b.
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Figure 1. Optical micrography of AA5083-H111 specimens, with a magnification of (a) ×500 and
(b)×1000.

Figure 2. Shape (a) and dimensions (b) of the AA5083 specimen.
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Figure 3. AA5083-H111 specimens after the uniaxial tests (a) and force-displacement response of samples (b).

3. Phase-Field Damage Model and von Mises Plasticity for AA5083

The authors of this article have successfully used a PFDM coupled with the von
Mises plasticity model to simulate the damage process in S335J2+N steel specimens [1].
It is essential to underline that the constitutive von Mises plasticity model is a macro
phenomenological continuum mechanics model, which does not consider the micro-scale
behavior of the material. Thus, as it is common in other phenomenological models based
on continuum mechanics, the macroscopic variables (damage and equivalent plastic strain)
are determined by the appropriate continuum mechanics and thermodynamic laws and
rules. The question is whether it is possible to simulate different material responses, such
as AA5083, by the same methodology, with appropriate modifications. This research aimed
to investigate the AA5083 response by a phase-field damage model coupled with plasticity,
by modification of the phenomenological stress-strain hardening curve. For that purpose,
in this section, the main details of the PFDM theoretical background will be repeated to
explain the necessary changes that are significant for the simulation of AA structures.

The fracture of structures can be considered as a cracking process, which leads to
the degradation of the material characteristics. According to Griffith’s theory, the fracture
is defined by the equilibrium of the surface energy and the elastic energy. However,
this cannot provide a simulation of the crack propagation. For that purpose, the idea
of diffuse crack modelling has been established as an interesting solution, which has
been successfully used to develop the PFDM. Following Miehe et al. [15,16], Molnár and
Gravouil [24], Pañeda et al. [25], and Miehe et al. [26] and appropriate transformations
given in [1], the equality of the variation of the internal δΨ and external δWext potential
energy can be obtained as follows [1,17,27]:∫

V

{
−
[
g′(d)ψ + GV

[
d− l2

c∇2d
]]

δd − [Div[σ] + b] · δu+

+
(
−g(d)σ0 : ∂εP

∂εP
+ g(d)σy

)
δεP

}
dV +

∫
A
{[σ · n− h] · δu}dA+

∫
A

{[
GV l2

c∇d · n
]
δd
}

dA = 0
(1)

where g′(d) is the derivative of the degradation function, g(d), over the damage phase-field
variable, d; ψ is the internal potential energy density; GV is the critical fracture energy
release rate per unit volume; lc is the characteristic length-scale parameter;∇ is the gradient
operator; σ is the “damaged” Cauchy stress; b is the body force field per unit volume; u is
the displacements vector; σ0 is the Cauchy stress tensor of an undamaged solid; εP is the
plastic strain tensor; εP is the equivalent plastic strain; σy is the yield stress; n is the unit
outer, normal to the surface, A; and h is the boundary traction per unit area.

By introducing the Neumann-type boundary conditions [1], the equilibrium equation
can be derived from Equation (1), as in [1,27]:

Div[σ] + b = 0, (2)
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as well as the phase-field damage evolution law:

GV

[
d− l2

c∇2d
]
+ g′(d)ψ = 0, (3)

and the plasticity yield condition law:

σeq − σy = 0. (4)

The Formulas (2)–(4) are the main equations that were implemented into the in-house
FEM software, PAK, developed at the Faculty of Engineering, University of Kragujevac,
Serbia. The large strain plasticity theory [1,20,28,29] has been used to develop the von
Mises plasticity stress integration algorithm, which was coupled with the PFDM theory by
a multifield 3D finite element.

