
Received December 14, 2021, accepted February 15, 2022, date of publication February 21, 2022, date of current version March 4, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3152397

Technologies for GQM-Based Metrics
Recommender Systems: A Systematic
Literature Review
MIRKO FARINA 1,2, ANNA GORB 2, ARTEM KRUGLOV 2,
AND GIANCARLO SUCCI2, (Member, IEEE)
1Human Machine Interaction Laboratory, Faculty of Humanities and Social Sciences, Innopolis University, 420500 Innopolis, Russia
2Faculty of Computer Science and Engineering, Innopolis University, 420500 Innopolis, Russia

Corresponding author: Giancarlo Succi (g.succi@innopolis.ru)

This work was supported by the Russian Science Foundation under Grant 19-19-00623.

ABSTRACT Purpose: With this Systematic Literature Review (SLR), we aim to discover technologies to
construct a Goal-Question-Metrics (GQM) based metrics recommender for software developers. Since such
a system has not yet been described in the literature, we decided to analyse the technologies used in three
main components of recommender systems - data sets, algorithms, and recommendations - independently.
Methods: To achieve our goal we performed - following the best norms in our discipline - a systematic
literature review (SLR). We first identified, through searches aptly performed, 422 potentially relevant
papers, from which we selected - after applying inclusion and exclusion criteria - 30 papers, which we
eventually included in our final log. Results: Systems with textual data set preprocess information in nearly
the same way and the majority use similarity scores to create recommendations. Systems with GQM-based
algorithms consist of questionnaires and require users to explicitly answer questions to produce suggestions.
With respect to the recommendations of reviewed systems, they range from application programming
interfaces (APIs) to requirements, but no system presently recommendsmetrics.Conclusion: In our SLRwe:
(a) identified a sequence of the most popular steps for preprocessing in recommender systems; (b) proposed
an optimisation strategy for such steps; (c) found out that the most promising approach includes both ranking
and classification; and (d) established that there are no recommendation systems developed to date to process
metrics.

INDEX TERMS Goal question metrics model, recommender systems, text processing.

I. INTRODUCTION
Given the software’s immaterial nature, researchers attempted
to study its characteristics and influencing factors using
softwaremetrics, that is, numeric values attached to particular
attributes of artifacts related to the software development pro-
cess [1], [2]. The selection of software metrics, though, is not
a simple task [3]. Properly selected metrics can indicate defi-
ciencies in the process in the early stages of development [4],
and vice versa, inappropriate metrics may interfere with the
achievement of the project’s goals [5] or cause developers
to waste precious time [6, p. 630]. Consequently, a number
of structured approaches to derive metrics have been pro-
posed [7]–[10]. Among them one of the most relevant is the
Goal-Question-Metrics (GQM), developed by Basili et al.

The associate editor coordinating the review of this manuscript and
approving it for publication was Wuliang Yin.

in the ’80s [11], [12]. In recent decades this approach
has gained substantial popularity [6, p. 45]; however, the
proper formulation of GQM is not a trivial task and requires
substantial expertise. The purpose of this SLR is to investigate
and find out which technologies can be used to develop a
recommendation algorithm for software engineers, so as to
automatically suggest appropriate metrics for GQM models.

Such an algorithm can be integrated into ‘‘metrics collec-
tors’’ - applications that collect products and process metrics.
Usually such systems have many metrics [13] from which
users can select useful ones. Manual selection is costly and
time consuming; moreover, users often cannot determine by
themselves, which metrics they need. To solve these prob-
lems dashboards with predefined set of metrics have been
proposed [14]. However, such dashboards cannot cope with
the specifics of each case [15], and this is where recommender
systems can be used [16].

23098 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0001-8342-6549
https://orcid.org/0000-0001-9699-9637
https://orcid.org/0000-0003-2038-1392

M. Farina et al.: Technologies for GQM-Based Metrics Recommender Systems: Systematic Literature Review

Recommender systems became popular in the 90s [17].
Since then, different types of recommender systems have
emerged, which can be classified as follows:

1) Collaborative filtering [18] is the most widely used
type of recommender systems. It is based on similarities
that can be calculated in different ways:
• user-based [19]: construct recommendations based on
ratings of similar users;

• item-based [20]: calculate similarity levels between
already rated items and the targeted one.

The advantage of this type of filtering is its suitability
for cases where one cannot create a detailed description
for an object (e.g. recommending music or movies).
However, this type of filtering also has some weak-
nesses, namely: cold-start, data-sparsity, scalability, and
synonymy [21].

2) Content-based filtering [22], unlike collaborative fil-
tering, generates suggestions based on profiles and
descriptions. Themain advantage of this approach is that
it overcomes the cold-start problem. In other words, even
if the user did not interact with the system before, the
systemwill still be able to generate accurate suggestions.
However, this type of filtering has a potential disadvan-
tage: the system requires very detailed information about
each item in question and the user profiles in order to
make recommendations [23].

3) Hybrid filtering [24], the combination of different rec-
ommender techniques to overcome the limitations of the
two filtering methods described above.

There are many types of recommender systems with hybrid
filtering used for various purposes [25], but in conducting
this SLR we found that they have not yet been used to
automatically generate metrics based on the GQM model.
This suggests that our review is the first in this specific
area. Though, we should also note that a consistent part of
our work is devoted to surveying recommender systems and
that several SLRs covered this issue before us [26], [27].
The first SLR [26] we have encountered focused on issues
related to I/O in recommender systems in software engineer-
ing, while the second one [27] focused on the distribution of
recommender systems over the development phases, which is
beyond the scope of our current research.

In section II, we introduce the review protocol in this SLR,
specifying our methodology. In section III, we coherently
and systematically present the results of our work, while in
section IV we discuss and analyse them critically. Section V
points out a series of limitations and threats to validity poten-
tially affecting our research, while Section VI, describes the
significance of our findings for the field. Finally, Section VII
summarises what we have achieved in our work and discusses
potential future developments and new research directions.

II. REVIEW PROTOCOL
In this section, we describe the ‘‘Review Protocol’’ adopted
for this SLR. We describe it upfront here to show that the

work we conducted is unbiased, rigorous, systematic, and
reproducible. To plan this SLR we used as a guideline the
work done by Kitchenham and Charters [28], thus identifying
three basic steps for our SLR (see Table 1).

TABLE 1. Stages of the SLR.

A. PRISMA 2020 CHECKLIST
Having specified the steps required for our SLR, we then
followed the standard protocol for performing SLRs adopted
by researchers internationally (the PRISMA Checklist
2020 [29]). Our checklist is available for review in the
appendix section (see Appendix A).

B. RESEARCH QUESTIONS
To set our research towards a specific direction we first fig-
ured out the goal of our SLR based on the following concepts
and points:

Purpose: generate useful metrics
Viewpoint: software developers
Issue: using GQM model
Object: recommendation algorithm
This translates to the following research question, which

are the bases of our SLR.
RQ1: Are there recommender systems for software
developers whose data set includes textual information?

RQ2: Which algorithms underlie recommender systems
for software developers?

RQ3: Are there recommender systems capable of sug-
gesting metrics for software developers?

There are three main components in any recommender
system: data set, algorithm, and recommendations [30].
GQM-based metrics recommenders should be based on a
GQM approach, which means that goals and questions will
constitute a data set and metrics will represent the recommen-
dations. Since goals and questions are textual information,
with RQ1 we will identify recommender systems that also
receive textual information as input and will understand how
they preprocess it. Then, with RQ2 we will find which algo-
rithms are used by recommender systems to create sugges-
tions. Answering this question will allow us to determine how
to construct the central part of our system - the recommenda-
tion algorithm. Finally, with RQ3 wewill find out which types
of suggestions recommender systems for software developers
make and whether metrics are present among them.

It is of paramount importance to answer this set of ques-
tions because with the information obtained, it will be pos-
sible to understand the advantages and disadvantages related

VOLUME 10, 2022 23099

M. Farina et al.: Technologies for GQM-Based Metrics Recommender Systems: Systematic Literature Review

to each approach. Furthermore, this information will allow
us to select the most appropriate technologies to create
GQM-based metrics recommenders for software developers.
Since we have not found any systematic works that cover
these important topic, we believe there is strong merit in this
research.

