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ABSTRACT: Accurate streamflow simulations rely on good estimates of the catchment-scale soil moisture distribution.
Here, we evaluated the potential of Sentinel-1 backscatter data assimilation (DA) to improve soil moisture and streamflow
estimates. Our DA system consisted of the Noah-MP land surface model coupled to the HyMAP river routing model and
the water cloud model as a backscatter observation operator. The DA system was set up at 0.018 resolution for two con-
trasting catchments in Belgium: (i) the Demer catchment dominated by agriculture and (ii) the Ourthe catchment domi-
nated by mixed forests. We present the results of two experiments with an ensemble Kalman filter updating either soil
moisture only or soil moisture and leaf area index (LAI). The DA experiments covered the period from January 2015
through August 2021 and were evaluated with independent rainfall error estimates based on station data, LAI from optical
remote sensing, soil moisture retrievals from passive microwave observations, and streamflow measurements. Our results
indicate that the assimilation of Sentinel-1 backscatter observations can partly correct errors in surface soil moisture due to
rainfall errors and overall improve surface soil moisture estimates. However, updating soil moisture and LAI simulta-
neously did not bring any benefit over updating soil moisture only. Our results further indicate that streamflow estimates
can be improved through Sentinel-1 DA in a catchment with strong soil moisture–runoff coupling, as observed for the
Ourthe catchment, suggesting that there is potential for Sentinel-1 DA even for forested catchments.

SIGNIFICANCE STATEMENT: The purpose of this study is to improve streamflow estimation by integrating soil
moisture information from satellite observations into a hydrological modeling framework. This is important prepara-
tory work for operational centers that are responsible for producing the most accurate flood forecasts for the society.
Our results provide new insights into how and where streamflow forecasting could benefit from high-spatial-resolution
Sentinel-1 radar backscatter observations.

KEYWORDS: Streamflow; Hydrology; Soil moisture; Radars/Radar observations; Data assimilation; Land surface model

1. Introduction

The soil moisture antecedent to a storm event exerts a ma-
jor control on how rainfall partitions at the soil surface into in-
filtration and surface runoff and also how quickly the fraction
of infiltrating water redistributes in the soil to generate

subsurface runoff (Torres 2002; Mirus and Loague 2013). As
a result, a threshold behavior in the relationship between
catchment-averaged soil moisture and streamflow has often
been reported in which fast discharge responses to rainfall
events dominate for higher antecedent soil moisture condi-
tions (Penna et al. 2011; Radatz et al. 2013). Antecedent soil
moisture can therefore be equally important as the rain rate
for explaining the temporal variability of stormflow runoff
coefficients, i.e., the ratio of event stormflow to event rain-
fall (Penna et al. 2011). Soil moisture is not only important
before a storm event but also influences interstorm discharge
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processes that are, for example, controlling low flow periods.
The soil moisture of deeper layers is often connected to the
groundwater level, which is a major water source for streamflow
during interstorm periods (Winter 2007; Zomlot et al. 2015).

For these reasons, accurate estimates of soil moisture are
considered crucial to improve streamflow forecasting (Berthet
et al. 2009; Tramblay et al. 2010). Since the advent of satellite-
based soil moisture observations, model-based estimates of
soil moisture have been regularly enhanced through data as-
similation (DA) approaches (de Rosnay et al. 2014; Reichle
et al. 2017a; De Lannoy et al. 2022). Satellite-based soil mois-
ture DA has also been combined with streamflow modeling,
and a number of studies demonstrated the potential of improv-
ing streamflow estimates (Pauwels et al. 2001; Wanders et al.
2014; Albergel et al. 2017; Cenci et al. 2017; Liu et al. 2018;
De Santis et al. 2021; Reichle et al. 2021). In these studies,
streamflow estimates did not improve consistently for all catch-
ments and all streamflow periods. This can be expected, however,
because the impact of soil moisture prediction errors on stream-
flow depends on several conditions. For example, for the more ex-
treme rain events, rainfall errors are considered to dominate the
errors in the fast runoff component, which, consequently,
diminishes the impact of antecedent soil moisture simulations
(Mao et al. 2019). Furthermore, the impact of soil moisture DA
is already limited to some extent by the DA setup itself. Mao
et al. (2019) suggested that soil moisture DA approaches that
solely aim to reduce random errors (such as the widely used
Kalman filter) are not optimal for streamflow corrections in
catchments where random errors account for only a relatively
small portion of the total error. Similarly, Fairbairn et al. (2017)
considered model deficiencies and model nonlinearities as major
reasons that DA did not lead to improvements of streamflow es-
timates in their setup. Indeed, Crow et al. (2018) found that the
land surface models seem to generally underestimate soil
moisture–runoff coupling, which will reduce potential positive
impacts of soil moisture DA. The DA impact can also be re-
duced due to a low surface to root-zone layer coupling that pre-
vents root-zone moisture updates (Chen et al. 2011) and,
therefore, reduces alterations to the rainfall–runoff transforma-
tion. Further, Loizu et al. (2018) found that the impact of soil
moisture DA on streamflow is sensitive to the applied model
structure. In their results, improvements were greater for a
physically based model than for a conceptual model, which
might be related to a more direct link between the soil moisture
variable in the model and the satellite soil moisture retrieval.

The assimilation of vegetation information to improve soil mois-
ture and eventually streamflow estimates is less well documented
but has untapped potential for many reasons. For example, the
assimilation of leaf area index (LAI) or vegetation optical depth
has the potential to improve root-zone soil moisture (RZSM)
estimates (Sabater et al. 2008; Kumar et al. 2019, 2021; Xu et al.
2021) and thus to strengthen the effect of surface soil moisture re-
trieval assimilation. Furthermore, improved vegetation estimates
may lead to improved simulation of rainfall interception. How-
ever, so far, only few studies have explored simultaneous soil
moisture and vegetation updating using retrieval products, and
these studies reported only neutral to slightly positive impacts on
streamflow estimation (Albergel et al. 2017; Fairbairn et al. 2017).

The above studies investigated the potential of assimilating
optical or microwave-based satellite retrieval products of soil
moisture or vegetation for streamflow estimation. It is also
possible to update soil moisture and vegetation by directly as-
similating microwave signals. The assimilation of retrievals
suffers from inconsistencies with respect to the used models,
which may reduce the potential positive impacts of the data
assimilation. Instead, a calibrated observation operator might
allow disentangling the combined soil moisture and vegetation
information contained, for example, in multiangular or multi-
polarized passive or active microwave observations (De Lannoy
and Reichle 2016a; Vreugdenhil et al. 2018; Modanesi et al. 2022).

