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Abstract

The tongue holds a unique role in gustatory disgust. However, it is unclear whether the tongue representation in the motor
cortex (tM1) is affected by the sight of distaste-related stimuli. Using transcranial magnetic stimulation (TMS) in healthy
humans, we recorded tongue motor-evoked potentials (MEPs) as an index of tM1 cortico-hypoglossal excitability. MEPs were
recorded while participants viewed pictures associated with gustatory disgust and revulsion (i.e. rotten foods and faces ex-
pressing distaste), non-oral-related disgusting stimuli (i.e. invertebrates like worms) and control stimuli. We found that oral-
related disgust pictures suppressed tM1 cortico-hypoglossal output. This tM1 suppression was predicted by interindividual dif-
ferences in disgust sensitivity. No similar suppression was found for disgusting invertebrates or when MEPs were recorded
from a control muscle. These findings suggest that revulsion-eliciting food pictures trigger anticipatory inhibition mechan-
isms, possibly preventing toxin swallowing and contamination. A similar suppression is elicited when viewing distaste expres-
sions, suggesting vicarious motor inhibition during social perception of disgust. Our study suggests an avoidant-defensive
mechanism in human cortico-hypoglossal circuits and its ‘resonant’ activation in the vicarious experience of others’ distaste.
These findings support a role for the motor system in emotion-driven motor anticipation and social cognition.
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Introduction

Disgust is a disease-avoidance emotion affecting several aspects
of life, as it may influence how we select what we eat, our friends,
sexual partners, what social group we adhere to, the clothing we
wear, the music we listen to and, probably, our concept of moral-
ity (Rozin and Fallon, 1987; Rozin et al., 2000; Oaten et al., 2009).
Despite the 140 years that have elapsed since Charles Darwin

published his influential work, The Expression of the Emotions in Man
and Animals (Darwin, 1872), our understanding of the psychobiol-
ogy of disgust has progressed rapidly only in the last decades.
Studies have revealed that disgust processing is mediated by
a complex network of cortical (including insular, cingulate and
orbitofrontal cortex) and subcortical regions (e.g. the striatum)
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implicated in the processing of reward and aversion. Regions
within this network are recruited when experiencing unpleasant
odors and liquids (O’Doherty et al., 2001; Wicker et al., 2003; Jabbi
et al., 2007, 2008a), and when feeling nausea (Krolak-Salmon et al.,
2003; Napadow et al., 2013) but also during imaginative experiences
of disgust, e.g. when watching or imagining disgusting foods and
scenarios (Schienle et al., 2006; Calder et al., 2007; Jabbi et al., 2008a).
Moreover, regions like the cingulate cortex and the insula are also
vicariously active when watching disgusted expressions (Krolak-
Salmon et al., 2003; Wicker et al., 2003; van der Gaag et al., 2007,
Jabbi et al., 2008a; Jabbi and Keysers, 2008b), suggesting that percep-
tion of disgust in others may tap into shared emotion representa-
tions between self and other (Calder et al, 2000; Keysers and
Gazzola, 2009; Lamm et al., 2011; Avenanti et al., 2013b). Such over-
lapping activations for one’s own experience of disgust and the dis-
gusted expressions of others may also reflect the emotional and
homoeostatic salience of first- and third-person experiences of dis-
gust. The insula and the cingulate cortex are recruited in a wide
variety of tasks involving the subjective awareness of both positive
and negative feelings (Craig, 2009; Ibanez et al., 2010; Menon and
Uddin, 2010; Cauda et al., 2012; Couto et al, 2013; Lamm and
Majdandzi¢, 2015; Terasawa et al., 2015; Zaki et al. 2016) and could
thus play a domain-general role, that is, to identify the most salient
among several internal and extrapersonal stimuli in order to guide
behavior. Interestingly however, electrical stimulation of the insu-
lar cortex can induce genuine disgust-related sensations (i.e. nau-
sea, unpleasant tastes and sensations in the mouth and stomach)
and corresponding orofacial motor responses (Penfield and Faulk,
1955; Ostrowsky et al., 2000; Selimbeyoglu and Parvizi, 2010), point-
ing to disgust-specific mechanisms in the insula and its strong link
with motor circuits controlling oral motor behavior (Caruana et al.,
2011; Jezzini et al., 2012).