C. SEARCH STRATEGY
A crucial step in the development of any SLR is the formula-
tion of a search strategy. Given the amount of papers poten-
tially available on the topic, we decided to use automatic
database search (filtering) in this work. Firstly, we selected
a list of databases for our searches. The databases we used
include: Scopus, IEEE Xplore, and ACM Digital Library.
We did not use other renowned databases for our searches,
for instance, Science Direct, because it has a restriction on
the number of Boolean operators that one can list.

We subsequently formulated a number of generally rele-
vant keywords that could be representatives of our research
questions. These are as follows: recommender systems and
software developers. The keywords selected were sufficiently
general to ensure that we would not miss any important paper.
However, we realized they might have been too general to
guarantee the precision needed for our work, so we created
synonyms for each of them (see Table 2).

TABLE 2. Synonyms for keywords.

By using this improved list of keywords, we subsequently
generated a series of Search Queries. We used Boolean oper-
ators to do so, in accordance with the best practices of our
discipline. After that we searched the databases originally
selected with these Search Queries. Below we report our
preliminary results :
• IEEE Xplore - (39 papers initially)
(‘‘Document Title’’:software OR ‘‘Document Title’’
:programm*OR ‘‘Document Title’’:‘‘computer scien*’’)
AND ((‘‘Document Title’’:recommend* OR ‘‘Docu-
ment Title’’:suggest*) NEAR/1 (‘‘Document Title’’:
systemOR ‘‘Document Title’’:platformOR ‘‘Document
Title’’:engine OR ‘‘Document Title’’:algorithm))

• Scopus - (120 papers initially)
TITLE (software OR programm* OR ‘‘computer
scien*’’ AND (recommend* OR suggest* PRE/0 sys-
tem OR platform OR engine OR algorithm))

• ACM Digital Library - (328 papers initially)
Title: (softwareOR programm*OR ’’computer scien*’’)
AND (recommend* OR suggest*) AND (system OR
platform OR engine OR algorithm)

We gathered a total of 487 potentially relevant papers for
our SLR. All these papers were added to our reading log for
further processing. We then excluded 65 duplicates, reducing

the number of papers potentially relevant for inclusion in the
study to 422.

D. INCLUSION AND EXCLUSION CRITERIA
We formulated Exclusion Criteria (EC) and Inclusion Cri-
teria (IC). EC and IC help deciding, in a systematic and
coherent way, which - among all the papers selected as
potentially relevant (in our case 422 papers) - should be
included into the final reading log [31]. To be included,
a paper needed to satisfy all the following Inclusion
Criteria.

IC1: the work is written in English AND
IC2: the work helps solving a software development
problem AND

IC3: the work contains an algorithm for the construction
of a recommender system AND

IC4: the work describes recommender system with tex-
tual data set, or suggests software metrics

However, it was decided that even if a work met all the
ICs above, we would exclude it, if it satisfied one of the
following ECs.

EC1: the work did not satisfy one ormore of the inclusion
criteria stated above OR

EC2: the work is similar to others produced later by the
same authors OR

EC3: the work has no evaluation phase OR
EC4: the work is a conference proceeding OR
EC5: the work can be classified as grey literature
(e.g., technical report or dissertation)

Having specified our IC and EC, we then consistently
applied them to the set of 422 papers previously selected
as potentially relevant for our SLR, which have then been
filtered as outlined in Fig. 1.

FIGURE 1. Prisma Flow Chart Diagram.

23100 VOLUME 10, 2022

M. Farina et al.: Technologies for GQM-Based Metrics Recommender Systems: Systematic Literature Review

E. QUALITY ASSESSMENT
Establishing an object metric to determine the quality of the
papers selected for inclusion is an important step in the devel-
opment of a systematic literature review, as it ensures that
the findings obtained through it are reliable and academically
sound. We prepared a list of questions with relative scores
(0, 0,5,1), which could offer a reliable indication about the
quality of the reviewed paper.

The list of questions we used for our quality assessment
may be found in the appendix section together with the
detailed results of the quality assessment, which was con-
ducted by two people independently to maximise objectivity
and minimize bias (see Appendix).

There were indeed many high quality papers among those
we selected for inclusion in our final log. This is demonstrated
by the scores reported in Table 3 below. The average quality
score was 6.38 out of 8, which indeed confirms the reliability
of the findings on which we based our SLR.

TABLE 3. Papers distribution by quality scores.

III. RESULTS
In this section we coherently and systematically present
the results of our investigation. We first provide a criti-
cal assessment of the databases we used for this study.
We then carefully review all the papers included in our
final log and classify them in meaningful ways that help
us extracting important information or relevant data for
our SLR.

A. PRELIMINARY CLUSTERING
Table 4 displays the main advantages and disadvantages of
the databases chosen to carry out our search. From the infor-
mation provided in this table, the reader can conclude that
all the databases we used are trustworthy and academically
sound.

TABLE 4. Databases - advantages and disadvantages.

Figure 2 shows the distribution of papers by selected
databases, and Figure 3 illustrates their distribution by
publishers. These figures demonstrate that the papers we
included in our final log are either fromwell-known computer
science conferences or have been published in top-ranked
journals.

Figure 4 illustrates the distribution of papers by year of
publication. For convenience, we also offer to our reader a
visual representation of the distribution of articles by period
of 5 years (see Table 5).

FIGURE 2. Papers distribution by database.

FIGURE 3. Papers distribution by publishers.

FIGURE 4. Papers distribution by year of publication.

TABLE 5. Papers distribution over 5 year periods.

Wenoticed that most of the papers included in our logwere
written in the last five years, 9 of them were written between
2012 and 2016, and only 4 of them were written earlier
(between 2002 and 2011). This can probably be justified with
the observation that the field is relatively new and researchers
have only recently started investigating it.

VOLUME 10, 2022 23101

M. Farina et al.: Technologies for GQM-Based Metrics Recommender Systems: Systematic Literature Review

B. SUMMARY
The recommender system developed by Azeem et al. [32]
classified pull requests in three major categories: rejection,
response, and acceptance. Its data set included such features
as title, body and review comments. The preprocessing phase
for this textual information encompassed stop words deletion
and stemming and the resulted text was processed by a Skip-
gram model. Together these steps prepared the foundations
for the XGboost classification algorithm, which eventually
classified pull requests.

Xie et al. [33] constructed the data set for their algorithm
from APIs functionality descriptions. The authors concluded
that such descriptions can be assigned to one of 87 func-
tionality categories and 523 phrase patterns they individu-
ated. In particular, they applied Part-of-Speech tagging and
lemmatization with SpaCy and Bidirectional Encoder Rep-
resentations from Transformers to determine under which
category a description would fall. After that the query was
compared with all the sentences from the identified category
by functionality category similarity, semantic role similarity,
and Word2Vec based text similarity.

Castro-Herrera et al. [34] proposed a recommender sys-
tem to suggest forums of interest to stakeholders in large-
scale projects. The idea was to collect stakeholders’ needs
in text, preprocess them using stemming, delete stop words,
apply Term Frequency - Inverse Term Frequency (TF-IDF)
method, and then cluster them in an optimal number of
clusters, using adopted consensus clustering algorithms [35].
After those preliminary operations, collaborative filtering
with a k-Nearest Neighbors (kNN) algorithm was used to
suggest new forums for the stakeholder.

McMillan et al. [36] created a data set from the source
code with textual features descriptions to facilitate the reuse
of source code packages in software prototypes. In this
research, the features descriptions were clustered with an
incremental diffusive clustering algorithm and feature nam-
ing approach [37]. Then they were mapped to related source
code modules and processed by kNN algorithm with cosine
similarity. Finally, three indicators were optimized: features
coverage, number of projects, and external coupling.

Zhang et al. [38] used tuples of questions and tags (like in
Stack Overflow) as a data set to automatically recommend
appropriate tags for new questions. These tuples were passed
through several stages: word embedding, multi-tasking like
CNN, and gradient descent algorithm. The data obtained was
used to recommend top-k tags for the new question.

The recommender system developed by Hamza and
Walker [39] applied several heuristics, such as actor-action-
object tree construction, to suggest features for Software
Product Lines (SPLs) based on the manually extracted func-
tional requirements. Its preprocessing stage included: PoS
tagging to these sections, stop words removal, sorting, and
deletion of duplicates.