This paper aims to exploit the potential of improving
streamflow estimates with a recently developed setup for the
assimilation of active microwave backscatter observations
from Sentinel-1 (Modanesi et al. 2022). The DA setup differs
from earlier studies focused on streamflow estimation through
soil moisture updating in that we directly use the raw satellite
signal (instead of retrievals) to update either soil moisture alone
or soil moisture and LAI simultaneously, using an observation
operator and an ensemble Kalman filter. Furthermore, observa-
tions are used at a rather fine resolution (Sentinel-1 observa-
tions processed to 0.018) which should help to improve the
spatial pattern of soil moisture and the associated streamflow es-
timates (Pauwels et al. 2001). The impact of the assimilation
and the two updating modes is assessed in detail for two catch-
ments in Belgium, one dominated by agriculture and with low
topographic gradients and one mainly covered with mixed for-
ests and with higher topographic gradients. Note that the setup
investigated in this paper is still focused on the correction of
random errors and thus intended to contribute to the existing
body of literature on improving streamflow through soil mois-
ture and vegetation state updating.

The paper is organized as follows. In section 2, we present
the two study catchments, the used datasets, and the DA system.
In section 3, we present the results of an analysis of the DA dia-
gnostics, and of an evaluation of the DA output against rainfall
error estimates and independent reference data of soil moisture
and LAI, and eventually streamflow measurements. In section 4,
we discuss the reasons for the observed differences between DA
experiments and catchments. In section 5, we provide conclusions
and suggestions for future research.

2. Study area and data

a. Study area

We selected two catchments with contrasting properties in
Belgium for our study: the Demer catchment and the Ourthe
catchment. Figure 1 shows their location as well as maps of
topography, drainage area, soil texture, and land cover. Details
about the sources of the geographic data are given in section 2b.

The Demer catchment covers an area of 1775 km2 and is
characterized by low topographic gradients. The land-cover
fractions are 60% cropland, 23% forests, 14% urban and
built-up, and 3% grassland. The cropland is mainly located on
sandy loam, while the forests are mainly on sand. The remain-
ing silt loam has a mixed land cover. During the study period
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(2015 through 2020), the Demer catchment has an annual
mean temperature of 118C and a mean annual precipitation of
693 mm. Irrigation plays a minor role in the agriculture of the
Demer catchment.

The Ourthe catchment covers an area of 1616 km2. It is lo-
cated in the Ardennes and features higher topographic gra-
dients. The land-cover fractions are 64% forests, 34% cropland,
1% grassland, and 1% urban and built-up. The Ourthe catch-
ment consists entirely of sandy loam soils. The Ourthe catch-
ment had a mean annual temperature of 9.38C and a mean
annual precipitation of 808 mm and is thus slightly colder and
wetter than the Demer catchment due to mild orographic ef-
fects. Like the Demer, also, the Ourthe is mainly rainfed.

b. Data

1) GEOGRAPHIC DATA

The following geographic data were used in the land sur-
face modeling and river routing:

• Land-cover type of NASA’s Moderate Resolution Imaging
Spectroradiometer (MODIS; Friedl et al. 2002) using the
University of Maryland (UMD) land-cover classification
(Hansen et al. 2000);

• Soil texture of the Harmonized World Soil Database 1.21
(FAO/IIASA/ISRIC/ISSCAS/JRC 2012) with a weighted
combination of surface and subsurface texture to derive a
homogeneous root zone for the land surface model as in
De Lannoy et al. (2014);

• Elevation of the NASA’s Shuttle Radar Topography Mis-
sion (SRTM; Farr et al. 2007);

• River flow directions were derived from the Multi-Error-
Removed Improved-Terrain (MERIT; Yamazaki et al. 2017)
digital elevation model (DEM) at 3-arc-s spatial resolution.

MERIT DEM is based on SRTM processed with successive
correction of absolute bias, stripe noise, speckle noise, and
tree height bias from using multiple satellite datasets and fil-
tering techniques.

2) STREAMFLOW DATA

Streamflow data were available at the catchment outlets
(Fig. 1d) in Molenstede for the Demer and in Tabreux for the
Ourthe. Quality-controlled daily streamflow (m3 s21) was ob-
tained from www.waterinfo.be and https://hydrometrie.wallonie.
be and converted into millimeters per day (mm day21) using
the catchment area. Neither catchment includes significant
water reservoirs, and the time series are thus largely free of water
management effects.

3) METEOROLOGICAL DATA

Meteorological data used as input to the land surface model
include precipitation, air temperature, surface pressure, spe-
cific humidity, incoming shortwave radiation, incoming long-
wave radiation, and wind speed and direction. The dynamic
meteorological forcings were extracted from the Modern-Era
Retrospective Analysis for Research and Applications, version
2 (MERRA-2; Gelaro et al. 2017), at hourly resolution. Here,
we used the rain gauge-corrected precipitation of MERRA-2
(Reichle et al. 2017b). The meteorological data were down-
scaled to 0.018 using bilinear interpolation and a lapse-rate topo-
graphic forcing correction (Cosgrove et al. 2003).

To assess whether soil moisture updates are linked as ex-
pected to possible forcing data errors, we estimated the error
of the reanalysis precipitation data by calculating the difference
between catchment-averaged reanalysis precipitation and
station-based precipitation. Regionally available rain gauge data

FIG. 1. (a) Locations of the two study catchments Demer andOurthe in Belgium, and their spatial distributions of (b) elevation, (c) drainage area,
(d) soil texture, and (e) land cover.
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(Fig. 1d) from www.waterinfo.be and https://hydrometrie.wallonie.
be were regridded on the modeling grid using nearest neighbor
and then averaged over each catchment.

4) SENTINEL-1 SATELLITE DATA

The Sentinel-1 mission of the European Space Agency (ESA)
and Copernicus collects active microwave backscatter data at the
C band (5.4 GHz) at a high spatial (5 m3 20 m) resolution in an
interferometric wide swath (IW) mode. The Sentinel-1 mission
includes two satellites, Sentinel-1A and Sentinel-1B. They follow
the same orbits with a time difference of 6 days. For the study
area, the temporal resolution of observations for each satellite is
approximately 4 days. Over the period in which both satellites
were active (i.e., from September 2016 through August 2021,
corresponding to the end of the study period), this resulted in a
2-day temporal resolution.

The processing of the ground-range detected (GRD) IW
backscatter observations in VV and VH polarization was done
similarly as in Lievens et al. (2022) using the ESA Sentinel
Application Platform (SNAP) software and included standard
techniques: precise orbit file application, border noise removal,
thermal noise removal, radiometric calibration to backscatter as
beta nought, terrain flattening to backscatter as gamma nought
(g0: g0VV, g0VH), and range-Doppler terrain correction. Fur-
thermore, g0 observations, originally acquired at ;20-m spatial
resolution, over water bodies, and built-up areas were filtered
out and then aggregated to the 0.018 latitude–longitude grid of
the land surface model by averaging in linear scale. Observa-
tions from different relative orbits can be biased relative to each
other due to incidence angle and azimuthal effects which we
accounted for by calibrating the observation operator for each
relative orbit separately (section 3b). In total, the study area was
covered by five different relative orbits of which two had an as-
cending and three a descending track. Prior to the observation
operator calibration and the DA, the 0.018 observations were
masked for periods of frozen soil and snow cover based on the
land surface model ice fraction (.0.0001 m3 m23) and snow wa-
ter equivalent (.0.001 m). Note that we did not mask for dense
vegetation and instead allowed the calibrated observation oper-
ator to optimally disentangle the combined soil moisture and
vegetation information contained in the Sentinel-1 observations.