Indeed, the insula and other regions that are recruited when
sensing or imagining disgust possess reciprocal connections with
a number of motor areas, including somatomotor orofacial re-
gions (Mesulam and Mufson, 1982; Alipour et al., 2002; Jabbi and
Keysers, 2008b; Cauda et al., 2011; Deen et al., 2011; Cerliani et al.
2012) that control ingestion through several descending cortico-
bulbar pathways. These include cortico-pharyngeal and cortico-
vagal pathways that regulate swallowing (Mistry et al., 2007;
Steele and Miller, 2010) and cortico-hypoglossal projections con-
trolling the tongue, which is the primary organ of taste in the gus-
tatory system and plays a major role in the preparatory oral
activity that precedes swallowing (Matsuo and Palmer, 2008).
Remarkably, the tongue has a major role not only in favoring
swallowing but also in preventing it, e.g. when tasting disgusting
and potentially toxic food. In these circumstances, ingestion has
to be inhibited in advance to prevent contamination from toxic
and potentially lethal substances.

However, little is known about the neurophysiological mechan-
isms underlying motor reactions to the sight of potentially toxic
foods. Moreover, no studies have tested whether the human motor
system undergoes similar neurophysiological modulations when
vicariously sensing distaste in others. To address this issue, in this
study we used transcranial magnetic stimulation (TMS) to monitor
changes in primary motor cortex (M1) excitability while partici-
pants watched disgust-related and control pictures. These included
pictures representing gustatory disgust/revulsion (namely, spoiled
foods and facial expressions of distaste), non-gustatory disgust (i.e.
disgusting invertebrates inducing repulsion, such as worms),
corresponding emotionally positive stimuli (i.e. fresh foods, facial
expressions and invertebrates) and neutral control stimuli (fixation
cross). This way, we investigated the corticomotor correlates of
imaginative and social observational aspects of gustatory and
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non-gustatory disgust. We targeted the tongue representation in
M1 (tM1) and recorded motor-evoked potentials (MEPs) from the
apex of the tongue as a measure of tM1 cortico-hypoglossal excit-
ability. As a non-oral somatotopic control, we also targeted the arm
representation in M1 (aM1) and recorded MEPs from the extensor
carpi radialis (ECR) as a measure of aM1 cortico-spinal excitability.

TMS-induced MEPs are an established method for investigat-
ing the excitability of the human motor system during emotion
processing (Borgomaneri et al., 2012, 2015b; Coelho et al., 2010; van
Loon et al., 2010). Previous TMS studies have shown that process-
ing salient and emotionally threatening stimuli is often associated
with inhibition of corticomotor output (Makin et al., 2009; Serino
et al., 2009; Avenanti et al., 2012). For example, viewing social cues
of potential threats (i.e. a fearful body posture) was found to rap-
idly freeze grasping-related cortico-spinal circuits, suggesting an
automatic suppression of approach tendencies (Borgomaneri
et al., 2015¢). Similarly, pain administered on one’s own body part
reduces the excitability of motor circuits controlling that body
part (Urban et al., 2004) and watching pain in others triggers simi-
lar body part-specific motor inhibition (Avenanti et al., 2006,
2009a; Minio-Paluello et al., 2009). However, to date, no study has
specifically tested whether similar somatotopic inhibitory modu-
lations occur at the level of tM1 cortico-hypoglossal projections
during imaginative and social observational aspects of disgust.

Based on the above-mentioned evidence of somatotopically spe-
cific motor inhibition when processing noxious or threatening stimuli
and the specific role of the tongue in preventing ingestion of contam-
inants, we hypothesized that being exposed to rotten foods eliciting
distaste and revulsion might specifically reduce tM1 cortico-
hypoglossal excitability (but not aM1 cortico-spinal excitability).
Because of the strong link between personal experience, imagery and
social perception of emotions (e.g. Wicker et al., 2003; Schienle et al,,
2006; Calder et al., 2007; Jabbi et al., 2008a), we also predicted a similar
‘vicarious’ tM1 suppression when watching facial expressions of gusta-
tory disgust. No similar tM1 modulations were expected for disgusting
invertebrates—which are less related to distaste and revulsion, and
more to repulsion and physical withdrawal (Rozin and Fallon, 1987).

Moreover, based on the evidence that brain activations dur-
ing perception of disgusting stimuli are influenced by inter-
individual differences in disgust sensitivity (Schienle et al., 2005;
Calder et al., 2007; Schafer et al., 2009; Borg et al., 2013), we pre-
dicted that greater disgust sensitivity would be associated with
stronger suppression of tM1 cortico-hypoglossal output during
perception of gustatory disgust.