Gomez et al. [40] retrieved reviews of mobile apps from
Google Play Store, filter stop words, and then applied a

Latent Dirichlet Allocation algorithm to cluster all reviews
into 100 topics and find out error-suspicious apps. Using
J48 decision tree algorithm and correlation between error-
sensitive permissions and error-related reviews, their recom-
mender system predicted if there were any bugs in the app.

The artifacts recommender system developed by Cubranić
and Murphy [41] indexed textual query and turned them into
a document vector. To define similarity between artifacts the
system used vector-space cosine similarity.

Ashok et al. [42], proposed a recommender system that
assisted the process of bug fixing. Initially, the system cal-
culated custom similarity score and then converted differ-
ent information sources, including those containing text,
into typed documents. Then it transformed the documents
obtained into a factor graph, while creating a ranked list of
relevant bug descriptions. This list could be used to retrieve
recommendations about workers, source files, and functions
that could be used to fix a bug.

The recommender system developed by Gao et al. [43]
received as input a technical question without answer. Using
a three-step algorithm, the system then generated possible
answers for this question.

In developing their recommender system, Jiang et al. [44]
encountered the problem of automatic features detection from
apps descriptions. To partition the text into sentences they
firstly used LingPipe and removed all irrelevant symbols.
Then, the authors used the Stanford PoS tagger to remove the
sentences that did not meet specific criteria. Finally, in using
the Naïve Bayes classifier application, which helps to deter-
mine whether the sentence describes a given feature, they
extracted names and formed a feature vector. Subsequently,
the authors applied Latent Dirichlet Allocation to find most
similar apps and suggest features to be implemented.

To solve the problem of insufficient information while
fixing bugs, the following algorithm was proposed by
Rejaul [45]: title/summary of the report is tokenized, stop
words are removed, everything is converted to initial forms
and then TF-IDF is applied. Then cosine similarity is used
to find out the most similar bug reports to the new one, from
which the key features is then extracted.

To recommend appropriate APIs according to the natu-
ral language query, the system proposed by Cat et al. [46]
extracted from Stack Overflow the top-50 questions simi-
lar to the given one. The recommender then extracted the
content of certain Stack Overflow posts, tokenized sentences
with NLTK, reduced words to the base forms, transformed
them into word embedding with Gensim and then applied
the inverse document frequency. Word embedding in com-
bination with IDF values helped to define similarity. Subse-
quently, APIs entities were extracted from the resulted text
and the query was computed.

Palomba et al. [47] classified user reviews for mobile apps
in 4 predetermined groups usingARdoc [48]. The preprocess-
ing of the input included misspellings checks, contractions
expansion, PoS tagging, removing all but verbs and nouns,

23102 VOLUME 10, 2022

M. Farina et al.: Technologies for GQM-Based Metrics Recommender Systems: Systematic Literature Review

and tokenization. The second step involved: singularization,
stop words removal, stemming, repetitions and short tokens
(less then 3 elements) removal. The third step required clus-
terization with Hierarchical Dirichlet Process. This was done
to group together similar requests. Finally, using An asym-
metric dice similarity coefficient, they are linked with the
code that need to be changed.

The recommender system developed by Kamel et al. [49]
suggested tasks for crowdsourcing developers. For this pur-
pose, the recommender system extracted features from tasks
descriptions and developers profiles. Keywords were then
allocated from the input information and DBpedia ontology
assigned classes to them. Then features were transformed into
bag-of-words and classified using an SVM algorithm.

Di Sipio et al. [50] introduced a recommender system that
used the READMEs and the source code from GitHub repos-
itories to classify them by topics. Each README went
through the stop words removal, stemming, lemmatization
and TF-IDF vectorisation. Then they were all classified with
a Multinomial Naive Bayesian Network.

The system developed byWang et al. [51] used test reports
and requirements to suggest the appropriate set of crowd
workers for the given task. Input parameters went through
word segmentation, stop words removal, synonym replace-
ment, and vectorization. Then the ‘‘descriptive terms list’’
was constructed and for each document a ‘‘task terms vector’’
was compiled, based on the presence -in the document- of the
term from the ‘‘descriptive terms list’’. From this and some
other data 26 features were extracted by the learning-based
ranking algorithm - LambdaMART.

Cerezo et al. [52] proposed a chatbot that could find
the mentor for any developer. To categorize user mes-
sages into several predefined categories, all sentences were
weighted using raw term frequency and subsequently clas-
sified, according to the highest weight. To identify the key-
concept in the next step IDF was then used and then the
algorithm recommended relevant experts.

In the approach suggested by Almhana et al. [53] to rec-
ommend relevant classes for bug report, its description was
passed through tokenization, stop words deletion,and stem-
ming. Next, to compare it with the source code and API
descriptions, cosine similarity with weights fromTF-IDFwas
applied.

Another one recommender system by Thung et al. [54]
suggested methods from an API library, which could be
used to accomplish feature requests. For that goal, textual
description of a feature request went through tokenization and
stemming. Then TF-IDF was applied to generate weights for
the next step - cosine similarity with various API methods.

Lin et al. [55] proposed a recommender system to suggest
architectural refactorings. It compared the target and source
models using lexical similarity and design conformance. The
description of the model and program elements was trans-
formed using tokenization, stop words removing, stemming,
encoding into TF-IDF vector, and cosine similarity. Using the
resulted lexical similarity and design conformance, authors

subsequently applied a genetic algorithm to determine the
optimal solution.

To improve Stack Overflow recommendations Zagalsky
et al. [56] proposed a system that retrieved the questions from
Stack Overflow and their accepted answers by means of code
snippets. Then, it applied the keyword search based on the
Apache Lucene library to recommend code.

The recommender system developed byAbhinav et al. [57]
suggested an appropriate task to the crowd worker. To rich
this goal it needed only to compare the worker profile with the
task description. For that it used tokenization and Doc2Vec
for the preprocessingnstage and the cosine similarity to define
the set of tasks that suits better the worker interests and skills.

In the work by Xu et al. [58] the system - in order to make
proper API recommendations - compared feature requests
text with the API descriptions and the text in the source code
using preprocessing, vectorization, and cosine similarity.

One of the most important stages for developers rec-
ommendations in collaborative bug fixing, suggested by
Xie et al. [59] is the topic determination for the bug report.
For this purpose, the bug reports were tokenized, stop words
were eliminated, stemming was applied and then Latent
Dirichlet Allocation was used to define the topic.

Anvik and Murphy [60] proposed a recommender system
that suggested report writers. For preprocessing it removed
stop words and non alphabetic characters. It then calculated
and normalised terms frequency. The algorithm subsequently
generated labels (developers names), using project-specific
heuristics. Finally, it created recommendations using SVM.

Rodas-Silva et al. [61] developed system which recom-
mends implementation components based on SPLs features.
For this purpose, features of the component went through the
TF-IDF and cosine similarity.

Patterns are useful for programmers because - in using
them - they can save precious time. However, it is quite
challenging to find the right pattern in terms of both code and
structure. To facilitate this process Palma et al. [62] used a
GQM based system to propose the design of some patterns
that can make the design of the system reusable at a later
stage. For each pattern developed, the authors identified a set
of circumstances (or layers) in which such patterns should
be used. In particular, the first layer represented the primary
conditions, whereas the second layers described the subcon-
ditions. For each layer users were then asked to give answers
(’yes’ ’no’, or ’do not know’). These answers were weighted
and ranged from 0 to 9. After all answers were gathered and
the total combined weight was calculated, the pattern with the
highest weight was suggested to the user by the system itself.

A comparable approach was proposed by Clara et al. [63],
the authors attempted to develop an appropriate design-
pattern category. In particular, the researchers developed a
GQM-based tree model that consisted of chains of questions
with associated positive or negative answers, that when com-
bined together, led the user to the right design pattern. How-
ever, unlike in the first recommender system, the questions in
this one were aimed at identifying the category of the design

VOLUME 10, 2022 23103

M. Farina et al.: Technologies for GQM-Based Metrics Recommender Systems: Systematic Literature Review

patterns. In particular, in this paper the authors presented a
table with all questions and the weights they used. Depending
on the user’s answer these weights were added to a certain
category score (such as behavioral, structural, or creational).
At the end of the process the users received the pattern with
the highest score as a suggestion.