5) REMOTELY SENSED REFERENCE DATA

We evaluated the surface soil moisture (SFSM) and LAI
from the DA experiments against remotely sensed reference
data. Note that, in our DA setup, Sentinel-1 backscatter is as-
similated and not soil moisture retrievals and LAI. For SFSM,
we selected a passive microwave-based retrieval product which
comes with the caveat of also being based on microwave obser-
vations but is supposed to minimize error correlations with the
soil moisture and vegetation signal extracted from active micro-
wave data from Sentinel-1. We used the SFSM retrievals from
the NASA Soil Moisture Active Passive (SMAP) mission from
April 2015 onward. More specifically, the Enhanced L2 Radi-
ometer Half-Orbit 9 km EASE-Grid Soil Moisture, version 4
(SPL2SMP_E), product was used (Chan et al. 2018; Chaubell
et al. 2020). From this product, we used the retrieval of the

single-channel algorithm using vertical polarization (soil mois-
ture option 2) which is the baseline for SMAP soil moisture in
the version 4 product. The quality flag for dense vegetation was
relaxed to allow an evaluation over the forested catchment. Spe-
cifically, we included retrievals that were obtained for a vegeta-
tion water content between 5 and 30 kg m22. Even though
retrievals are likely of poorer quality, they still allow for assess-
ing relative differences in the performance of the different
experiments.

As a reference for LAI, we used the satellite LAI product de-
rived from the Project for On-Board Autonomy–Vegetation
(PROBA-V) and Satellite Pour l’Observation de la Terre–
Vegetation (SPOT-VGT) missions (Verger et al. 2014), obtained
from the Copernicus Global Land Service (CGLS). It has a
10-day resolution and is composed of images from an adaptive
window of 15–60 days, depending on the available valid measure-
ments. Here, we used the 300-m-resolution product which was re-
gridded to the 0.018model grid by spatial averaging.

3. Methodology

a. Land surface model and river routing

Figure 2 shows a schematic overview of the hydrological
modeling setup consisting of a land surface model and a river
routing component. For the land surface model, we used the
Noah multiparameterization (Noah-MP) model (Niu et al.
2011), version 3.6, which is an extension to the Noah land sur-
face model (Chen et al. 1996) through the incorporation of
multiple and new physics capabilities. The advanced physics
in Noah-MP includes, among other options, multilayer snow-
pack, multiple options for surface water infiltration, runoff,
and groundwater including the representation of an uncon-
fined water table depth as a lower boundary condition (Niu
et al. 2007). In our study, we simulated soil moisture in the fol-
lowing four layers: 0–10, 10–40, 40–100, and 100–200 cm.

Noah-MP also includes a dynamic vegetation model which is
of key importance for our study by allowing for the prognostic
representation of vegetation growth and senescence. The

FIG. 2. Schematic overview of the hydrological modeling setup
consisting of the land surface model Noah-MP, version 3.6, coupled
to the HyMAP river routing. SFSM: surface soil moisture; RZSM:
root-zone soil moisture; LAI: leaf area index.
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dynamic vegetation model combines the Ball–Berry photosyn-
thesis-based stomatal resistance model (Ball et al. 1987) with
the dynamic vegetation model of Dickinson et al. (1998). The
carbon storage in the leaf, stem, wood, and root parts are prog-
nostic vegetation state variables that allow the vegetation state
updating by assimilating vegetation-sensitive satellite observa-
tions such as LAI (Kumar et al. 2019). Noah-MP also has an in-
terception module in which the canopy capacity for rain and
snowfall interception is calculated as a function of LAI and
stem area index with land-cover specific parameters.

The gridcell surface and subsurface runoff fields from Noah-
MP were then used as input to the Hydrological Modeling and
Analysis Platform (HyMAP; Getirana et al. 2012, 2017) stream-
flow routing model which routed the input through a prescribed
river network and eventually generated estimates of routed
streamflow at the outlets of the two catchments. HyMAP is a
state-of-the-art global-scale hydrodynamic model capable of
simulating surface water dynamics, including water storage,
elevation, and discharge in-stream, as well as in floodplains.
HyMAP can simulate water dynamics in rivers and floodplains
using different methods to solve the full momentum equation of
open channel flow (local inertia formulation; Getirana et al.
2017). Here, we adopted the kinematic wave equation as this
option has been demonstrated to hold also for relatively flat
catchments (Moramarco et al. 2008). The Courant–Friedrichs–
Lewy (CFL) condition is used to determine HyMAP’s optimal
sub–time steps for numerical stability. Rivers and floodplains
interact laterally and have independent flow dynamics, with
roughness and geometry derived from land-cover characteris-
tics, topography, and river parameterization (Getirana et al.
2012; Getirana and Peters-Lidard 2013). HyMAP is run over
the same model grid as the land surface model. Note that a pos-
sible feedback from the routing model to the land surface model
moisture state variables (e.g., Getirana et al. 2021) was not mod-
eled for simplicity because, given the absence of significant
floodplains, such a feedback is of minor importance for the
study area (Decharme et al. 2019; Getirana et al. 2021).

We refrained from tuning any model parameters in Noah-MP
and HyMAP to mimic a later application over multiple, includ-
ing ungauged, catchments. All model parameters were kept at

the default values typically applied in other studies. However,
we made one exception for the lower boundary condition. As
discussed in Fairbairn et al. (2017), a decent model performance
is important to enable streamflow improvements through data
assimilation. We noticed substantial biases in streamflow with
the default option and thus tested all four available Noah-MP
lower boundary options, including the groundwater options, to
obtain a reasonable open-loop performance over both catch-
ments. The Demer catchment was eventually simulated with the
TOPMODEL groundwater option with an equilibrium water
table (Niu et al. 2005) and the Ourthe catchment with a free
drainage option (Dickinson et al. 1993).

b. Observation operator

The assimilation of g0 data requires the implementation of an
observation operator (also referred in variational DA literature as
a forward operator), in order to map the prognostic state variables
to the observation space (De Lannoy et al. 2022). The water cloud
model (WCM) (Attema and Ulaby 1978) is the most established
observation operator for g0 data (Lievens et al. 2017; Modanesi
et al. 2021). It assumes that the vegetation layer can be approxi-
mated as a water cloud of randomly distributed equally sized wa-
ter droplets that scatter and attenuate radiation. Figure 3a shows a
schematic illustration of the water cloud model.