Ambati et al. [18] defined the coupling degradation function for the PFDM of a ductile
fracture as

g(d) = (1− d)2p. (5)

In the previous article, [1], the authors proposed a modification of the coupling
variable, p, to depend on the value of the equivalent plastic strain, εP, because the material
is considered to be intact (undamaged) until the equivalent plastic strain achieves the
critical value, εP = εcrit

P . The critical value of the equivalent plastic strain is the value of the
plastic strain when the saturation hardening stress is achieved (point C at the Figure 4a).
Therefore, the function which defines the coupling variable, p, is given as follows:

p =

0 ; εP < εcrit
P

εP−εcrit
P

εcrit
P

; εP ≥ εcrit
P

. (6)

Figure 4. The modified two-interval hardening function for the simulation of AA5083; (a) simplified stress-strain theoretical
response and (b) real and nominal stress-strain response of the AA5083 specimen’s experimental testing (σy—yield stress
of current yield surface, σy0,∞—saturation hardening stress, σyv—initial yield stress, εP0—maximal equivalent plastic

strain for linear hardening plasticity interval, εcrit
P —critical equivalent plastic strain, ε

f ail
P —failure equivalent plastic strain,

εP—equivalent plastic strain, C—critical point).

Only the elastic part, ψE
0 , is computed as the stored internal potential energy density,

ψ, because the plastic part is taken into account by the coupling variable, p. Furthermore,
as it was discussed in [30], it not straightforward which is the best solution. It depends



Metals 2021, 11, 1685 7 of 17

on the type of the material and amount of plastic strain. However, the conclusion is that
the contribution of the elastic work is essential and cannot be neglected, so the elastic
framework for predicting ductile damage can be used [1,20,30].

The Newton-Raphson iterative procedure has been given in literature [31,32], but for
the completeness reason, its staggered variant [1,33] is also presented in this paper. The
displacement and damage vector were set to the initial values from the previous time step,
t, at the beginning [1]:

u(0) = tu,d(0) = td. (7)

The external loads were computed by using the body force field per unit volume, b,
and the boundary traction per unit area, h, as follows [1]:

fext
e =

∫
V

(Nu)TbdV+
∫
A

(Nu)ThdA, (8)

where Nu is the interpolation matrix for displacements. The loop over the integration
points starts by computing the strain-displacement matrix, Bu, and the damage matrix, Bd.
The strain related to displacements and to damage for the i-th iteration are [1]:

ε(i) = Buu(i); εd(i) = Bdd(i). (9)

Now, for each integration point, the von Mises constitutive model subroutine was
employed for stress integration, σ(i)

0 , by the standard radial-return algorithm in plasticity,
given in Appendix A.

To implement the staggered Newton-Raphson iterative scheme, the output values
from the plasticity model were strain energy, ψ(i) = tψ, and the coupling variable, p(i) = t p,
where the upper left index, t, denotes the values from the previous time step. The computed
stresses, as well as the strain energy and the coupling variable, were then used in the
elemental internal forces and the damage residual as [1]:

fint(i)
e =

∫
V

g
(

d(i)
)
(Bu)T

σ
(i)
0 dV, (10)

rd(i)
e =

∫
V

{[
GVd(i) − g′

(
d(i)
)

ψ(i)
](

Nd
)T

+ GV l2
c

(
Bd
)T
εd(i)

}
dV, (11)

where the damage in an element is computed as d(i) = Ndd(i), and Nd is the interpolation
matrix for the damage phase-field. The components of the stiffness tangent matrices are [1]:

Ku(i)
e =

∫
V

{
g
(

d(i)
)
(Bu)TCEPBu

}
dV, (12)

Kd(i)
e =

∫
V

{[
GV − g′′

(
d(i)
)

ψ(i)
](

Nd
)T(

Nd
)
+ GV l2

c

(
Bd
)T(

Bd
)}

dV. (13)

The element internal forces and element tangent matrices were then assembled into
the global assembly, where a new global displacement and a damage field were computed
from the global Newton-Raphson iterations as [1]:[

Ku(i) 0
0 Kd(i)

]{
δu
δd

}
=

{
fext

0

}
−
{

fint(i)

rd(i)

}
, (14)

u(i+1) = u(i) + δu; d(i+1) = d(i) + δd. (15)
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If convergence criteria
∥∥∥fext − fint(i)

∥∥∥ ≤ tol and
∥∥∥rd(i)

∥∥∥ ≤ tol are satisfied, one can
proceed to next time step.