Finally, the recommender system proposed by Wang et al.
[64] suggested tags for software information sites. The object
was passed through the chain of transformations including
tokenization, Camel Case splitter, special sign splitter, num-
bers and stop words removal, and stemming. After that, with
the combination of classification layers and probability esti-
mators, the system was able to generate appropriate tags.

C. FURTHER CLUSTERING
While performing preliminary clustering on the papers
selected for inclusion in our log, we noticed that they could
be further divided into different classes based on their areas
of application.

Figure 5 below shows the areas of software development
for which proposed recommender systems were developed.
We noticed that the absolute leaders are bugs followed by
APIs and crowdsourcing.

IV. DISCUSSION
Having systematically presented our results, we next criti-
cally discuss them in context.

FIGURE 5. Papers distribution by areas of application.

A. RQ1: ARE THERE RECOMMENDER SYSTEMS FOR
SOFTWARE DEVELOPERS WHOSE DATA SET INCLUDES
TEXTUAL INFORMATION?
All the papers we reviewed except [62] and [63] described
recommender systems that receive textual information as
input. However, to work with text, any system needs to
preprocess it. This means that texts must be standardized.
However, preprocessing is not the only step that needs to be
performed by the system. Any system also needs to vectorize
the text; that is, convert letters into numbers. These two
processes are beneficial because they limit the number of
words, reduce scattering of data, and optimize the possibility
of processing such data by computers.

Figure 6 shows the technologies used for preprocessing
in the selected papers. The height of the columns denotes
the number of occurrences this type of technology has been
encountered.

FIGURE 6. Preprocessing steps and usage.

Some of these terms are quite general concepts and are
therefore discussed in different ways in the papers we ana-
lyzed. For example:

• Vectorization is mentioned as Word2Vec (2), word
embeddings (2), Doc2Vec (1), and vector space
model (1)

• TF-IDF is mentioned as TF (1), IDF (3), TF-IDF (11),
customized version (1)

Based on Figure 6, we can rank preprocessing technolo-
gies by popularity, as follows: (1) TF-IDF, (2) Stop words
removal, (3) Tokenization, (4) Stemming, (5) Vectorization,
(6) PoS and Lemmatization, (7) Non-letter symbols removal.

Now we are in position to form from the most popular
methods a sequence of logical actions that researchers may
use in case of preprocessing for any GQM-based metrics
recommender system. To do so, we make a few preliminary
considerations.

• lemmatization and stemming do the same things; that
is, they reduce the words to their normal forms - how-
ever, they do that in different ways. In particular, lemma-
tization lowers the sparsity of the data, because it does
not just remove the endings, but uses morphological
analysis - PoS (so these two will always be in sequence).

• vectorization and TF-IDF also do the same things;
namely, they transform text into numbers. However,
TF-IDF was used more frequently than vectorization,
so we decided to choose TF-IDF.

• TF-IDF will always be the last step because other steps
produce texts as output while TF-IDF receives text and
produces numbers.

23104 VOLUME 10, 2022

M. Farina et al.: Technologies for GQM-Based Metrics Recommender Systems: Systematic Literature Review

• tokenization should go before stop words removing
and PoS with lemmatization, because these two steps
works with words, not with letters.

With these important preliminary considerations, the
question remains about the optimal sequence for stop
words removal, tokenization, PoS and lemmatiza-
tion, and non-letters symbols removal. To answer
this question we carried out the small experiment.
We took the train dataset of 500 sentences from Kagle:
https://www.kaggle.com/theoviel/improve-your-score-with-
some-text-preprocessing/notebook and run it 1000 times for
each arrangement of preprocessing steps. The machine used
in the experiment had the following characteristics: Intel
Core i5-8250U, 4GHz, 7862MiB RAM. The resulted mean
runtime and standard deviation are shown in Table 6.

TABLE 6. Execution time for each combination.

Then we performed multiple pairwise comparison test
using Tukey method with familywise error rate 0.05 [65].
The results of the test (see Table 7) show that in our config-
uration the most efficient sequence of remaining preprocess-
ing steps appears to be B: (1) Non-letter symbols removal,
(2) Tokenization, (3) Stop words removal, (4) PoS definition
and Lemmatization.

Therefore, based on the above considerations and from the
result of our test we assume the following order of preprocess-
ing steps as optimal for metrics recommenders: (1) Non-letter
symbols removal, (2) Tokenization, (3) Stop words removal,
(4) PoS definition, (5) Lemmatization, (6) TF-IDF.

One can notice at least a couple of issues in the analysis
we conducted so far. Firstly, we cannot say that the most
common approaches are the most effective ones. This is
because preprocessing is often context-sensitive. Secondly,
potential issue is that the authors’ choices of preprocessing
techniques in the papers we selected are generally subjective
and lack an objective evaluation. This can make it difficult,
if not impossible, to know whether a particular choice was
done on purpose.

Moreover, the results of the experiment are only prelimi-
nary, because test was run on one machine and on one dataset.

TABLE 7. Pairwise group comparisons by Tukey test, FWER = 0.05. Lower
and Upper are the boundaries of the 95% confidence intervals. ∗ All
differences are significant apart from the one between A and G.

Nevertheless, this can work as a point of reference for further
investigations.

B. RQ2: WHICH ALGORITHMS UNDERLINE
RECOMMENDER SYSTEMS FOR SOFTWARE DEVELOPERS?
Among all the algorithms used by the authors of the papers
we reviewed in our SLR we can identify 5 major groups:
(a) classification, (b) clustering, (c) ranking, (d) heuristics
based approaches, and (e) questionnaires. Figure 7 shows the
distribution of the algorithms used by recommender systems.

FIGURE 7. Algorithms classification.

• Classification: XGBoost [32], Tree based classifica-
tion [62], [63], SVM [49], [60], Multinomial Naive
Bayes [50], TF-similarity [52], Convolutional Neural
Networks [64].

VOLUME 10, 2022 23105

https://www.kaggle.com/theoviel/improve-your-score-with-some-text-preprocessing/notebook
https://www.kaggle.com/theoviel/improve-your-score-with-some-text-preprocessing/notebook

M. Farina et al.: Technologies for GQM-Based Metrics Recommender Systems: Systematic Literature Review

• Ranking: Cosine similarity [41], [45], [53]–[55], [57],
[58], [61], Markow chain [42], Custom similarity mea-
sure [46], LambdaMART [51], TF-IDF similarity [56],
LDA [59].

• Heuristics: Heuristics [39].
• Classification and ranking: BERT and matching
score [33], Convolution Neural Networks and Gradient
Descent [38], Naive Bayes and cosine similarity [44].

• Classification and clustering: LDA and decision tree
[40], ARdoc and clusterization hierarchical Dirichlet
process [47].

• Heuristics and ranking: Heuristics and Convolution
Neural Networks [43].

• Clustering and ranking: Incremental diffusive cluster-
ing algorithm and kNN [36], Average link hierarchical
agglomerative clustering algorithm and kNN [34].

• Questionnaires: [62], [63].

In GQM-based metrics recommender systems we can not
classify or cluster textual data reliably [32], [44], [49], [50],
[52], [60], as a virtually infinite number of metrics can be
conceived. It can also be difficult to construct some heuris-
tics [39]), or a huge number of pre-arranged questions and
goals [62], [63]. The authors of the last papers succeeded
in their goals because the number of existing patterns was
limited (under 20). In our case, the unlimited number of
metrics potentially conceivable represents a virtually insur-
mountable obstacle. Even if we could take the most basic
ones as a point of reference, their number would still be quite
large. Moreover, answering such questionnaires in software
development can take a lot of time, which can be better spent
on the development process instead.

Ranking algorithms are also quite problematic. In any
GQM-based metrics recommender system there will be a
huge number of goals and questions from all users, and com-
paring all this information with cosine or any other similarity
can take a long time.

