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Quadrilateral Orbifold Splines

Carolina Vittoria Beccari and Hartmut Prautzsch

Abstract Orbifold spline surfaces are closed free form surfaces of any topological
genus. Their patches have ⇠

: joints along common boundaries after linear rational
reparametrizations, where : can be chosen arbitrarily. There are orbifold splines with
rational triangular and – with certain restrictions on the patch layout – polynomial
quadrilateral patches. Here, we present orbifold splines with rational quadrilateral
patches without any restrictions on the patch layout. They are obtained from trian-
gular orbifold splines by rational linear or bi-linear reparametrizations. With linear
reparametrizations, we get discontinuously and otherwise continuously parametrized
⌧

: surfaces.

1 Introduction

Constructing smooth free form surfaces necessarily requires so-called ⌧
: construc-

tions, i. e., reparametrizations that typically raise the degree of the polynomial patches
of such surfaces. Thus, low-degree reparametrization functions are desirable and, if
polynomials are used, their degree can be : + 1, where : is the smoothness order
[15, 22]. In view of the degree estimates in [18, 21], :+1 seems to be the lowest possi-
ble degree in general. Therefore, it is intriguing that linear rational reparametrizations
are su�cient if we work with rational patches parametrized over the hyperbolic plane.
This then leads to rational orbifold splines introduced to Computer Aided Geometric
Design and studied by [19, 2, 3]. The spline manifolds introduced in [7, 8] are re-
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2 Carolina Vittoria Beccari and Hartmut Prautzsch

lated but are built with a�ne reparametrizations and therefore necessarily have one
singular point.

The reparametrization functions for ⌧: constructions are called transition func-
tions and linear rational transition functions are projective maps defined by the
weighted vertices (see Definition 1) of a triangle and its image. Hence, if we wish
to use such functions, it is natural to work with triangular patches as in the refer-
ences above. Since we may replace any transition function by its :-th degree Taylor
polynomial for the ⌧: constructions, it is also possible to come up with polynomial
orbifold splines with linear rational transition functions. The degree, however, goes
faster up with : then for rational orbifolds. All this has been derived by J. Peters and
coauthors [13, 14, 23] using a purely algebraic approach as opposed to the geometric
one employed by the other authors based on hyperbolic geometry.

Since the algebraic approach is quite involved, certain symmetry assumptions
helped Peters to get it through with explicit formulae and sophisticated constructions.
On the downside of it, this led to certain restrictions on the patch layout.

Although we could give up on Peters’ symmetry assumption, a geometric look
reveals that there are intrinsic restrictions on the patch layout if we want to work
with either polynomial or rational quadrilateral patches and projective, i. e., linear
rational transition functions [16] that only reparametrize cross boundary derivatives,
but no patch boundaries.

In this paper, we show how to get around these problems by either projective
transition functions that lead to reparametrizations of boundary curves and to ⇠

�1

joints of adjacent patch parametrizations or by bi-projective, i. e., bi-linear, rational
transition functions contacting adjacent ones continuously.

The quadrilateral orbifold splines we present have no restrictions on their patch
layout and share the same low degree with triangular orbifold splines. However, here
it is a bi-degree =, whereas for triangles it is a total degree =. Furthermore, triangular
orbifold ⌧

: splines can be built with Powell-Sabin splits, or by enforcing ⌧
2:

supersmoothness at the vertices, or by solving simply the system of ⌧: conditions.
Our quadrilateral orbifold splines are obtained from any such triangular splines
where we pair triangles into quadrilaterals. For each pair, we require ⌧

2: contact,
but do this only at the two common vertices. Otherwise, we require ⌧

: contact
between di�erent pairs.