3.1. Short Overview of the von Mises Plasticity and Modifications of Two-Intervals Hardening
Function for AA5083 Structures

The idealized response of AA5083 is given in Figure 3a (continuous line). As can be
noticed, the yielding occurred after the initial yield stress, σyv, was achieved. The main new
observation, which needed to be considered and implemented in this model with respect
to the literature [1], was divided in the two intervals. In the first interval, when the plastic
strain increased, the stress increased suddenly for the small plastic strain increment, so
that it could be idealized by linear hardening (εP < εP0), defined by the linear hardening
function, H0. The previous hardening function, presented in [1], considered this interval
by perfect plasticity (no hardening). Thus, in the first interval, the yield condition is given
in the following form [22]:

fy = σeq −
(
σyv + H0εP

)
≤ 0. (16)

From the diagram in Figure 4a, it can be seen that stress increased nonlinearly in the
second interval until the saturation hardening stress, σy0,∞, was achieved. The response
could be covered by Simo hardening function, previously used in literature [1,29], as

fy = σeq −
[
σyv +

(
σy0,∞ − σyv

)(
1− e−n(εP−εP0)

)
+ H(εP − εP0)

]
≤ 0. (17)

When the saturation hardening stress, σy0,∞, was achieved, the stress decreased, due
to the damage of the material and degradation of the material parameters. This segment
could be captured by the PFDM (dashed line).

The complete two-intervals yield function, shown in Figure 4a by a continuous line,
can be defined by the following Equation (4):

fy = σeq − σy, (18)

where we suggest modification of the yield stress function as

σy =

{
σyv + H0εP ; εP < εP0

σyv +
(
σy0,∞ − σyv

)(
1− e−n(εP−εP0)

)
+ H(εP − εP0) ; εP ≥ εP0

. (19)

The yield Function (18) was less than zero for the elastic solution, but if fy > 0, the
equivalent plastic strain increment of the function, fy(∆εP) = 0, must be determined in an
iterative procedure given in Appendix A [1].

3.2. Verification of the Proposed Two-Intervals Yield Function Modification

To verify the coupling between the PFDM and von Mises plasticity algorithm, de-
scribed in detail in [1], with the proposed modifications of the two-intervals hardening
function for simulation of AA5083 specimens, the FE model was prepared for the straight
part of the specimen. The length of the model was the same as the gauge length (h + l =
50 mm). Because the model had three symmetry planes, it was possible to prescribe proper
boundary conditions and to model only one-eighth of the specimen (25 mm × 6.25 mm ×
2.5 mm). The plastic deformation was triggered by imperfection in the specimen, which
also should have been prescribed in the model. The geometrical imperfection has been
proposed in Figure 5, in the zone of 10 mm (l) from the middle of the specimen, as 0.01%,
representing a linear decrease of the specimen width, d, and thickness. The decrease of the
geometry dimensions is presented by a different greyscale. The imperfection was chosen
as the smallest defect of specimens that could be observed during the production process.
In the experimental investigation, the specimen defect was one of the factors that was
responsible for the initiation of the damage zone in the material.
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Figure 5. FE mesh, prescribed imperfection, and boundary conditions (d—specimen width, h—specimen length with
constant cross-section dimensions, l—specimen length with reduced cross-section dimensions).

Because the von Mises plasticity constitutive model for large strain problems considers
the relation between Cauchy stress and logarithmic (Hencky) strain, the material param-
eters were estimated for the real stress–real strain experimental response. The nominal
stress, σ0, and the nominal strain, ε, were calculated as

σ0 =
F

A0
, ε =

∆lg

lg0
, (20)

where F is the loading force measured by the universal testing machine, A0 is the nominal
cross-section area of the specimen, ∆lg is the displacement measured by the extensometer,
and lg0 is the nominal gauge length. The real stress, σ, and the real strain, h, were than
calculated as

σ = σ0(1 + ε), h = ln(1 + ε). (21)

The estimated parameters are given in Table 2 as E [MPa]: Young’s modulus, ν [−]:
Poisson’s ratio, σyv[MPa]: initial yield stress, σy0,∞[MPa]: saturation hardening stress,
H [MPa]: hardening modulus, n [−]: hardening exponent, GV [MPa]: fracture energy
release rate, lc[mm]: characteristic length, ecrit