The idea of deleting everything besides verbs and nouns
from the sentences [47], or using functionality categories and
phrase patterns (citeAPI) can help to reduce the fragmenta-
tion of information and prepare the data for similaritymetrics;
however, this approach needs more scientific research and a
lot of data to produce a meaningful analysis.

Another way could be to use the combination of any
classification and ranking algorithm. To reduce the amount
of information for processing, goals and questions could be
classified [34], [36] into some groups from which then the
most similar to the input items could be extracted. It is worth
noting though, that because of the strong context dependency
of such algorithms, it would be almost impossible to choose
the standard one; yet, the best or most optimal in a particular
combination can be established through a series of experi-
ments on real data.

To summarize, we realized that pure classification, clus-
tering, heuristics, and ranking are not suitable for solving our
problem because of the large number of goals, questions and

metrics. However, we noticed that ranking in combination
with classification could contribute to solving our problem.

FIGURE 8. Papers distribution over output types.

C. RQ3: ARE THERE RECOMMENDER SYSTEMS CAPABLE
OF SUGGESTING METRICS FOR SOFTWARE DEVELOPERS?
To answer this question we carefully checked the outputs
used or proposed in the papers we selected for inclu-
sion in our log (see Figure 8). Recommending the appro-
priate APIs was the goal of 4 systems in 4 papers [33],
[46], [54], [58]. The same number of recommender sys-
tems proposed as outputs code parts, such as packages
[36], parts of code to change [47], software product line
implementation components [61], classes where can be a
bug [53]. In 4 other papers the algorithms proposed as out-
puts workers - experts/specialists who can accomplish the
task [51], [52], [59], [60]. In addition, 2 systems suggested
as outputs the classes of the input data; that is, acceptance,
response or rejection of the pull request [32] and whether
the app contained a bug [40]. 2 other papers proposed algo-
rithms for design patterns suggestion [62], [63]. Only for
1 system the result turned out to be requirements [34] and
for 1 more - artifacts [41]. Furthermore, 3 papers suggested
as outputs tags [38], [64], while 2 papers recommended
answers for the questions asked on the same sites [43], [56].
3 other systems recommended features: for software product
lines [39], for mobile app descriptions [44] and for bug
reports improvement [45]. 1 additional paper described a
recommender system focused on bugs proposal. 2 systems
suggested as outputs tasks for the developers [49], [57], while
1 more paper suggested refactorings generation [55].

Among the papers we screened there were several that fed
metrics into the proposed recommendation system as inputs.
However, as we said before, we did not find systems that
could generate metrics as outputs. This fact prompts us to
think that we were the first to discover the need of such an
algorithm in the area of software development.

We can assume, that metrics are used as input data for algo-
rithms, because the values obtained by measuring a process,
product, or resources usually need to be analyzed and used to
generate solutions. Because of the nature of such metrics, it is

23106 VOLUME 10, 2022

M. Farina et al.: Technologies for GQM-Based Metrics Recommender Systems: Systematic Literature Review

not surprising that there are recommender systems that base
their proposals on the analysis of a variety of metrics and on
their combinations.

However, the process of metrics determination is also com-
plex and should be automated.

V. LIMITATIONS, THREATS TO VALIDITY, AND REVIEW
ASSESSMENT
A. LIMITATIONS
We begin this section by examining the obstacles that may
have prevented an objective and unbiased review.

1) The search was conducted with a limited number of
databases; namely IEEExplore, Scopus, ACM Digital
Library. A sceptical reader may object that we should
have taken into considerations more databases for our
searches (such as Google Scholar, Science Direct). We
acknowledge this as a good objection; however, we
provided good reasons for not searching Science Direct
in section 2.3 above. As for Google Scholar, we notice
that this database tends to simply aggregate papers from
other databases, often with no filter with respect to
academic quality (low quality conference proceedings as
well as dubious piece of grey literature are often found
through Google Scholar). So, although our database
selection may have been perfected, we firmly believe
that it was broad enough to ensure the academic sound-
ness of our findings.

2) Another potential shortcoming affecting this workmight
be that we did not take into account grey literature. It
is customary for SLR to concentrate on primary stud-
ies, still, we notice that including grey literature in a
SLR is becoming an increasingly acceptable practice in
software engineering, leading to a multivocal approach
[66]–[68]. However, we realized that such a practice is
often implemented when there is a scarcity of secondary
sources, which was not our case.

3) Finally, one could argue that one of the inclusion criteria
adopted in this work (selecting only papers written in
English) is severely constraining the kind of research
we were able to get. Issues in cross-cultural research
are rightly emerging as vitally important in science [69],
[70]. We are fully aware of such issues and acknowledge
this as a very serious point of contention. However, most
of the literature in the field is in English, therefore the
requirement we adopted in this SLR is neither unusual
nor uncommon for our field.

B. THREATS TO VALIDITY
In this subsection we discuss potential biases that may have
affected our research and the production of our findings.
To do this, we review the actions that were taken to avoid
the emergence of such biases [71].

1) Retrieval bias - to avoid this bias we used the widest
possible search queries. This means that we screened
all papers related to recommender systems and software

development, and used a wide set of databases for our
searches.

2) Publication bias - we relied on peer reviewed, quality
papers published in either good academic journals or in
prestigious/reputable conferences. This means that we
covered a variety of levels of analysis and of experimen-
tal protocols. We believe that this ensured that we did
not report only statistically significant results

3) Inclusion criteria bias - to avoid this bias,
we attempted to formulate the most general and appro-
priate criteria for our topic, following the best norms of
our discipline.

4) Selector bias - we acknowledge that this bias may be
present in our work, because we did not adopt a blind
review process; however, every author involved in the
research cross-checked the methodology we adopted as
well as the results obtained for objectivity and consis-
tency. Aswe follow the best norms of our discipline [72],
we believe we did not fall for this bias.

C. REVIEW ASSESSMENT
The last step in the critical assessment of our findings involves
a general reflection on the overall quality of the work we
presented. Following [73], we formulated a set of questions,
which can be used as a point of reference to assess the overall
quality of a SLR. The questions follow below:
1) Are the inclusion/exclusion criteria objective and

reasonable? All criteria were mentioned upfront in the
methodology (see Section II), before we started the
search process. The criteria we selected are congru-
ent with those generally used in the field and fit the
topic of our study perfectly. Thus, we believe that the
inclusion/exclusion criteria we used are reasonable and
objective.

2) Does the search process cover all possible relevant
papers? To perform our searches, we used a set of
reliable bibliographic databases and gathered papers
from both prestigious academic journals and reputable
conferences proceedings. On these grounds, we can say
that the papers selected for inclusion in our final log are
representative for the field.

3) Has there been a quality review? We developed a
metric to assess the papers’ quality (see Section 2.6
above). Indeed we proved that the quality of the papers
we included in the log was high. Therefore, we can also
say that the findings on which we developed our SLR
were reliable and accurate.

VI. SYNOPTIC SUMMARY AND SIGNIFICANCE OF
RESEARCH
In this section we highlight for the reader the most important
results we achieved in this SLR and then briefly reflect on
their significance for the field.
Important Results:
1) We have observed that the sequence of the most

frequently used preprocessing steps in recommender

VOLUME 10, 2022 23107

M. Farina et al.: Technologies for GQM-Based Metrics Recommender Systems: Systematic Literature Review

systems for software developers is the following:
(1) TF-IDF, (2) Stop words removal, (3) Tokenization,
(4) Stemming, (5) Vectorization, (6) PoS and Lemmati-
zation, (7) Non-letter symbols removal.

2) We have found that preprocessing steps combined in the
following order constitute the most promising (optimal)
sequence for GQM-based metrics recommender for
software developers: (1) Non-letter symbols removal,
(2) Tokenization, (3) Stopwords removal, (4) PoS def-
inition, (5) Lemmatization, (6) TF-IDF.

3) We have noticed that recommender systems for soft-
ware developers can be based on one of the following
categories of algorithms: classification, ranking, heuris-
tics, classification and ranking, classification and clus-
tering, heuristics and ranking, clustering and ranking,
questionnaires.

4) We have determined that a combination of classification
and ranking suits the GQM-based metrics recommender
construction more than others categories of algorithms.

5) We have observed that there are no recommender sys-
tems developed to date to generate metrics for software
developers.