Since the construction is based on triangular orbifold splines and to keep the
paper self-contained, we first introduce the essentials of triangular orbifold spline
constructions starting with a review of the hyperbolic plane in Section 2, two di�erent
Bézier representations for homogenous polynomials in Section 3, and simple ⌧

:

joints for rational polynomials that can be expressed by ⇠
: joints of homogenous

polynomials in Section 4. Then in Section 5, we explain orbifold splines, come to
projective structures in Section 6 and finally in Sections 7 and 8 to the constructions
of quadrilateral orbifold splines.
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2 The Hyperbolic Plane

In this section, we briefly review three models of the hyperbolic plane H2 that have
been used to introduce and develop orbifold splines in [2, 3, 6, 8, 19, 24].

The Hyperbolic Model

Most important for this paper is the hyperbolic model of the hyperbolic plane
H

2. In this model, H2 is formed by the pairs (x,�x) of points on the two-sheeted
hyperboloid H given by the equation

H : xC&x =
⇥
G H I

⇤ 266664
1

1
�1

377775
266664
G

H

I

377775
= �1.

Note that the associated homogenous equation

C : xC&x = 0

defines the asymptotic cone C of the hyperboloid. We can simplify this model to the
upper sheet U of the hyperboloid by replacing the pairs (x,�x) by the points x 2 U,
see Figure 1.

A hyperbolic plane has (hyperbolic) lines and any such line is a non-empty
intersection of U with any two-dimensional subspace of R3. The lines are preserved
by the hyperbolic maps, which are the linear maps of R3 restricted to U that map

U

C

D

U

a x
y b

Fig. 1 The hyperbolic (left) and the Klein model (right) H of the hyperbolic plane
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U into itself. For example, rotations around the I-axis and reflections about planes
containing the I-axis represent special hyperbolic maps.

Remark 1 If U is mapped to itself by a linear map x 7! �x, then the quadratic
polynomials xC&x � 1 and (�x)C&(�x) � 1 have the same zero sets. This implies
that a hyperbolic map is represented by a matrix � for which �

C
&� = &. Such

a map x 7! �x also maps the cone C onto itself. On the other hand, any linear
map that maps C onto itself has a matrix � for which �

C
&� = &d

2
, d < 0, is a

positive multiple of & or equivalently for which any multiple �d, d < 0, represents
a hyperbolic map.

Remark 2 In incidence geometry, the lines form the structure of a geometry and
the hyperbolic plane can be defined by Hilbert’s axioms [9], [11, p. 268]. Di�erent
from that approach, Felix Klein proposed in his seminal Erlangen program (1872) to
classify geometries by the invariants under an automorphism group. The hyperbolic
maps form the automorphisms in hyperbolic geometry and their invariants are the
lines, angles and distances.

The Klein Model

Orbifold splines satisfy smoothness conditions based on linear rational reparametriza-
tions. Therefore, it is natural to work with rational orbifold splines. The Klein model
of the hyperbolic plane shows where the linear rational maps come from.

We obtain the Klein model by the central projection

c : R3
\ {0} !

⇢
x
1

� ���� x 2 R2
�
,


x
I

�
7!


x/I
1

�

that maps U onto the open unit disk

D : G
2
+ H

2
< 1, I = 1,

and the hyperbolic lines into straight line segments, see Figure 1. Under this projec-
tion, the linear maps in R3 become the linear rational maps of the plane I = 1 into
itself.

Remark 3 The set of all lines in R3 through the origin forms a projective plane and
we can define the lines

⇥
G H 0

⇤ C R to be its ideal points. The linear maps in R3

represent the projective maps of the projective plane and projective extensions of the
rational maps in the plane I = 1.

Thus, in the Klein model, the hyperbolic maps are projective maps restricted to
D that map the disk D onto itself. Note that a projective map is represented by a
linear map or a 3 ⇥ 3 matrix � and that any non-zero multiple of � represents the
same projective map in accordance with Remark 1.