The total g0 is modeled as the sum (in linear scale) of two
g0 components:

g0 5 g0veg 1 T2g0soil, (1)

with g0veg being the volume scattering in the vegetation layer
in linear scale (}) and g0soil being the soil g0 in linear scale
(}) reduced by the attenuation parameter T2. Here, T2 is
computed as a function of LAI,

T2 5 exp(22 3 B 3 LAI), (2)

in which B is a dimensionless model parameter. Note that Eq. (2)
is a simplification of the original water cloud model in which T2

also depends on incidence angle. We implicitly accounted for this
incidence angle dependency, however, by using terrain flattened
backscatter data g0 and also calibrated the water cloud model

FIG. 3. (a) Schematic illustration of the water cloud model and its two backscatter (g0) components “volume scattering” and “attenuated soil back-
scatter” and (b) the relationship between g0VV and g0VH and the two input parameters, LAI (m2 m22) and SFSM (m3 m23), for an exemplary set
of calibrated water cloudmodel parameters. The dashed line indicates the LAI for which volume scattering equals the amount of attenuated soil g0.
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separately for each relative orbit; B is therefore absorbing the re-
maining incidence angle effect from different travel lengths
through the vegetation layer. The vegetation scattering is also
simulated as a function of LAI:

g0veg 5 A 3 LAI(1 2 T2), (3)

with A being another dimensionless model parameter. As in
Eq. (2), incidence angle effects are, in this study, absorbed in
A. Previous research indicated that the soil g0 in dB scale
often linearly depends on volumetric SFSM (Ulaby et al.
1978) leading to

g0soil 5 C 1 D 3 SFSM, (4)

with C (dB) and D [dB (m3 m23)21] being two model param-
eters describing the intercept and slope of the relationship.

Like the classical Kalman filter for linear dynamics, the
ensemble-based Kalman filter used as DA approach in this
study assumes unbiased observations and forecasts (Reichle
et al. 2002). Therefore, in order to mitigate or in the best sce-
nario remove the biases, the four parameters A, B, C, and D
were calibrated for each pixel, relative orbit, and polarization
separately using a Bayesian function with a prior parameter
penalty term as described in Modanesi et al. (2021). The param-
eters were calibrated with SFSM and LAI from a deterministic
Noah-MP simulation and the processed 0.018 Sentinel-1 obser-
vations of the full study period. The optimization was done with
the shuffled complex evolution algorithm (Duan et al. 1993).

Prior parameter constraints were chosen as in Modanesi
et al. (2021) with the exception of the D parameter. For our
study area, we found that the resulting simulated g0 time se-
ries, after calibration, strongly underestimated the short-term
variability in response to soil moisture changes visible in the
Sentinel-1 observations. One reason for this might be that the
strong seasonal negative cross correlation between soil mois-
ture and LAI (at monthly averages R 5 20.73) prevented the
system from properly separating soil moisture and vegetation-
related information in the water cloud model parameters. We
thus implemented an alternative approach to better constrain
the prior information for the slope parameter D [Eq. (4)]. In
this approach, the prior best guess value of D was estimated
(for each relative orbit, pixel, and polarization) by fitting a lin-
ear model to data points of g0t2 2 g0t1 and SFSMt2 2 SFSMt1

with t1 and t2 being two consecutive time steps of the same
relative orbit and polarization. The fitted slope of the linear
model represents the short-term dependency of g0 on SFSM
and was determined for the 6 months with the lowest simu-
lated LAI. The slope was taken as prior best guess, and prior
parameter boundaries were reduced to 65 dB (m3 m23)21.
Resulting performance metrics and WCM parameters are
shown for the three orbits with full coverage in the online
supplemental material (Figs. S1–S9). The performance of
the WCM slightly varied across orbits and land-cover types.
We found that the sensitivity to soil moisture, as indicated by
the correlation between g0t2 2 g0t1 and SFSMt2 2 SFSMt1, was
often slightly lower over forests than over cropland and grass-
land. Nevertheless, the correlation values also indicated a

useful sensitivity to soil moisture over forests in particular for
the time period of the 50% lowest LAI values (Fig. S10). The
observation operator was applied in the data assimilation
without any additional data masking.

By using this stronger constraint on D in the calibration of
the WCM parameters, the WCM is supposed to better attri-
bute short- and long-term backscatter changes to changes in
soil moisture and LAI. Indeed, we obtained better subsequent
DA results with this approach than when using weak con-
straints on all parameters (not shown).

Figure 3b illustrates the dependency of g0VV and g0VH on
SFSM and LAI for an exemplary grid cell as modeled by the
water cloud model. First, g0VH typically concerns much
smaller values than g0VV. Next, it can be seen that for low
LAI values, the attenuation effect of vegetation dominates
over the volume scattering effect, leading to reduced g0 with
increasing LAI. For higher LAI, both increasing SFSM and
increasing LAI lead to increases in g0. The dashed line in
each subplot indicates the LAI at which g0 from volume scat-
tering equals the attenuated soil g0. For most pixels, the
dashed line was shifted to the left for VH when compared to
VV indicating the higher sensitivity of VH to the vegetation
layer (Vreugdenhil et al. 2018).

c. Data assimilation system

Figure 4 gives an overview of the DA system that was im-
plemented into NASA’s Land Information System (LIS;
Kumar et al. 2006; Peters-Lidard et al. 2007). The land
model consisting of a land surface model and a water cloud
model predicts g0 in VV and VH polarization for each rela-
tive orbit and polarization. The assimilation is performed

FIG. 4. Overview of the data assimilation system. SFSM and LAI
dynamically simulated by Noah-MP are fed into a calibrated obser-
vation operator (WCM) to estimate Sentinel-1 g0 in VV (and VH).
A one-dimensional ensemble Kalman filter (1D EnKF) updates
soil moisture in different layers (and LAI) using Sentinel-1 g0VV
(and g0VH) observations. Experiments are evaluated against
SFSM and LAI reference datasets and measured streamflow.
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with a one-dimensional (1D; considering just vertical error
correlations) ensemble Kalman filter (EnKF; Reichle et al.
2002) which sequentially updates the land surface state with
every incoming Sentinel-1 g0 observation (g0VV or g0VH,
or both). In our DA experiments, the updated land surface
state variables included either only the four simulated soil
moisture layers (experiment name “DASM,” see Fig. 3), if
only g0VV was assimilated, or both the four soil moisture
layers and LAI (“DASMLAI”), if g0VV and g0VH were as-
similated jointly. For the latter, one single sample error co-
variance was calculated between all forecasted land surface
states (SM and LAI) and both forecasted g0 polarizations;
i.e., each polarization updated all state variables. The up-
dated LAI from assimilation is also used to update the prog-
nostic leaf biomass by dividing the LAI value by the
constant land-cover-dependent specific leaf area consistent
with the Noah-MP physics formulations (Liu et al. 2016).
Other vegetation mass prognostic variables in Noah-MP re-
lated to the stem, wood, and root mass are not updated,
same as in the LAI data assimilation in Kumar et al. (2019).