The combination of the results obtained in this SLR can
help in the construction of future ’metrics collectors’. For
the development of such systems, it is crucially important to
generate and present metrics in the most user-friendly way,
which can be achieved by the use of recommender systems.
However, such systems need to work quickly and accurately,
for a better user experience. In this context, the results
listed above are beneficial because they can help us increas-
ing the accuracy, while lowering the sparcity of the data.
They also allow us to maximize the algorithms’ execution
time.

VII. CONCLUSION
The goal of this research was to determine the technologies
needed to build a GQM-based metrics recommender system
for software developers. The aim of this system would be
to automatically generate metrics based on users’ goals and
questions. Since there are no mentions of such systems in the
literature, to achieve our goal, our research has focused on
the three basic components characterising any recommender
systems, independently: data sets, algorithms, and recom-
mendations.

To deal with the problem of assigning metrics for user’s
goals and questions, we showed that a combination of ranking
and classification technologies can be relevant for the con-
struction of an algorithm capable of dealing with this issue.
However, we did not find papers covering the issue of metrics
generation. That may point out a research gap, which we
partially contributed to fill.

We hope that our SLR will help drawing researchers’
attention to the problem of metric generation and hence,
provide a basis for other investigations in this fascinating yet
unexplored area of research.

APPENDIX A
Template taken and revised from: http://prisma-statement.org/
documents/PRISMA_2020_checklist.pdf

TABLE 8. PRISMA 2020 Checklist.

APPENDIX B
Questions for Quality Assessment:

1) Was the motivation for the development of the recom-
mender system clearly specified?
• 1 point if the motivation for the development of the
recommender system was clearly stated;

• 0.5 points if the motivation was provided, but could
be further elaborated;

• 0 points if the motivation was hard to identify or if it
was not mentioned;

2) Does the proposed recommender system solve the prob-
lem for which it was developed?
• 1 point if the system solves the problem;
• 0.5 points if the system partially solves the problem;
• 0 points if the system does not solve the problem;

3) Is the recommender system’s construction algorithm
clear and reproducible?
• 1 point if it is possible to replicate the algorithm
described in the article;

• 0.5 points if in general the algorithm is clear, but it
is difficult to replicate it because of lack of crucial
details;

• 0 points if If the algorithm has been described only in
general terms and it is not possible to replicate it;

23108 VOLUME 10, 2022

M. Farina et al.: Technologies for GQM-Based Metrics Recommender Systems: Systematic Literature Review

4) Was the proposed recommender system objectively
evaluated?
• 1 point if the authors conducted a fair and unbiased
review of their algorithm or if they performed a criti-
cal analysis of its results;

• 0.5 points if the authors performed an analysis of their
algorithm but such an analysis was partially biased or
is not clear or critical enough;

• 0 points if the authors did not conduct a fair and
unbiased analysis or if the results were not critically
analysed;

Sum of scores, gathered during the answering on these
questions above, are presented in Table 9.

TABLE 9. Quality scores assigned to the papers selected for inclusion.

REFERENCES
[1] E. B. Belachew, ‘‘Analysis of software quality using software

metrics,’’ Int. J. Comput. Sci. Appl., vol. 8, no. 4/5, pp. 11–20,
Oct. 2018.

[2] N. Fenton and J. Bieman, Software Metrics: A Rigorous and Practical
Approach, 3rd ed. Boca Raton, FL, USA: CRC Press, 2014.

[3] E. Bouwers, J. Visser, and A. Van Deursen, ‘‘Getting what you measure:
Four common pitfalls in using software metrics for project management,’’
Queue, vol. 10, no. 5, pp. 50–56, May 2012.

[4] G. Concas, M. Marchesi, G. Destefanis, and R. Tonelli, ‘‘An empir-
ical study of software metrics for assessing the phases of an agile
project,’’ Int. J. Softw. Eng. Knowl. Eng., vol. 22, no. 4, pp. 525–548,
Jun. 2012.

[5] M. Singh, A. Mittal, and S. Kumar, ‘‘Survey on impact of software met-
rics on software quality,’’ Int. J. Adv. Comput. Sci. Appl., vol. 3, no. 1,
pp. 137–141, 2012.

[6] M. Lines and S. Ambler, Choose Your WoW: A Disciplined Agile Delivery
Handbook for Optimizing YourWay ofWorking (WoW) (ChooseYourWoW
Series). Queens, NY, USA: The Science and Information Organization,
2019.

[7] T. Tahir, G. Rasool, and C. Gencel, ‘‘A systematic literature review on soft-
ware measurement programs,’’ Inf. Softw. Technol., vol. 73, pp. 101–121,
May 2016.

[8] F. Castro. THE Beginner’s Guide to OKR. Accessed: Feb. 23, 2022.
[Online]. Available: https://felipecastro.com/resource/The-Beginners-
Guide-to-OKR.pdf

[9] K. Hoffmann-Burdzińska and O. Flak, ‘‘Management by objectives as a
method of measuring teams’ effectiveness,’’ J. Positive Manage., vol. 6,
p. 67, Apr. 2016.

[10] M. Ishaq Bhatti, H. M. Awan, and Z. Razaq, ‘‘The key performance
indicators (KPIs) and their impact on overall organizational performance,’’
Quality Quantity, vol. 48, no. 6, pp. 3127–3143, Nov. 2014.

[11] V. R. Basili and D. M. Weiss, ‘‘A methodology for collecting valid
software engineering data,’’ IEEE Trans. Softw. Eng., vol. SE-10, no. 6,
pp. 728–738, Nov. 1984.

[12] V. Basili, R. Solingen, G. Caldiera, and D. Rombach, The Goal Question
Metric Approach, vol. 1. Hoboken, NJ, USA: Wiley, 1994, pp. 528–532.

[13] M. Alhamadi, ‘‘Challenges, strategies and adaptations on interactive dash-
boards,’’ in Proc. 28th ACM Conf. User Modeling, Adaptation Personal-
ization, New York, NY, USA, 2020, pp. 368–371.

[14] V. Ivanov, A. Rogers, G. Succi, J. Yi, and V. Zorin, ‘‘Precooked developer
dashboards: What to show and how to use,’’ in Proc. 40th Int. Conf. Softw.
Eng., Companion, New York, NY, USA, May 2018, pp. 402–403.

[15] V. Ivanov, V. Pischulin, A. Rogers, G. Succi, J. Yi, and V. Zorin, ‘‘Design
and validation of precooked developer dashboards,’’ in Proc. 26th ACM
Joint Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng., New York,
NY, USA, Oct. 2018, pp. 821–826.

[16] P. Singh, P. D. Pramanik, A. Dey, and P. Choudhury, ‘‘Recommender
systems: An overview, research trends, and future directions,’’ Int. J. Bus.
Syst. Res., vol. 15, pp. 14–52, Jan. 2021.

[17] R. Burke, A. Felfernig, and M. H. Göker, ‘‘Recommender systems:
An overview,’’ AI Mag., vol. 32, no. 3, pp. 13–18, Jun. 2011.

[18] J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen,Collaborative Filter-
ing Recommender Systems. Berlin, Germany: Springer, 2007, pp. 291–324.

[19] H.Wang, Z. Shen, S. Jiang, G. Sun, and R.-J. Zhang, ‘‘User-based collabo-
rative filtering algorithm design and implementation,’’ J. Phys., Conf. Ser.,
vol. 1757, no. 1, Jan. 2021, Art. no. 012168.

[20] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl, ‘‘Item-based collaborative
filtering recommendation algorithms,’’ in Proc. 10th Int. Conf. World Wide
Web, 2001, pp. 285–295.

[21] F. O. Isinkaye, Y. O. Folajimi, and B. A. Ojokoh, ‘‘Recommendation
systems: Principles, methods and evaluation,’’ Egyptian Inform. J., vol. 16,
no. 3, pp. 261–273, 2015.

[22] M. J. Pazzani and D. Billsus, Content-Based Recommendation Systems.
Berlin, Germany: Springer, 2007, pp. 325–341.

[23] P. Lops, M. D. Gemmis, and G. Semeraro, Content-based Recommender
Systems: State of the Art and Trends. Boston, MA, USA: Springer,
Jan. 2011, pp. 73–105.