Projective maps preserve cross ratios. This can be used to define hyperbolic
distances that are invariant under hyperbolic maps: Any two hyperbolic points x
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and y span a hyperbolic line, which is the interior of a line segment ab in R3. The
non-hyperbolic points a, b lie on the boundary of D and the points on the boundary
of D are the ideal points (of H2), see Figure 1. If we extend hyperbolic maps to the
ideal points, they map them to ideal points. Thus,

dist(x, y) :=
���log (cross ratio[xy|ab])

��� ,
is invariant under hyperbolic maps and is called the hyperbolic distance of x
and y, [10, (1) on p. 214].

Remark 4 Any three points a, b, c on U ⇢ R3 define a hyperbolic triangle and there
is a unique linear map mapping a, b, c 2 R3 to the vertices in a given order of any
other hyperbolic triangle. It represents a projective map in the plane I = 1. Note that
it is a hyperbolic map only if it maps D onto itself.

We mention this since, although the domain of an orbifold spline, which is defined
in Section 5, is the hyperbolic plane, the ⌧

: transition functions in Section 4 of an
orbifold spline are such projective maps that need not be hyperbolic. Therefore, these
transition functions form what is called a projective structure and we come to it in
Section 6.

Definition 1 We denote the linear span without the zero element of any vectors
v1, . . . , v= by hv1, . . . , v=i and the linear span of a matrix � without the zero matrix
by h�i. Hence, for = = 1 and x = v1, the preimage c

�1
(x) is hxi. This span is the

class of all (homogeneous) coordinate vectors representing the point x and we also
address it as the point hxi. Similarly, h�i is the class of all (homogeneous) matrices
representing the same projective map and we also call the map h�i.

Further, we call any member v of hvi a weighted point.

The Poincaré Model

For illustrations, such as in Figure 4, we like to use the Poincaré model of the
hyperbolic plane. It is obtained from the Klein model by mapping the disk D onto
itself by the map 

x
y

�
7!


x
y

� � ✓
1 +

q
1 � G

2 � H
2

◆
,

which maps the hyperbolic lines into circular arcs that meet the unit circle orthogo-
nally. This map is a composition of the inverse of the orthogonal projection from D

to the lower half of the sphere with equator D and the (angle and circle preserving)
stereographic projection whose center is the north pole back to the disk D, see
Figure 2.

In the Poincaré model, the hyperbolic maps are the circle relationships that map
the disk D onto itself [12, Thm. 6.1 on p. 286]. Since they preserve angles, the
hyperbolic maps do so too and, in this model, the hyperbolic angles are just the
euclidean ones.
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Fig. 2 The Poincaré model
(green) of the hyperbolic plane

D

3 Rational Patches and their Bézier Forms

We wish to construct piecewise rational splines mapping certain domains in the
hyperbolic plane onto smooth closed surfaces. These splines consist of quadrilateral
bi-rational patches obtained from pairs of triangular patches.

A triangular patch is defined over some triangle abc and first we assume a, b, c to
lie in the open disk D ⇢ R3 representing the Klein model of the hyperbolic plane.
With the coordinate transformation

x =
⇥
a b c

⇤
u, u =

266664
D

E

F

377775
,

we write a rational polynomial of degree = as

r(x) = p(u)
@(u)

, |u| B D + E + F = 1,

or homogeneously as

(x) =

p(u)
@(u)

�
.

With the Bernstein polynomials

⌫i (u) =
✓
=

i

◆
ui :=

=!
8! 9!:!

D
8
E
9
F

:

for

i =
266664
8

9

:

377775
2 �3

= B
�
i 2 Z3

=+1

�� |i| = 8 + 9 + : = =

 
,

we get the homogeneous Bézier form or homogeneous Bézier representation
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(x) =
’
i2�3

=

i⌫i (u)

of the rational patch.
Since any nonzero multiple of represents the same point p/@, we can omit the

restriction |u| = 1 and extend the polynomial to a homogeneous polynomial of
degree = over R3, i. e.,

(xd) = (x)d= for any d 2 R.

Remark 5 Writing the vectors i as

i =

ridi
Yidi

�
, Yi 2 {0, 1},

we see the Bézier points ri and weights di. If Yi = 0, then ri actually is a vector on
whose length the weight d8 depends.