All other flux and state variables are adjusted via model
propagation. The DA system corresponds to the one used in
Modanesi et al. (2022) except that here we assimilated data
from each relative orbit individually with separately cali-
brated WCM parameter values and at the corresponding rela-
tive orbit overpass time (descending at 0600 LT, ascending at
1800 LT). Tests showed a slight performance improvement
for the orbit-specific DA (not shown).

Proper estimates of forecast and observation errors are cru-
cial for the optimality of a Kalman filter setup. The observa-
tion error standard deviation is supposed to represent both
measurement error and errors of the observation operator (van
Leeuwen 2015; Janjić et al. 2018). After calibration of the water
cloud model, the root-mean-squared deviation (RMSD) be-
tween modeled and observed g0 was on average approximately
1 dB with little difference between polarizations and relative or-
bits. We considered 1 dB as the upper limit of the observation
error since the RMSD also includes errors in the input variables
(SFSM and LAI) to the water cloud model. The uncertainty in
both input variables is likely substantial, e.g., due to the coarse
meteorological forcing and the typically high uncertainty in vege-
tation models. Based on performance in test runs with differently
reduced observation error standard deviation, we eventually de-
cided for 0.7 dB for the two polarizations and all relative orbits.

In an EnKF, the forecast errors are diagnosed from an
ensemble of land model simulations, here represented by 24

ensemble members. Larger ensemble sizes used in a testing
phase (not shown) had a marginal impact on our results, sug-
gesting that the EnKF is already very close to its asymptotic skill
achievable when the ensemble size tends to infinity. The ensem-
bles are generated by perturbing selected meteorological input
forcings and state variables. The applied perturbation parame-
ters are summarized in Table 1 and follow Modanesi et al.
(2022). Those parameters led, on average, to a unit standard de-
viation of normalized g0 observation-minus-forecast residuals
(or innovations) which is often used as an indicator for optimal
assimilation diagnostics (De Lannoy and Reichle 2016b; Reichle
et al. 2017a). To avoid the introduction of biases through pertur-
bations, the perturbation bias-correction algorithm of Ryu et al.
(2009) was applied in all our ensemble simulations. We verified
for our modeling setup that the bias correction effectively re-
moved biases in the ensemble mean of soil moisture and LAI
relative to the deterministic simulation.

d. Experiments and evaluation approach

We conducted three different ensemble simulation experi-
ments: one open loop (OL; no DA) and two DA experiments.
The experiments were the following:

• Open loop (OL): Ensemble model-only simulation, with
gridcell surface and subsurface runoff routed using Hy-
MAP to compute streamflow

• Data assimilation with soil moisture updating (DASM):
DA of g0VV for updating soil moisture only, and with Hy-
MAP river routing

• Data assimilation with soil moisture and LAI updating
(DASMLAI): DA of g0VV and g0VH for simultaneous up-
dating of soil moisture and LAI, and with HyMAP river
routing

The initial conditions for the land surface model were gen-
erated by conducting a model spinup in which the model was
run in deterministic mode twice from 1981 until 31 March
2014. The model is then started in ensemble mode on 1 April
2014 using the conditions of the end of the spinup. The experi-
ments were evaluated over January 2015–August 2021.

The evaluation of the experiments is divided into two parts:
The first part focuses on the evaluation of the DA system.

This includes (i) a spatial evaluation of the absolute g0 obser-
vation-minus-forecast (O 2 F) residuals and SFSM and LAI
increments (difference of pre- and postupdate) to analyze
their dependency on land surface properties, (ii) an analysis
of the relationship between precipitation errors and SFSM

TABLE 1. Perturbation parameters for the forcing variables rainfall, and incident and shortwave radiation, and the modeled state
variables surface soil moisture (SFSM) and leaf area index (LAI). The perturbation type was either additive or multiplicative, with
the standard deviation given for a normal or lognormal distribution, respectively.

Variable Perturbation type Standard deviation

Rainfall (kg m22 s21) Multiplicative 0.5
Incident longwave radiation (W m22) Additive 50.0
Incident shortwave radiation (W m22) Multiplicative 0.3
SFSM (m3 m23) Additive 0.012
LAI (m2 m22) Additive 0.04
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increments, and (iii) a spatial evaluation of SFSM and LAI
against independent remotely sensed reference data using
time series Pearson correlation coefficients R.

The second part focuses on the impact of the DA on stream-
flow. We evaluated streamflow at two different levels. First, we
calculated skill metrics for the full streamflow time series.
Specifically, we determined the Kling–Gupta efficiency index
(KGE; Gupta et al. 2009) between simulated and measured
streamflow as well as its analog based on the square root of the
streamflow (KGEsq) which reduces the weight of the peak flow
periods (De Santis et al. 2021). The KGE (and KGEsq) has be-
come a widely used metric for evaluating the goodness of fit in
hydrological modeling studies and measures the bias, correla-
tion, and difference in variance between time series. The skill
metric ranges between 2‘ and 1 (optimal value). Second, we
evaluated skill at the level of storm events. We based this analy-
sis on the separation of the daily time series into discrete 6-day
storm event periods as done by Crow et al. (2018). We also used
a precipitation threshold of 5 mm for the storm event identifica-
tion. This threshold needs to be exceeded at the first day of
each event period but must not occur in the coming 5 days to
avoid the interference of multiple events. Any storm event must
also be preceded by at least a single day with a daily precipitation
amount below this threshold. To separate the total flow of each
event into the baseflow and stormflow, we applied the hydro-
graph separation algorithm HYSEP (Sloto and Crouse 1996).
We evaluated the experiments on their skill in estimating the to-
tal flow of storm events and additionally the stormflow-only com-
ponent of storm events. Since the EnKF is not supposed to
correct for long-term biases, the event-based evaluation was
based on the Pearson correlation coefficient instead of KGE.

4. Results

a. Evaluation of the data assimilation setup

1) DATA ASSIMILATION DIAGNOSTICS

Figure 5 shows the spatial distribution of the temporal stan-
dard deviation of the observation-minus-forecast [std(O 2 F)]
g0 residuals for the OL and the two different DA experiments
for January 2015–August 2021. The mean of the std(O 2 F) of
the OL is 1.01 dB for VV and 1.11 dB for VH. The DA introdu-
ces a reduction in std(O 2 F) by 0.24 to 0.30 dB for the two
experiments and two polarizations. The reduction of the std
(O2 F) in VV is 0.06 dB stronger when g0VH is also assimilated.