[24] E. Çano and M. Morisio, ‘‘Hybrid recommender systems: A system-
atic literature review,’’ Intell. Data Anal., vol. 21, no. 6, pp. 1487–1524,
Nov. 2017.

[25] M. P. Robillard, W. Maalej, R. J. Walker, and T. Zimmermann, Recommen-
dation Systems in Software Engineering. New York, NY, USA: Springer,
2014.

[26] M. Gasparic and A. Janes, ‘‘What recommendation systems for software
engineering recommend: A systematic literature review,’’ J. Syst. Softw.,
vol. 113, pp. 101–113, Mar. 2016.

[27] W. Siricharoen, U. Pakdeetrakulwong, and P. Wongthongtham, ‘‘Recom-
mendation systems for software engineering: A survey from software
development life cycle phase perspective,’’ in Proc. 9th Int. Conf. Internet
Technol. Secured Trans., Dec. 2014, pp. 137–142.

[28] B. A. Kitchenham and S. Charters, ‘‘Guidelines for performing systematic
literature reviews in software engineering,’’ Keele Univ., Keele, U.K.,
Durham Univ. Joint Rep., Durham, U.K., Tech. Rep. EBSE 2007-001,
2007.

[29] M. J. Page, J. E. McKenzie, P. M. Bossuyt, I. Boutron, T. C. Hoffmann,
C. D. Mulrow, and L. Shamseer, ‘‘The prisma 2020 statement: An updated
guideline for reporting systematic reviews,’’ BMJ, vol. 372, Apr. 2021,
Art. no. 105906.

VOLUME 10, 2022 23109

M. Farina et al.: Technologies for GQM-Based Metrics Recommender Systems: Systematic Literature Review

[30] F. Rehman, O.Khalid, and S. A.Madani, ‘‘A comparative study of location-
based recommendation systems,’’ Knowl. Eng. Rev., vol. 32, no. e7,
pp. 1–30, Jan. 2017.

[31] J. Harris, C. Quatman, M. Manring, R. Siston, and D. Flanigan, ‘‘How
to write a systematic review,’’ Amer. J. Sports Med., vol. 42, no. 11,
pp. 2761–2768, Aug. 2013.

[32] M. I. Azeem, S. Panichella, A. Di Sorbo, A. Serebrenik, and Q. Wang,
‘‘Action-based recommendation in pull-request development,’’ inProc. Int.
Conf. Softw. Syst. Processes, NewYork, NY, USA, Jun. 2020, pp. 115–124.

[33] W. Xie, X. Peng, M. Liu, C. Treude, Z. Xing, X. Zhang, and W. Zhao,
‘‘API method recommendation via explicit matching of functionality verb
phrases,’’ in Proc. 28th ACM Joint Meeting Eur. Softw. Eng. Conf. Symp.
Found. Softw. Eng., New York, NY, USA, Nov. 2020, pp. 1015–1026.

[34] C. Castro-Herrera, C. Duan, J. Cleland-Huang, and B. Mobasher, ‘‘A rec-
ommender system for requirements elicitation in large-scale software
projects,’’ in Proc. ACM Symp. Appl. Comput., New York, NY, USA, 2009,
pp. 1419–1426.

[35] S. Zhong and J. Ghosh, ‘‘A unified framework formodel-based clustering,’’
J. Mach. Learn. Res., vol. 4, pp. 1001–1037, Dec. 2003.

[36] C. Mcmillan, N. Hariri, D. Poshyvanyk, J. Cleland-Huang, and
B. Mobasher, ‘‘Recommending source code for use in rapid software
prototypes,’’ in Proc. 34th Int. Conf. Softw. Eng. (ICSE), Jun. 2012,
pp. 848–858.

[37] H. Dumitru, M. Gibiec, N. Hariri, J. Cleland-Huang, B. Mobasher,
C. Castro-Herrera, and M. Mirakhorli, ‘‘On-demand feature recommenda-
tions derived from mining public product descriptions,’’ in Proc. 33rd Int.
Conf. Softw. Eng., New York, NY, USA, May 2011, pp. 181–190.

[38] J. Zhang, H. Sun, Y. Tian, and X. Liu, ‘‘Semantically enhanced tag recom-
mendation for software CQAs via deep learning,’’ in Proc. 40th Int. Conf.
Softw. Eng., Companion, New York, NY, USA, May 2018, pp. 294–295.

[39] M. Hamza and R. J.Walker, ‘‘Recommending features and feature relation-
ships from requirements documents for software product lines,’’ in Proc.
IEEE/ACM 4th Int. Workshop Realizing Artif. Intell. Synergies Softw. Eng.,
May 2015, pp. 25–31.

[40] M. Gomez, R. Rouvoy, M. Monperrus, and L. Seinturier, ‘‘A recommender
system of buggy app checkers for app storemoderators,’’ inProc. 2nd ACM
Int. Conf. Mobile Softw. Eng. Syst., May 2015, pp. 1–11.

[41] D. Cubranic and G. C. Murphy, ‘‘Hipikat: Recommending pertinent soft-
ware development artifacts,’’ in Proc. 25th Int. Conf. Softw. Eng., Portland,
OR, USA, 2003, pp. 408–418.

[42] B. Ashok, J. Joy, H. Liang, S. K. Rajamani, G. Srinivasa, and V. Vangala,
‘‘DebugAdvisor: A recommender system for debugging,’’ in Proc. 7th
Joint Meeting Eur. Softw. Eng. Conf. ACM SIGSOFT Symp. Found. Softw.
Eng. Eur. Softw. Eng. Conf. Found. Softw. Eng. Symp., NewYork, NY,USA,
2009, pp. 373–382.

[43] Z. Gao, X. Xia, D. Lo, and J. Grundy, ‘‘Technical Q8A site answer rec-
ommendation via question boosting,’’ ACM Trans. Softw. Eng. Methodol.,
vol. 30, no. 1, pp. 1–34, Jan. 2021.

[44] H. Jiang, J. Zhang, X. Li, Z. Ren, D. Lo, X. Wu, and Z. Luo, ‘‘Recom-
mending new features from mobile app descriptions,’’ ACM Trans. Softw.
Eng. Methodol., vol. 28, no. 4, pp. 1–29, Oct. 2019.

[45] M. R. Karim, ‘‘Key features recommendation to improve bug reporting,’’
in Proc. IEEE/ACM Int. Conf. Softw. Syst. Processes (ICSSP), May 2019,
pp. 1–4.

[46] L. Cai, H. Wang, Q. Huang, X. Xia, Z. Xing, and D. Lo, ‘‘BIKER: A tool
for bi-information source based API method recommendation,’’ in Proc.
27th ACM Joint Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng.,
New York, NY, USA, Aug. 2019, pp. 1075–1079.

[47] F. Palomba, P. Salza, A. Ciurumelea, S. Panichella, H. Gall, F. Ferrucci,
and A. De Lucia, ‘‘Recommending and localizing change requests for
mobile apps based on user reviews,’’ in Proc. IEEE/ACM 39th Int. Conf.
Softw. Eng. (ICSE), May 2017, pp. 106–117.

[48] S. Panichella, A. D. Sorbo, E. Guzman, C. A. Visaggio, G. Canfora, and
H. Gall, ‘‘How can I improve my app? Classifying user reviews for
software maintenance and evolution,’’ in Proc. IEEE Int. Conf. Softw.
Maintenance Evol., Sep. 2015, pp. 281–290.

[49] M. M. Kamel, A. Gil-Solla, and M. Ramos-Carber, ‘‘Tasks recommenda-
tion in crowdsourcing based on workers’ implicit profiles and performance
history,’’ in Proc. 9th Int. Conf. Softw. Inf. Eng. (ICSIE), New York, NY,
USA, Nov. 2020, pp. 51–55.

[50] C. D. Sipio, R. Rubei, D. D. Ruscio, and T. P. Nguyen, ‘‘A multinomial
naïve Bayesian (MNB) network to automatically recommend topics for
GitHub repositories,’’ in Proc. Eval. Assessment Softw. Eng., New York,
NY, USA, 2020, pp. 71–80.