Remark 6 The homogeneous polynomial (x) is completely determined by its values
on any plane or surface passing through the cone

⇥
a b c

⇤
R3

>0.

In particular, we could consider (x) over the hyperbolic sheetU or over any triangle
aU bV cW with U, V, W 2 R \ {0} and derive the Bézier form of with respect to it:

Let u be the coordinate vector of any x 2 R3 with respect to the scaled basis
aU, bV, cW, i. e.,

x =
⇥
aU bV cW

⇤
u =

⇥
a b c

⇤
(u, ( =

266664
U

V

W

377775
.

Then (u represents x with respect to the initial basis a b c and because the Bernstein
polynomials are homogeneous in each variable, we obtain from ’s Bézier form

(x) =
’

i⌫i ((u)

with respect to a b c directly the new one w.r.t. aU bV cW:

(x) =
’

i U
8
V
9
W
:
⌫i (u).

Note that the Bézier points ri are still the same. Only the weights di changed to
diU

8
V
9
W
: .

Remark 7 Substituting u by (u corresponds to a linear reparametrization with the
map u 7! (u. If we view as a rational polynomial r(x) over the plane I = 1,
in which ( represents a projective map mapping the triangle abc to itself, this
reparametrization is a projective reparametrization of r(x), see [4, p. 244].



8 Carolina Vittoria Beccari and Hartmut Prautzsch

The homogeneous polynomial (x) also has an inhomogenous tetrahedral
Bézier representation. Since a homogeneous polynomial of degree = has zero
derivatives at the origin o up to degree = � 1, we easily get ’s Bézier form

(x) =
’
2�4

=

⌫ ( )

over the tetrahedron oabc with

x =
⇥
o a b c

⇤
, ⌫ ( ) =

✓
=

◆
, | | = 1,

and

=

8>>>>>>><
>>>>>>>:

for =

"
80

i

#
with 80 > 0 ,

i for =

"
0

i

#
.

4 Smooth Joints

As follows from the previous section, we can represent any piecewise rational spline
over the hyperboloid U, the disk D or any plane E ⇢ R3

\ {0} by a homogeneous

spline =

p
@

�
. If this spline is in ⇠

: , then its restriction to U, D or E also is,

and vice versa. Further, if the restriction is in ⇠
: , then so is its central projection

r = p/@. Although could be less smooth then its projection, we only build rational
⇠

: splines with ⇠
: homogeneous representations since this is su�cient for our

purpose and is the simplest.
To build such a homogeneous spline consisting of polynomial segments over

pyramidal cones as
⇥
a b c

⇤
R3 =

�⇥
a b c

⇤
v | v 2 R3

 
, we specify the smoothness

conditions between adjacent segments using their homogeneous Bézier forms.
Given two triangles � =

⇥
a b c

⇤
and ⌫ =

⇥
a b d

⇤
in R3 with homogeneous

polynomial pieces
(�u) =

’
i2�3

=

i⌫i (u), u � 0,

and
(⌫u) =

’
i2�3

=

i⌫i (u), u � 0,

we use their Bézier forms’
2�4

=

⌫ ( ) and
’
2�4

=

⌫ ( )
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with respect to the tetrahedra
⇥
o a b c

⇤
and

⇥
o a b d

⇤
, respectively, where

=

8>>><
>>>:

i if =

"
0

i

#

else

and

=

8>>><
>>>:

i if =

"
0

i

#

else

.

We recall from [5] that (x) and (x) have equal derivatives up to order A over the
plane oab if and only if, for all :  A and all

=

26666664

80

8

9

:

37777775
= +

26666664

0
0
0
:

37777775
2 �4

=,

we have
=

’
2�4

:

+ ⌫ ( )

where 
o a b c
1 1 1 1

�
=


d
1

�
.