The spatial pattern of std(O 2 F) in the Demer catchment
shows a connection to the spatial distribution of soil texture
and land cover (see Fig. 1). The highest std(O 2 F) can be ob-
served for the croplands on sandy loam soil in the south of
the Demer catchment. This area also features the highest re-
ductions in std(O 2 F) after DA. Furthermore, the Demer
catchment shows an aerial fraction of 14% over which the
Sentinel-1 observations were flagged for urban and built-up
land cover. For the Ourthe catchment, there is nearly full spa-
tial coverage of observations, but a lower temporal coverage
(especially during the winter, not shown) due to more frozen
conditions.

Figure 6 shows the spatial distribution of the time series stan-
dard deviation of the increments of SFSM [std(DSFSM)],
RZSM [std(DRZSM)], and, in the experiment DASMLAI, also
for LAI [std(DLAI)]. On average, the std[DSFSM] in the
DASM experiment was 0.006 m3 m23 and about 3 times higher
than std(DRZSM) indicating an expected decrease of incre-
ments with soil depth. The joint use of g0VV and g0VH in the
DASMLAI experiment slightly increased both std(DSFSM)
and std(DRZSM) when compared to the DASM experiment in
which only g0VV was used. The std(DLAI) in the DASMLAI
experiment was 0.057.

In line with the spatial patterns of std(O 2 F), the spatial
patterns in soil moisture and LAI increments show a relation
to soil texture and land-cover patterns. The largest increments
are again found for the croplands on sandy loam in the south
of the Demer catchment. For the Ourthe catchment, the high-
est increments in soil moisture also occur over cropland areas
in the northwestern and southeastern parts.

A large fraction of soil moisture increments is supposed to
be connected to antecedent errors in precipitation (Reichle
et al. 2021). We tested whether we observe this connection
too in our Sentinel-1 DA setup. Figure 7 shows all DSFSM
calculated one day after an event with a large precipitation er-
ror. The precipitation error was computed as the difference
between the daily MERRA-2 precipitation PM2 and the
catchment-averaged station-based precipitation PS. A large
error was defined as an absolute error of at least 1 mm day21

and a relative error of at least 10% of the average of PM2 and
PS2 of that day. Over the Demer and Ourthe catchments, we
found that the slope of the linear fit between DSFSM and
PM2 2 PS is significant at the 0.001 level in the Demer catch-
ment (DASM: p 5 1.2 3 1025; DASMLAI: p 5 1.3 3 1026)
and at the 0.05 level in the Ourthe catchment (DASM:
p 5 0.04; DASMLAI: p 5 0.03) with only a minor difference
between the two DA setups. This confirms that overestimated
PM2 in the model forecast is indeed corrected at the analysis
time step by withdrawing water from the soil (negative
DSFSM), and vice versa in case of underestimated PM2. Note
that the remaining scatter is caused by several factors such as
time-lagged effects of earlier precipitation errors, the magni-
tude of the rain event itself, observation operator errors, and
errors in the precipitation error estimates.

2) EVALUATION AGAINST REFERENCE DATA: SOIL

MOISTURE AND LEAF AREA INDEX

Figure 8 shows the spatial distribution of the Pearson anom-
aly correlation (anomR) between the time series of SFSM from
the different experiments and the independent (i.e., not assimi-
lated) SFSM retrievals from SMAP (SFSMSMAP). For both DA
setups, anomR increased compared to the OL experiment run
over almost the entire study domain (i.e., in both catchments).
An exception was the area of sandy soil texture in the Demer
catchment where the DA had little effect. The average increase
in anomR was 0.08 for the DASM experiment and 0.06 for the
DASMLAI experiment. The spatial pattern of improvements
was nearly identical in both DA experiments.
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Figure 9 shows the spatial distribution of anomR between
the time series of LAI from the different experiments and the
independent (not assimilated) LAI from CGLS. On average,
the DA barely changed anomR in the DASM experiment
(DanomR 5 20.001), but strong regional differences oc-
curred. While the effect of soil moisture updates on LAI was
relatively strong (both improving and deteriorating anomR)
over croplands, it was minor over forests. The additional im-
pacts on LAI through direct LAI updating can be seen in the
results of the DASMLAI experiment. Here, rather consistent
improvements in anomR can be seen over the croplands in
the Demer catchment, while deterioration occurred over the
croplands in the Ourthe catchment. For the forests, a slight

but largely consistent deterioration can be observed. Aver-
aged over both domains, anomR decreases by20.016 through
DA for the DASMLAI experiment.

Figures 10 and 11 show several catchment-averaged time
series for the Demer and Ourthe catchments. Due to the
strong similarity between the two DA experiments, time se-
ries are only shown for the DASMLAI experiment. The cor-
responding figures for the DASM experiment are provided in
the supplement (Figs. S11 and S12). SFSM, RZSM, LAI, and
streamflow time series from both the OL and DA experi-
ments are shown together with independent measurements of
streamflow and reference data for SFMC and LAI from
SMAP and CGLS, respectively.

FIG. 5. Time series standard deviation of g0 residuals [std(O2 F)] for (a),(d),(g) the open loop (OL) and data assimilation (DA) of the
(b) DASM and (e),(h) DASMLAI experiments, and (c),(f),(i) the difference between DA and OL. Note that (d) is identical to (a) and
was repeated for readability.
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For the Demer catchment, several periods can be observed
in which the assimilation of Sentinel-1 g0 led to stronger dry-
downs during April/May than in the OL experiment, most
clearly visible in 2018 and 2020. The stronger drydowns corre-
spond well to the drydowns in the SMAP reference data. The
time series of RZSM show that these SFSM drydowns also
propagate into the deeper soil layers. For the same period,
the DA shows a substantially reduced LAI (which is also visi-
ble in the DASM experiment; Figs. S11 and S12).

For the Ourthe catchment, differences in catchment-averaged
SFSM, RZSM, and LAI between the OL and DA are generally
smaller than over the Demer catchment. In contrast to the
Demer catchment, the DA over the Ourthe does not result in
stronger drydowns in April/May.

b. Streamflow evaluation

1) KLING–GUPTA EFFICIENCY INDEX

The assimilation of Sentinel-1 g0 also induced changes in
streamflow through model propagation. Table 2 shows the KGE
and KGEsq computed over all daily streamflow data pairs in
January 2015–August 2021 for all experiments. For the two DA
experiments, an improvement relative to the OL experiment
could only be found for the Ourthe catchment for which KGE
and KGEsq both increased by 0.03 in both the DASM and

DASMLAI experiments. The improvements are small when inte-
grated over all seasons of the whole multiyear time series, but
temporary large improvements can be seen, e.g., at the end of
2017 for the Ourthe catchment (Fig. 11). For the Demer, KGE
and KGEsq did not change in the DASM experiment, while in
the DASMLAI experiment, the impact on KGE was negative
and neutral on KGEsq.