P : critical equivalent plastic strain, eP0: linear
hardening plasticity equivalent plastic strain, and H0 [MPa]: linear hardening modulus. It
is evident that after the yield stress was achieved, the stress increased suddenly due to the
work hardening process. After the plastic strain increased enough, the stress became the
maximal value, considered as saturation hardening stress. At the end of the loading process,
the stress decreased, and the fracture occurred. By reading the stress-strain diagram in
Figure 4b, the majority of the material parameters could be determined by reading the real
stress–real strain curve, but a few of them needed to be obtained in a calibration process
(execution of the simulation and comparison of the obtained results to the experimental
response). The material parameters of the hardening function (σyv, σy0,∞, H, n, eP0, H0)
used for the simulations were calibrated by reading the real stress-strain diagram and
fitting the curve by the least squares method. The phase-field parameters (GV , lc) were
calibrated in an iterative process by execution of the simulation and comparison of the
obtained results with the experimental response. The critical equivalent plastic strain (ecrit

P ),
which is related to the coupling variable, p, was estimated from the stress-strain diagram
as the value of the plastic strain when the loading attained the saturation hardening stress.

Table 2. Material parameters used in PFDM simulation.

E[MPa] ν[−] σyv[MPa] σy0,∞[MPa] H[MPa] n[−] GV[MPa] lc[mm] ¯
e

crit

P [−]
¯
e P0[−] H0[MPa]

69.0 0.33 137.63 370.25 103.26 15.99 5.66 0.01 0.14 0.0017 24642.41
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As the first choice, the FE model tensile loading was applied to the top surface nodes
by a displacement increment of 0.02 mm for 350 steps. Figure 6 shows the dependence
between the damage field and the equivalent plastic stress field obtained by the PDFM, so
it can be concluded that the leading cause of the specimen’s fracture was the occurrence of
damage. Figure 6a shows the equivalent plastic strain field for plasticity without a phase
field, and Figure 6b shows the PFDM simulation, so that the influence of the damage field
on the localization of plastic strains can be observed. Figure 6a shows the plastic strain field
distributed along with the model, with a minimum difference between the minimum and
maximum value, while the damage field distribution given in Figure 6c corresponds to the
equivalent plastic strain field in Figure 6b, so that it could be considered a generator of the
fracture process. The similar character of the damage field and equivalent plastic strain field
given in Figure 6b,c was the result of the dependence between the stiffness degradation
function (5) and the coupling variable (6), which is dependent on the equivalent plastic
strain amount. The coupling variable, p, was responsible for the noted correlation.

Figure 6. FEM simulation results for AA5083-H111: (a) Effective plastic strain field, plasticity; (b) Effective plastic strain
field, phase-field and plasticity; and (c) damage field, phase-field and plasticity.

The comparison of the force-displacement relationship between the experimental
and simulation (PFDM + plasticity and “pure” von Mises plasticity) results is given in
Figure 7. As can be noticed, the “pure” von Mises plasticity model, denoted as “Plasticity”,
could not follow the experimental curve after the loading force attained the maximum
value. For the correct simulation of the material response, the PFDM was activated, and
the curve denoted as “PFDM + plasticity” could reproduce the experimental response.
By the comparison of the computational time necessary for the simulation of “pure”
plasticity and “PFDM + plasticity”, it was revealed that PFDM is approximately 70% more
expensive, which could be considered as an acceptable difference. Although the numerical
results obtained by using the PFDM approach could not simulate the serrated flow in
all three experimental curves, the numerical and experimental curves were generally in
good agreement. The experimental investigation results were recorded by using the strain
gauge and the universal testing machine. When the degradation evolved, the fracture
suddenly occurred, which interrupted the recording of the experimental investigation.
However, the simulation results were obtained by using the quasi-static analysis, which
revealed the possible behavior of the material beyond that point. For more sophisticated
measuring devices and smaller loading rates, it would probably be possible to record the
experimental response which should be similar to the simulation results. The significance
of this comparison is essential for both simulations and experiments in future work.
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Figure 7. Force–displacement response of the experiment and simulations for the AA5083-H111 specimens.