Since most are zero, these conditions simplify and can be written solely in terms
of the i and i. Namely, (x) and (x) have ⇠

A contact if and only if for all :  A

and

i =
266664
8

9

:

377775
= j +

266664
0
0
:

377775
2 �3

=,

we have
i =

’
k2�3

:

j+k⌫k (�
�1d), (1)

which has first been proved in [1], where homogeneous trivariate polynomials are
used to define splines over spheres.

Remark 8 Using the local parameters u = �
�1x and v = ⌫

�1x, we obtain that

(u) B (�u) = (x) and (v) B (⌫v) = (x)

have ⇠: contact after we reparametrize (u) by the coordinate transformation

v 7! u(v) = �
�1
⌫v = [e1e2�

�1d]v
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taking us from system abd to abc.
Note that the matrix �

�1
⌫ is completely defined by the vector ��1d defining the

⇠
A conditions (1). With respect to the first system abc, the matrix �

�1
⌫ represents

the linear map mapping a, b, c to a, b, d, respectively.

Remark 9 In the Klein model, the projective map h��1
⌫imaps the points hai, hbi, hci

to hai, hbi and hdi. It is determined either by the weighted points a, b, c and their
weighted images a, b, d or by the (non-weighted) points hai, hbi, hci with the so-
called unit point ha + b + ci and their images hai, hbi, hdi, ha + b + di. Thus, the
rational polynomials r(u) and s(v) represented by (u) and (v), respectively, have a
⇠
A contact after a projective reparametrization. Such a contact is called a Gr contact

and the reparametrization map its transition function.

Remark 10 Under a projective map h%i, the triangles � and ⌫ are mapped to %�

and %⌫ while the matrices
(%�)

�1
%⌫ = �

�1
⌫

of their transition functions (w.r.t. the systems %� and �, resp.) are the same.

5 Orbifold Splines

Any closed surface ( of topological genus W � 2 can be cut open into an open surface
with a boundary. There are many ways of doing that. For example, one could pick
a base point on the surface where all cuts start and end. Then any handle could be
turned into a single hole by two cuts, and two cuts for every other handle expand this
hole. This would turn the surface int a 4W-gon with all its vertices at the base point,
see Figure 3 for an illustration where a double torus is cut into an octagon on the
left. To show that other cuts are possible, this figure also depicts another cut into a
dodecagon.

A polygon forming such a closed surface ( has pairs of identical edges and
(groups of) identical vertices whose angles sum to 2c. For any such surface polygon,
there are similar polygons in the hyperbolic plane and we parametrize ( over such a

Fig. 3 Cutting a double torus into an octagon and a dodecagon
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polygon �. Here “similar” means that the edges of � with identical images on ( are
equally long and that the angles at the vertices with the same image on ( sum to 2c.

By two hyperbolic reflections, we can first map any edge of � onto its partner
and secondly onto itself. These two reflections map � to an adjacent congruent
polygon and, iterating this procedure, we obtain a partition of the hyperbolic plane
into infinitely many congruent copies of �, see [20] and Figure 4 for an illustration,
where the bold edge of the red tessellation on the right side is first reflected about
line 1 and then about line 2.

The polygon � is called a fundamental domain and the hyperbolic isometries
mapping � to any of the tiles above form a Fuchsian group ⌧� .

A smooth piecewise rational function s mapping the hyperbolic planeH2 to some
closed surface ( is called an orbifold spline if, for any member i of ⌧� , we have

s � i = s. (2)

Hence an orbifold spline s maps � and any isometric image of it onto the entire
surface (; in other words, s wraps the hyperbolic plane H2 infinitely often around (

or “orbits” around (.

6 Projective Structures

From Sections 3 and 5, it follows that we can represent any orbifold spline consisting
of rational triangular patches by a trivariate homogeneous piecewise polynomial
spline, where

• the polynomial segments have Bézier forms with respect to tetrahedra
• that have the origin as a common vertex
• and represent a triangulation, i. e., a tesselation into triangles, of the hyperbolic

plane H2.