2) EVENT STREAMFLOW EVALUATION

Figure 12 focuses on the end of 2017 mentioned previously
for the Ourthe catchment and illustrates the impact of soil
moisture updating on streamflow during two exemplary storm
events. The RZSM and SFSM of the DA experiment were
0.02 and 0.015 m3 m23 higher than those of the OL experi-
ment, respectively, which substantially increased total flow as
well as the stormflow component, in particular for “event 2.”
Figure 12 also shows that the model simulates the peak flows
of those two events with a delay of approximately 2 days com-
pared to the measured streamflow.

The streamflow amounts of all identified storm events in
the Demer (n 5 88) and Ourthe (n 5 72) catchments were
used for further evaluation. Figure 13 shows the KGE and the
Pearson correlation R between the modeled event streamflow
and observed event streamflow for the total flow, and the

FIG. 6. Time series standard deviation of increments in (a),(c) surface soil moisture (DSFSM), (b),(d) root-zone soil moisture (DRZSM),
and (e) LAI (DLAI, for DASMLAI only) of the (top) DASM and (bottom) DASMLAI experiments.
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baseflow and stormflow components individually. At the level
of event streamflow amounts, a minor improvement in R can
be observed for the Demer catchment for both DA experi-
ments, while the impact on KGE was rather neutral. For the
Ourthe catchment, R more clearly improved by about 0.05 in
both DA experiments, and nearly equally for the total flow,
and the baseflow and the stormflow components individually.
However, also for the Ourthe, changes to the KGE were
minor.

5. Discussion

a. Impact of Sentinel-1 backscatter assimilation on soil
moisture and LAI in the Noah-MP model

Our analyses indicate that soil moisture from the Noah-MP
model can be improved through Sentinel-1 g0 DA over both
catchments. Slightly greater improvements can be observed
over croplands compared to forests, which is expected since
the g0 sensitivity to soil moisture decreases with increasing
thickness of the vegetation layer. The main correction of soil
moisture occurred both (i) in response to rainfall errors, as

illustrated by the relationship between SFSM increments and
precipitation errors derived from station data, and (ii) also
during drydown periods as indicated by the correspondence
with independent SFSM retrievals from SMAP.

The updates during the drydown periods over croplands in
April and May, however, need to be interpreted with caution.
April/May is the period in which the shoots of several crops
grow upward. Due to a predominantly vertical vegetation struc-
ture, very abrupt declines in VV polarization over only a few
weeks were reported, e.g., over winter wheat fields (Schlund
and Erasmi 2020). Similar effects might occur for barley and
maize which are, besides winter wheat, frequent crops in the
Demer catchment. The WCM approximates the effects of the
vegetation water content on backscatter using the “water cloud”
concept. Specific vegetation structural effects are not accounted
for as this would require a more complex model with more pa-
rameters (Quast and Wagner 2016) that is hard to calibrate with
uncertain soil moisture and vegetation inputs from land surface
modeling. It is possible that this simplification of the WCM led
to partly unrealistic state updates in April/May through g0VV
assimilation as also reported in Modanesi et al. (2022). The tran-
sition from almost bare soil to a vegetation cover with elongated

FIG. 7. Catchment-averaged increments of DSFSM as a function of the precipitation error of the previous day esti-
mated by the difference between MERRA-2 precipitation PM2 and station precipitation PS for the (a),(c) Demer and
(b),(d) Ourthe catchments for the two different data assimilation experiments. The gray line in each plot indicates the
linear regression.
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plant structures during crop shooting might also have an impact
on the soil moisture retrievals from passive microwave remote
sensing (Wigneron et al. 2007, 2017) which could explain the
good correspondence between the surface soil moisture of the
DA time series and the independent SMAP soil moisture
retrievals.

There are other factors impacting the poor performance of
the water cloud model over croplands as indicated by the largest
std(O 2 F) seen in Fig. 5. While a forest does not change a lot
from year to year, agricultural lands do, e.g., due to tillage prac-
tices and crop rotation. Since our DA setup worked with time-
constant water cloud model parameters, the filter might not
know the “right” partitioning between vegetation and soil up-
dates in the DASMLAI experiment. Similarly, in the DASM
experiment, std(O 2 F) might be used for soil moisture updat-
ing although they originated from vegetation effects.

Regardless of whether soil moisture improved or not over
croplands, the soil moisture increments of the DASM experi-
ment degraded LAI relative to the independent CGLS LAI
data. The time series of both DA experiments over the
Demer catchment (Fig. 10 and Fig. S11) show that the drier
soil moisture causes a substantially reduced LAI due to mod-
eled plant water stress. During this same period, the LAI of
the DA deviates most from the reference LAI because the
impact of plant water stress is likely overestimated in the

April/May period. Without additional data, it cannot be ascer-
tained whether this LAI error is due to a possibly deterio-
rated soil moisture after DA in April/May or errors in the
modeling of the plant physiology.

The comparison of the DASM and DASMLAI experi-
ments reveals only a minor additional impact on LAI in the
DASMLAI experiment, both in the correlation with CGLS
LAI (Fig. 9) and in LAI time series (Fig. 10 and Fig. S11).
This is surprising because there were substantial LAI incre-
ments (mean absolute increment of 0.06 m2 m22). As dis-
cussed in depth by Scherrer et al. (2022), this is likely partly
due to the structure of the vegetation model in Noah-MP
which has an intrinsic model equilibrium state depending on
the vegetation-type specific parameters. If the updated vege-
tation state significantly deviates from the model equilibrium
(associated with the current soil water availability, which is
partly determined by soil parameters), the updates do not
sufficiently persist. Instead, the model drifts back toward its
original state (Dee 2005; De Lannoy et al. 2007). This behav-
ior of the Noah-MP vegetation model also explains that the
spread in LAI is not widening with increasing LAI (Fig. 10);
i.e., the vegetation model does not further propagate the un-
certainty. Instead, the model drift of each ensemble member
back toward the model equilibrium state causes the spread to
shrink.

FIG. 8. Pearson anomaly correlation coefficient anomR between modeled and SMAP level-2 SFSM for the (a) open loop (OL) and DA of
the (b) DASM and (d) DASMLAI experiments, and (c),(e) the corresponding difference between DA and OL.
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b. Catchment dependency of the DA impact
on streamflow

Our study showed that Sentinel-1 g0 improved the stream-
flow estimation only for one of the two catchments. Perhaps
surprisingly, this was the Ourthe catchment for which soil
moisture updates were smaller and where a high forest frac-
tion would typically be considered as problematic to extract
the soil moisture signal from microwave observations due to
vegetation structure effects (Vreugdenhil et al. 2020). Fur-
thermore, more frequent snow covers and higher snow depths
(Fig. 11) led to more masked Sentinel-1 observations and also
subsequent snowmelt events which could thus not be im-
proved by Sentinel-1 DA.