As it was discussed in [33], the staggered solution scheme was not unconditionally
stable. Furthermore, in this work, the sensitivity to the size of the displacement increment
used for the simulation is shown by a study given in Figure 8. It can be noticed that the
simulated response in the softening zone depends on the increment size, so the behavior
after the fracture point is not considered as unique by using this approach. The force–
displacement result differs in the softening region in the examples presented in [33], which
was also verified in this case.

Figure 8. Sensitivity study of a staggered scheme for various displacement increments.

Firstly, the coarse FE mesh, with a uniform element length of 1 mm, was investigated
(1 mm in Figure 9). The FE mesh was than refined along the l length zone, so that the
element’s dimension along the specimen length was 0.5 mm in that zone (0.5 mm in
Figure 9). The elements were than reduced four times in the first two rows (the element
length was 0.125 mm in Figure 9) and 10 times (the element length was 0.05 mm in Figure 9).
It can be noticed that the mesh with the smallest dimension of the elements (0.05 mm)
had the softest response in the zone of the material degradation [20]. The evolution of the
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damage field for the post-critical behavior is given in Figure 10. The damage field evolved
in the necking zone of the specimen, up to the value which maintained stability of the
computational algorithm. For further simulation after the fracture occurred, it is necessary
to implement an element “death”, which is planned in future work.

Figure 9. Effect of the mesh size on the force–displacement response.

Figure 10. Damage phase-field, d, propagation in the post-critical zone for the displacement of the
specimen’s top surface of (a) 9.60 mm, (b) 9.64 mm, (c) 9.68 mm, (d) 9.72 mm, (e) 9.76 mm, and
(f) 9.80 mm.

4. Conclusions

The PFDM was successfully used for the simulation of steel structures coupled with
plasticity models in previous research by the authors [1]. This provided the idea to apply
the same approach to aluminum alloys. The most utilized AA5083 was first experimentally
investigated by uniaxial tension tests. The observations of the force-displacement and the
stress-strain responses and the literature results were used to identify the material parame-
ters and to propose modifications of the yield hardening function. The two-intervals (linear
plus Simo-type hardening) yield function was modified to fit the AA5083 response. The
successful implementation of the modified two-intervals hardening function was verified
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by comparison to the experimental results for AA5083–H111. An excellent superposition
was obtained for the force-displacement response. These findings suggest that the PFDM
coupled with von Mises plasticity can be used for the simulation of the material response
and the damage propagation for various metals, including AA, with minimal modifications
of the hardening function.
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Nomenclature

Ψ internal potential energy
d damage phase-field variable
lc characteristic length-scale parameter
∆ increment
V volume
F total deformation gradient
FE elastic deformation gradient
SE elastic deviatoric stress
εE elastic strain
εP plastic strain
εP equivalent plastic strain
g degradation function
C0 elastic constitutive matrix
CEP elastic-plastic constitutive matrix
σ “damaged” Cauchy stress
σ0 “undamaged” Cauchy stress
H0 Linear hardening modulus
GV critical fracture energy release rate per unit volume
σyv initial yield stress
σy0,∞ saturation hardening stress
n hardening exponent
H hardening modulus
b body force field per unit volume
h boundary traction per unit area
n unit outer normal to the surface A
σeq equivalent stress
p coupling variable
εcrit

P critical equivalent plastic strain
εP0 maximal equivalent plastic strain for linear hardening plasticity interval
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ε
f ail
P failure equivalent plastic strain

σy yield stress of current yield surface
σ real stress
σ0 nominal stress
A surface
lg extensiometer gauge length
∇ gradient operator
Wext external potential energy
ψ internal potential energy density
ψE

0 elastic energy density of virgin material
ψP plastic energy density,
ε total strain
FP plastic deformation gradient
¯
FE isochoric elastic deformation gradient
¯
bE elastic left Cauchy-Green strain
¯
hE Hencky strain
em mean strain
σm mean stress
G shear modulus
cm bulk modulus
E Young’s modulus
υ Poisson’s ratio
t time
I unit tensor
eE elastic deviatoric strain
Nu interpolation matrix for displacements
Nd interpolation matrix for damage phase-field
Bu matrix of interpolation functions derivatives for displacements
Bd matrix of interpolation functions derivatives for damage phase-field
d damage phase-field vector of nodal values
εd damage strain
fint internal forces vector
fext external forces vector
rd residue vector for the damage phase-field
ru residue vector for the displacement field
Kd tangent stiffness matrix for damage phase-field
Ku tangent stiffness matrix for displacement field
u nodal displacements vector
fy yield function
h real strain
ε nominal strain
A0 nominal cross-section area
F force
δ variation of variable