1
2

Fig. 4 Tessellations of the hyperbolic plane into hexagons and octagons. The blue and green
tessellations on the left side are hyperbolic images of each other.
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The tetrahedra form a bunch of tetrahedra that span cones which, when intersected
with the disk D or the hyperboloid U, give us a triangulation of H2 in the Klein
or hyperboloid model, respectively. Since the triangles of this triangulation are the
parameter domains of the patches of an orbifold spline, which satisfies (2), the
triangulation is mapped to itself by all members of the corresponding Fuchsian
group.

If the homogeneous spline representation of any rational orbifold spline is in ⇠
A ,

then the rational spline satisfies ⌧A conditions with projective, i. e., linear rational
transition functions determined by the pairs of adjacent tetrahedra as discussed in
Section 4. Note that, due to Remark 10, any linear image of two adjacent tetrahedra
(or any projective image of two adjacent weighted triangles) defines the same ⌧

A

conditions.

Definition 2 The set of transition functions above is called a projective structure.

Remark 11 As an orbifold spline “wraps” H
2 infinitely often around the surface,

it parametrizes any patch of the surface multiply over infinitely many triangles in
H

2. For each patch, we can pick one such triangle so as to get a connected domain
for one covering of the surface. Thus, this domain is a fundamental domain � and
the members of the Fuchsian group ⌧� map any triangle to all the other triangles
that are the domains for the same patch. Hence, ⌧� induces an equivalence relation
among the domain triangles such that any two triangles are equivalent if one of them
can be mapped onto the other by some i 2 ⌧� .

Remark 12 A projective structure is represented by the tetrahedral bunch above
and can easily be changed into other projective structures for the same surface
by moving the vertices of the tetrahedra (except for the origin) and splitting or
collapsing tetrahedra freely as long as any change within a fundamental domain � is
simultaneously transferred to all copies i�, i 2 ⌧. In addition the interiors of the
tetrahedra should stay disjoint to exclude self-overlapping spline surfaces.

Remark 13 In the projective structure above, we can replace any tetrahedron abc
by a scaled version aU bV cW of it and represent the spline with respect to the
scaled tetrahedron, see Remarks 6 and 7. This does not change the surface, but its
parametrization and transition functions. A canonical choice is to scale the vertices of
a projective structure such that they lie on the hyperboloic sheet U. This guarantees
that the hyperbolic maps – in particular the ones in the Fuchsian group – map the set
of all vertices into itself, see Remark 4 and below.

Remark 14 The transition functions of tetrahedra �1, . . . , �= = �0 around common
edges satisfy

h�=�
�1
=�1i · h�=�1�

�1
=�2i . . . h�1�

�1
0 i = �,

which ensures that the derivatives up to order A of = patches around a common vertex
end up being the same when we “pass them around” by the ⌧

A conditions based on
these transition functions.
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Remark 15 Restricting the homogeneous ⇠A representation of an orbifold spline to
any plane not going through the origin gives a polynomial ⇠A spline over a planar
triangulation. It is a bivariate spline where the periodicity, or orbifold condition (2),
means that any spline patch equals infinitely many others that are all parametrized
di�erently, as explained in Remark 7 (and Remark 6).

Remark 16 There are several ways of getting a projective structure for an orbifold
spline. All we need is the topology of the patch layout or network, i. e., the graph of the
patch boundaries. For example, we can take any fundamental domain corresponding
to cuts that open the patch network to a topologically planar bounded polygon and
triangulate it arbitrarily but consistently with the patch layout and the Fuchsian group.
Another possibility is to determine a triangulation of the hyperbolic plane for a given
surface from the two conditions that (i) its hyperbolic angles around a vertex sum to
2c and (ii) that edge lengths, which are used to compute the angles of a triangle, are
equal for both triangles they belong to, see [3].

7 Quadrilateral orbifold splines with bi-projective structures

Our goal is to construct rational orbifold splines with quadrilateral tensor product
patches based on triangular orbifold splines. While it is straightforward to use the
tetrahedral Bézier form for rational triangular patches in homogeneous coordinates
to build triangular orbifold splines, we cannot easily follow this approach for quadri-
lateral orbifold splines.