The DA improved the streamflow for the Ourthe catchment
in terms of the KGE and KGEsq of the full daily time series as
well as for a storm event–based evaluation in terms of Pearson
correlation coefficients. In contrast, the DA impact on stream-
flow was overall neutral for the Demer catchment. The event-
based evaluation proved to be a useful evaluation method to
reduce the role of model deficiencies and model nonlinearities
in evaluating DA impacts which were considered as problematic
in earlier studies (e.g., Fairbairn et al. 2017). The two exemplary
storm events of Fig. 12 illustrate how soil moisture substantially
modified the streamflow response in terms of streamflow
amounts, but not much in terms of peak flow timing. The latter

is only slightly shifted by DA but still mainly depends on the pa-
rameters of the land surface model and river routing. If the
peak flow timing is still predicted poorly, improving the magni-
tude of peak flow does not necessarily improve skill at a daily
resolution. In contrast, improvements will become apparent
when evaluating at the time-aggregation level of storm events.
This may explain that, for the Demer catchment, a degradation
of streamflow through DA was not observed in the event-based
evaluation and not for the KGEsq which lowers the impact of
peaks, while, in contrast, the KGE indicated a degradation for
the DASMLAI experiment (Table 2). Note also that delays due
to the routing are more critical in the Demer catchment than in
the Ourthe catchment due to the lower topographic gradients.

To better understand if streamflow processes in one of
the two catchments are naturally more sensitive to soil
moisture than in the other, we analyzed the soil moisture–
runoff coupling strength. As done in Crow et al. (2018), we
calculated the Spearman rank correlation coefficient be-
tween antecedent soil moisture and the runoff coefficient.
Antecedent soil moisture was determined based on the dri-
est of the 2 days preceding a storm event, and the runoff co-
efficient was computed as either the total streamflow or the
stormflow only divided by the total precipitation amount
during the storm event. The runoff coefficient was either
based on station-based observations of precipitation and

FIG. 9. Pearson anomaly correlation coefficient anomR between modeled and CGLS LAI for the (a) OL and DA of the (b) DASM and
(d) DASMLAI experiments and (c),(e) the corresponding difference between DA and OL.
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streamflow or based on model (DA) estimates. The ante-
cedent soil moisture estimates always originated from the
DA experiment DASM. Figure 14 shows that soil moisture–
runoff coupling is substantially higher for the Ourthe catch-
ment than for the Demer catchment for total streamflow
as well as for the baseflow and stormflow components indi-
vidually. For both the Demer and Ourthe catchments, the
modeled coupling strength matches well with the observed
coupling strength, which was not the case for most models in
the intercomparison of Crow et al. (2018). The lower coupling

strength in the Demer catchment shows that, naturally, we can
already expect a lower impact of soil moisture changes on
streamflow estimates there. Possible reasons for the weaker cou-
pling are the different soils in both catchments as well as the
higher urban and built-up fraction in the Demer catchment.
Over built-up areas, soil moisture obviously does not have any
impact because rainfall turns immediately into gridcell runoff
that is then routed toward the outlet.

6. Conclusions

The added value of Sentinel-1 g0 DA for streamflow es-
timation was evaluated for two different catchments in
Belgium from January 2015 through August 2021. The De-
mer catchment is dominated by agriculture and mild topog-
raphy, whereas the Ourthe catchment is largely forested
and wetter and colder than the Demer catchment. The
DA setup was using the Noah-MP land surface model, the
HyMAP routing model, the water cloud model as an obser-
vation operator, and an ensemble Kalman filter for state

TABLE 2. Kling–Gupta efficiency index (KGE) and KGEsq for
daily streamflow at the outlet of the Demer and Ourthe catchments
for the different experiments (January 2015–August 2021).

KGE (}) KGEsq (})

OL DASM DASMLAI OL DASM DASMLAI

Demer 0.60 0.60 0.58 0.73 0.73 0.73
Ourthe 0.59 0.62 0.62 0.80 0.83 0.83

FIG. 12. Example of two identified storm events and the separation of total flow into baseflow and stormflow for (a) observed, (b) open-loop,
and (c) DASMLAI streamflow in the Ourthe catchment. (d),(e) The SFSM and RZSM.
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updating. For this setup, our results support the following
conclusions:

• the assimilation of Sentinel-1 g0 observations can correct
SFSM for rainfall errors and improve SFSM estimates
based on a comparison against independent satellite-
based SFSM retrievals;

• the presence of forest cover does not seem to prohibit the as-
similation of Sentinel-1 g0 as suggested by multiple promising
evaluation metrics over the Ourthe catchment;

• the simultaneous updating of soil moisture and LAI could
not be shown to be superior to updating soil moisture
only, which might be caused by deficiencies of the water
cloud model and the strong tendency of the Noah-MP
vegetation model to drift back toward its model equilib-
rium state;

• the improved soil moisture through Sentinel-1 DA can im-
prove streamflow estimates if both the observational data
and the model show a strong soil moisture–runoff coupling,
which was the case only for the Ourthe catchment; and

• with an ensemble Kalman filter for state updating like used
in this study, improvements are largely limited to dynami-
cal metrics such as correlation, while bias remains mostly
unaffected.

Increasing the physical realism of the process model is sup-
posed to increase the positive impacts of the presented backscat-
ter data assimilation on streamflow estimation. Newer model
input (e.g., newer soil maps; Poggio et al. 2021), improved model
structure (Vereecken et al. 2019), and parameter calibration

(Crow et al. 2018) are needed to reduce bias and peak flow tim-
ing offsets and to ensure that improved soil moisture optimally
propagates into improved streamflow estimates. Additionally, re-
maining systematic model errors can further be addressed di-
rectly by the data assimilation setup through parameter updating.
Additionally, remaining systematic model errors can further be
addressed directly by the data assimilation setup through param-
eter updating. While this study analyzed two catchments in detail,
several more catchments with diverse properties would need to
be investigated to generalize these conclusions. This will require
the consideration of additional factors like regional differences
in, e.g., climate, vegetation, and agricultural practices.
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FIG. 13. (a) KGE and (b) Pearson correlation coefficients
R (with 95% confidence intervals) between event-scale modeled
(Qevent,mod) and observed (Qevent,obs) streamflow, for (left) total
streamflow, (center) baseflow, and (right) stormflow (Demer:
n5 88; Ourthe: n5 72).

FIG. 14. Values of Spearman correlation coefficient R (with 95%
confidence intervals) between SFSM and runoff coefficient (RC) of
total streamflow, baseflow, and stormflow. SFSM is derived from
the DASM experiment. RCDA is calculated with simulated stream-
flow and MERRA-2 precipitation, whereas RCOBS is calculated
with measured streamflow and rain gauge data.
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