[51] J.Wang, Y. Yang, S.Wang, Y. Hu, D.Wang, and Q. Wang, ‘‘Context-aware
in-process crowdworker recommendation,’’ in Proc. ACM/IEEE 42nd Int.
Conf. Softw. Eng., New York, NY, USA, 2020, pp. 1535–1546.

[52] J. Cerezo, J. Kubelka, R. Robbes, and A. Bergel, ‘‘Building an expert
recommender chatbot,’’ in Proc. IEEE/ACM 1st Int. Workshop Bots Softw.
Eng. (BotSE), May 2019, pp. 59–63.

[53] R. Almhana, W. Mkaouer, M. Kessentini, and A. Ouni, ‘‘Recommending
relevant classes for bug reports using multi-objective search,’’ in Proc.
31st IEEE/ACM Int. Conf. Automated Softw. Eng., New York, NY, USA,
Aug. 2016, pp. 286–295.

[54] F. Thung, S. Wang, D. Lo, and J. Lawall, ‘‘Automatic recommendation of
API methods from feature requests,’’ in Proc. 28th IEEE/ACM Int. Conf.
Automated Softw. Eng. (ASE), Nov. 2013, pp. 290–300.

[55] Y. Lin, X. Peng, Y. Cai, D. Dig, D. Zheng, and W. Zhao, ‘‘Interactive and
guided architectural refactoring with search-based recommendation,’’ in
Proc. 24th ACM SIGSOFT Int. Symp. Found. Softw. Eng., New York, NY,
USA, Nov. 2016, pp. 535–546.

[56] A. Zagalsky, O. Barzilay, and A. Yehudai, ‘‘Example overflow: Using
social media for code recommendation,’’ in Proc. 3rd Int. Workshop Rec-
ommendation Syst. Softw. Eng. (RSSE), Jun. 2012, pp. 38–42.

[57] K. Abhinav, G. K. Bhatia, A. Dubey, S. Jain, and N. Bhardwaj, ‘‘TasRec:
A framework for task recommendation in crowdsourcing,’’ in Proc. 15th
Int. Conf. Global Softw. Eng., New York, NY, USA, Jun. 2020, pp. 86–95.

[58] C. Xu, B. Min, X. Sun, J. Hu, B. Li, and Y. Duan, ‘‘MULAPI: A tool for
API method and usage location recommendation,’’ in Proc. IEEE/ACM
41st Int. Conf. Softw. Eng., Companion, May 2019, pp. 119–122.

[59] X. Xie, W. Zhang, Y. Yang, and Q. Wang, ‘‘DRETOM: Developer rec-
ommendation based on topic models for bug resolution,’’ in Proc. 8th
Int. Conf. Predictive Models Softw. Eng., New York, NY, USA, 2012,
pp. 19–28.

[60] J. Anvik and G. C. Murphy, ‘‘Reducing the effort of bug report triage:
Recommenders for development-oriented decisions,’’ ACM Trans. Softw.
Eng. Methodol., vol. 20, no. 3, pp. 1–35, Aug. 2011.

[61] J. Rodas-Silva, J. A. Galindo, J. García-Gutiérrez, and D. Benavides,
‘‘Selection of software product line implementation components using
recommender systems: An application to wordpress,’’ IEEE Access, vol. 7,
pp. 69226–69245, 2019.

[62] F. Palma, H. Farzin, Y.-G. Gueheneuc, and N. Moha, ‘‘Recommendation
system for design patterns in software development: An DPR overview,’’
in Proc. 3rd Int. Workshop Recommendation Syst. Softw. Eng. (RSSE),
Jun. 2012, pp. 1–5.

[63] C. K. Youssef, F. M. Ahmed, H. M. Hashem, V. E. Talaat, N. Shorim, and
T. Ghanim, ‘‘GQM-based tree model for automatic recommendation of
design pattern category,’’ in Proc. 9th Int. Conf. Softw. Inf. Eng. (ICSIE),
New York, NY, USA, Nov. 2020, pp. 126–130.

[64] S. Wang, D. Lo, B. Vasilescu, and A. Serebrenik, ‘‘EnTagRec++:
An enhanced tag recommendation system for software information sites,’’
Empirical Softw. Eng., vol. 23, no. 2, pp. 800–832, Apr. 2018.

[65] S. Lee and D. K. Lee, ‘‘What is the proper way to apply the multiple
comparison test?’’ Korean J. Anesthesiol., vol. 71, no. 5, pp. 353–360,
Oct. 2018.

[66] V. Garousi, M. Felderer, and M. V. Mäntylä, ‘‘Guidelines for including
grey literature and conducting multivocal literature reviews in software
engineering,’’ Inf. Softw. Technol., vol. 106, pp. 101–121, Feb. 2019.

[67] V. Garousi, M. Felderer, M. V. Mäntylä, and A. Rainer, ‘‘Benefitting from
the grey literature in software engineering research,’’ in Contemporary
EmpiricalMethods in Software Engineering. Cham, Switzerland: Springer,
2020, pp. 385–413.

[68] Q. Mahood, D. Van Eerd, and E. Irvin, ‘‘Searching for grey literature for
systematic reviews: Challenges and benefits,’’ Res. Synth. Methods, vol. 5,
no. 3, pp. 221–234, Sep. 2014.

[69] J. Henrich, S. J. Heine, and A. Norenzayan, ‘‘The weirdest people in the
world?’’ Behav. Brain Sci., vol. 33, nos. 2–3, pp. 61–83, Jun. 2010.

[70] J. Henrich, The WEIRDest People in the World: How the West Became
Psychologically Peculiar and Particularly Prosperous. London, U.K.:
Penguin, 2020.

[71] C. F. Durach, J. Kembro, and A.Wieland, ‘‘A new paradigm for systematic
literature reviews in supply chain management,’’ J. Supply Chain Manage.,
vol. 53, no. 4, pp. 67–85, Oct. 2017.

[72] P. Runeson and M. Höst, ‘‘Guidelines for conducting and reporting case
study research in software engineering,’’ Empirical Softw. Eng., vol. 14,
no. 2, pp. 131–164, Apr. 2009.

[73] B. Kitchenham, ‘‘Procedures for performing systematic reviews,’’ Dept.
Comput. Sci., Keele Univ., Keele, U.K., Tech. Rep. tr/se-0401, 2004.

23110 VOLUME 10, 2022

M. Farina et al.: Technologies for GQM-Based Metrics Recommender Systems: Systematic Literature Review

MIRKO FARINA received the B.A. and M.Sc.
degrees in Milan, the M.Phil. degree in Edinburgh,
and the Ph.D. degree in Sydney. He is currently
an Assistant Professor of philosophy and the Head
of the Human Machine Interaction Laboratory,
Innopolis University. He has been a Honorary
Member of the Laboratory for Industrializing Soft-
ware Production (LIPS), Faculty of Computer Sci-
ence and Engineering, Innopolis University, since
2021; an Expert Member of the UNESCO Inclu-

sive Policy Laboratory, since 2020; and a ContributingMember of the Astana
Club, since 2021.

ANNA GORB is currently pursuing the degree
with the Computer Science Program, Innopolis
University, Russia. She also works at the Labora-
tory of Industrial Software Production, Innopolis
University. Her research interests include recom-
mender systems, agile methodologies, and soft-
ware metrics.

ARTEM KRUGLOV graduated from Ural Federal
University, in 2013, and received the Ph.D. degree,
in 2017. He is currently an Assistant Lecturer with
the Faculty of Computer Science and Software
Engineering, Innopolis University. His research
interests include the aspects of software develop-
ment processes, agile methodologies, product and
project management, and empirical methods.

GIANCARLO SUCCI (Member, IEEE) is currently
a Full Professor at Innopolis University, Russia,
where he directs the Laboratory of Industrial Soft-
ware Production. Before joining the Innopolis Uni-
versity, he was a Professor with tenure at the Free
University of Bozen-Bolzano, Italy; a Professor
with tenure at the University of Alberta, Edmon-
ton, AB, Canada; an Associate Professor at the
University of Calgary, AB, Canada; and an Assis-
tant Professor at the University of Trento, Italy. His

research interests include multiple areas of software engineering, including
open source development, agile methodologies, experimental software engi-
neering, software engineering over the internet, and software product lines
and software reuse.

VOLUME 10, 2022 23111