However, we can use pairs of adjacent triangular patches to determine quadrilat-
eral patches with the same four boundary curves and ⌧

A contact along those curves
up to any derivative order. In this way it is possible to obtain quadrilateral orbifolds
through triangular splines. In the following we present the details:

1. Given a quadrilateral patch layout for an orbifold spline, we split all quadrilaterals
into pairs of triangles and compute a projective structure for it.

2. Over the projective structure, i. e., over the bunch of tetrahedra representing the
projective structure, we build a piecewise homogeneous polynomial spline such
that all pairs of its adjacent segments have ⇠

A joints except for those over any
two tetrahedral cones corresponding to a split quadrilateral. Between any two
such segments, we require ⇠2A smoothness but only at the common edges of their
cones. (Figure 6 shows a quadrilateral cone split into two triangular cones abc
and bcd with common edges bR and cR.)

3. For any initially given quadrilateral, we compute a quadrilateral patch having
⌧

A contact along the four boundary edges with the associated pair of triangular
patches.

Step 3 is the essential part and we discuss it in detail: As in Section 4, let

(�u) =
’
i2�3

=

i⌫i (u)
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and
(⌫u) =

’
i2�3

=

i⌫i (u)

be two homogeneous polynomials given w.r.t. the triangles � = [abc] and ⌫ = [bcd].
We reparametrize them by the bi-linear map

x(B, C) = a ⌫
11
00 (B, C) + b ⌫

11
10 (B, C) + c ⌫11

01 (B, C) + d ⌫
11
11 (B, C), (3)

where

⌫
==
8 9 (B, C) =

✓
=

8

◆
B
8
(1 � B)

=�8

✓
=

9

◆
C
9
(1 � C)

=� 9

are the tensor product Bernstein polynomials of bi-degree = and where B and C are
the a�ne coordinates w.r.t. the a�ne system a, (b � c), (c � a).

Thus, we get the bi-degree = tensor product polynomials

(B, C) = (x(B, C)) =
’

8 9⌫
==
8 9 (B, C)

and
(B, C) = (x(B, C)) =

’
8 9⌫

==
8 9 (B, C)

with ⇠
2A contacts at b and c or their parameter values (1, 0) and (0, 1), respectively.

Consequently
8 9 = 8 9 , for 8 = 9 ± : and : � = � A .

The indices of the equal Bézier points 8 9 and 8 9 are marked by red dots in Figure 5
for = = 5 and A = 1. The solid red dots show which Bézier points are equal if we
required ⇠

1 joints at the vertices only and that then we could not ensure compatible
corner twists for and at (B, C) = (0, 1) and (1, 0).

Hence, any tensor product patch

Fig. 5 Indices of the equal
Bézier points of two bi-
quintic patches obtained by
reparametrizing a pair of
triangular patches with ⇠1

(and ⇠2) contact at the pair’s
common vertices with bold
(and empty) red dots.

j

5

0
0                                    5          i
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(B, C) =
=’

8, 9=0
8 9⌫

==
8 9 (B, C)

with

8 9 =

(
8 9 , 8  A or 9  A

8 9 , 8 � = � A or 9 � = � A

represents a rational polynomial of bi-degree = having ⌧
A contact with the rational

triangular patches h (x)i and h (x)i over the lines habi and haci or hcdi and hbdi,
respectively. Note that the transition functions of these ⌧

A contacts are bi-linear
rational functions.

Remark 17 The Bézier points 8 9 can be obtained from the points i = 8 9: using
polar forms. For instance, let

[x1 . . . x=]

be the polar form of the trivariate homogeneous polynomial (x). Then we recall
from, e.g., [17, Section 11.10] that (B, C) has the tensor product polar form

[B1 . . . B= | C1 . . . C=] =
1
=!