Appendix A. Stress Integration Algorithm for von Mises Large Strain Plasticity

The detailed algorithm presented in a previously published paper of the authors [1],
for the von Mises plasticity for large strain problems is repeated here with necessary
changes for the completeness reason:

t: time at the beginning of time step; ∆t: time increment

1. Input values: t+∆t
0 F, t

0F, t
¯
bE, tψ, tεP, E, ν, σyv, σy0,∞, n, εcrit

P , εP0

2. Initial conditions (save at the integration point level):

d = td; ψ = tψ; εP = tεP (A1)
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3. Calculate the trial elastic deviatoric strain:

t+∆t
0 F = t+∆t

t Ft
0F (A2)

t+∆t
t

¯
F =

(
dett+∆t

t F
)− 1

3 t+∆t
t F (A3)

¯
b
∗

E = t+∆t
t

¯
F t

¯
b
∗

E
t+∆t
t

¯
F T (A4)

e∗E =
1
2

ln
¯
b
∗

E (A5)

em =
1
3

det
(

t+∆t
0 F

)
(A6)

4. Trial elastic deviatoric stress:

S∗E = 2Ge∗E where G =
E

2(1 + ν)
(A7)

5. Check for yielding (NEW HARDENING FUNCTION, with respect to [1]):

σy =

{
σyv + H0εP ; εP < εP0

σyv +
(
σy0,∞ − σyv

)(
1− e−n(εP−εP0)

)
+ H(εP − εP0) ; εP ≥ εP0

(A8)

σ∗eq =

√
3
2
‖S∗E‖ (A9)

f ∗y = σ∗eq − σy ≤ 0 (A10)

If the condition is satisfied, the solution is SE = S∗E and ∆εP = 0, and one can go to 7.
6. Find the equivalent plastic strain increment, ∆εP, of the function fy(∆εP) = 0 (NEW

HARDENING FUNCTION, with respect to [1])

εP = tεP + ∆εP; (A11)

If fy(∆εP) =
∣∣σeq − σy

∣∣ > tol, one must go to step 6. (A14)

σy =

{
σyv + H0εP ; εP < εP0

σyv +
(
σy0,∞ − σyv

)(
1− e−n(εP−εP0)

)
+ H(εP − εP0) ; εP ≥ εP0

; ∆λ =
3
2

∆εP
σy

(A12)

Ĉ =

{
2
3 H0 ; εP < εP0
2
3
(
nenεP0

(
σy0,∞ − σyv

)
e−nεP + H

)
; εP ≥ εP0

; SE =
S∗E

1 +
(
2G + Ĉ

)
∆λ

; σeq =

√
3
2
‖SE‖ (A13)

7. Update of the left Cauchy-Green strain tensor:

¯
bE = t

¯
b∗Ee−2∆εP (A15)

8. Mean stress and total stress:

σm = cmem; σ0 = SE + σmI; cm =
E

1− 2ν
(A16)

9. Calculate the elastic deviatoric strain:

eE =
SE
2G

(A17)
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10. The total elastic strain is:
εE = eE + emI (A18)

11. Elastic strain energy density:

ψE
0 = 1

2ε
T
E : C0 : εE = 1

2ε
T
E : σ0 = 1

2 (SE + σmI) : (eE + emI) =

= 1
2 (SE + σmI) :

(
SE
2G + σmI

cm

)
= 1

2

(
1

2G SE : SE + 3σ2
m

cm

)
= 1

2

(
σ2

eq
3G + 3σ2

m
cm

)
If ψE

0 > tψ, then ψ = ψE
0

(A19)

12. Coupling variable:

p =

0 ; εP
εcrit

P
< 1

εP
εcrit

P
− 1 ; εP

εcrit
P
≥ 1

(A20)

13. Calculate the elasto-plastic matrix: CEP
14. Return: σ0, ψ, CEP, p
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