’
g

[x(B1, g1) . . . x(B=, g=)]

where the sum is taken over all permutations g = (g1, . . . , g=) of (C1, . . . , C=) and that

8 9 = [0 =�8
. . . 0 1 8

. . . 1| 0 =� 9
. . . 0 1 9

. . . 1]

=
9’

:=0

V8 9: =+:�8� 9 ,8�: , 9�: ,:

with

V8 9: =
:!
=!

✓
8

:

◆ ✓
9

:

◆
(= � 8)!(= � 9)!
(= + : � 8 � 9)!

and the points ^_`a obtained after a steps of de Casteljau’s algorithm to compute
(d) from the Bézier points

8 9:0 = i, i =
266664
8

9

:

377775
2 �3

=,

which means that

^_`a = U ^+1,_,`,a�1 + V ^ ,_+1,`,a�1 + W ^ ,_,`+1,a�1

where
d = aU + bV + cW.
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8 Quadrilateral orbifold splines with projective structures

The construction in Section 7 results in quadrilateral orbifold splines with rational
bi-linear transition functions forming what we could call a bi-projective structure
and, in general, there is no projective structure consisting of only projective transition
functions for ⌧: quadrilateral orbifold splines that also lie in ⇠

0, [16]. However,
there are projective structures for such splines if we give up continuous transitions
between the parametrizations of adjacent patches, and in this section we show how to
build such⇠�1

/⌧
: splines. The construction is a special case of the one in Section 7,

where we replace the bi-linear by linear reparametrizations.
For any quadrilateral abcd in R3 associated to a pair of triangular patches, we

determine U, V, W, X such that aU, cW, bV, dX form a parallelogram. Such a parallel-
ogram exists and is parallel to the intersections of each pair of opposite sides of the
cone abdc with apex o, see Figure 6. Thus,

cW � aU = dV � bX

is a multiple of
(a ⇥ c) ⇥ (b ⇥ d).

Since aU, cW, dV, bX is a parallelogram, it is an a�ne image of the unit square
[0, 1]2 meaning that the bi-linear map x(B, C) in (3) actually is a linear map. Con-
sequently, if we reparametrize the pairs of triangular patches with these maps, we
obtain quadrilateral patches in Section 7 that have ⌧A contacts with projective tran-
sition functions. However, in general, the scaling factors U, V, W, X can not be
chosen consistently for adjacent quadrilaterals and inconsistent scaling factors mean
that common boundary curves of adjacent patches are equal, but with di�erent
parametrizations. Their Bézier points are the same though, yet they have di�erent
weights, see Remark 6.

Fig. 6 Intersecting a quadri-
lateral cone in a parallelogram.

c
d

a

dδ

b

aα



Quadrilateral Orbifold Splines 17

9 Conclusions

So far, quadrilateral orbifold splines have been known only with low smoothness
orders and certain restrictions on the patch layout. In this paper, we overcome these
restrictions by a general construction that gives quadrilateral orbifold splines with an
arbitrarily high smoothness order for any patch layout. This construction is based on
rational triangular orbifold splines, which have a piecewise homogenous polynomial
representation.

Piecewise polynomial triangular splines can be built using splitting techniques
as, e. g., Powell-Sabin splits or by requiring supersmoothness at the vertices or by
solving linear systems of ⇠: conditions, typically in addition to interpolation and
fairness conditions. In general, we do not know the minimum degree needed for the
latter solutions. The examples in [2, 3] show that the degree is considerably smaller
than 4: + 1 for which it is known that supersmooth solutions always exist.

For the quadrilateral orbifold splines in this paper, we need triangular splines
with supersmoothness at the vertices but, on the other hand, they can be non-smooth
or even discontinuous along the edges corresponding to the diagonals that split the
quadrilaterals into triangles. Thus the triangular splines that we propose to use for
building quadrilateral orbifold splines might have similar low degrees than the ones
in [2, 3]. We plan to discuss such practical issues and to present the outcomes of our
implementations in a forthcoming paper.
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