Materials and methods
Participants

Sixteen healthy participants (eight males, mean age + SD: 22.93
years *+ 2.23) with no contraindications to TMS (Rossi et al., 2009)
took part in the study. Twelve participants were tested at the
University of Bologna, while four participants were tested at the
University of Queensland by the same researcher. All subjects
had normal or corrected-to-normal visual acuity and gave their
written informed consent. The experimental procedures were
approved by the local ethics committees and were carried out in
accordance with the principles of the 1964 Helsinki Declaration.

Visual stimuli

The experimental stimuli consisted of three categories of pic-
tures (subtending a visual angle of 18.53 x 12.19° and with com-
parable luminance; Figure 1) presented in separate blocks. One
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Fig. 1. Disgust-related and positive visual stimuli. The figure shows examples from the food, invertebrate and face categories that were presented in different blocks:
‘A’ disgusting food; ‘B’ positive food; ‘C’ disgusting invertebrate; ‘D’ positive invertebrate; ‘E’ disgusted expression; ‘F’ positive expression. In each food, invertebrate

and face block, participants were also exposed to a fixation cross (neutral control).

block included pictures of disgusting foods (i.e. moldy/rotten
foods that can elicit distaste and revulsion), while pictures of
fresh food and a fixation cross were used as emotionally posi-
tive and neutral controls. Another block included pictures of fa-
cial expressions of gustatory disgust, i.e. facial reactions of
distaste/revulsion for unpleasant tastes (showing a gaping
mouth and protruded tongue), while a fixation cross and pleas-
ant facial expressions were used as control stimuli. A third
block included disgusting stimuli not associated with distaste/
revulsion (i.e. worms and cockroaches, which can elicit repul-
sion and withdrawal tendencies but not gustatory disgust),
while a fixation cross and positive-looking butterfly and lady-
bug pictures were used as control stimuli.

Facial expressions were selected from the Nimstim set
(Tottenham et al., 2009), whereas food and invertebrate stimuli

were selected from a picture database on the internet. We car-
ried out a pilot study to select disgusting pictures with compar-
able disgust and arousal ratings across the three categories
(Supplementary Materials and Supplementary Table S1).
However, in a second pilot, when we distinguished between two
different aspects of disgust, namely distaste/revulsion and re-
pulsion/withdrawal, we found the former aspect to be more
associated with gustatory disgust stimuli (particularly rotten
foods, but also expressions of distaste) and the latter with dis-
gusting invertebrates (Supplementary Table S2). In the second
pilot study, we also ensured that the disgust-related pictures
and the corresponding positive pictures had comparable
arousal ratings but opposite valence (Supplementary Table S2).
Within each block, we used fixation crosses as emotionally
neutral stimuli. We chose fixation crosses because some
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‘neutral’ stimuli, e.g. neutral facial expressions, are often per-
ceived as ambiguous rather than emotionally neutral (Cooney
et al., 2006; Toki et al., 2012). Even more critically, the use of the
same neutral stimulus across the three blocks allowed us to
monitor any possible changes in excitability over time.

Electromyogram recording and TMS

Electromyogram (EMG) recording was performed with a Biopac
MP 150 electromyograph (University of Bologna) or a Grass P511
isolated amplifier (University of Queensland). The EMG signal
was sampled at 10kHz, band-pass filtered (20 Hz-2.5kHz) and
stored for offline analysis.

Two different electrodes montages were used for recording
MEPs from the target (tongue) and control (ECR) muscles
(Komeilipoor et al., 2014; Vicario et al., 2014). For the tongue, we
used Ag-AgCl electrodes (1 cm diameter) mountedonal x 1 cm
plastic plate and fixed on a metal clip device (Sato et al., 2010).
Though the cortical representation of the tongue muscles is
mainly bilateral (Muellbacher et al., 1994; Urban et al., 1996), it is
debatable whether unilateral tongue motor responses can be
safely recorded devoid of volume-conducted potentials from
the contralateral side of the tongue (Muellbacher and Mamoli,
1997; Chen et al., 1999). Thus, we decided to record the tongue
on the midline, instead of a unilateral recording. Accordingly,
the active and reference electrodes were placed on the dorsal
and ventral aspects of the tongue, respectively, ~1.5 cm caudal
to the tongue apex. For the ECR, pairs of Ag-AgCl surface elec-
trodes (1cm diameter) were placed over the muscle belly (ac-
tive) and dorsal wrist (reference). For both tongue and ECR,
ground electrodes were placed over the elbow. TMS was admin-
istered using a 70 mm figure-of-eight focal coil connected to a
Magstim Rapid2 (University of Bologna) or a Magstim 200
(University of Queensland) stimulator. The coil intersection was
placed tangentially to the scalp to induce current flows in a
posterior-anterior direction with both stimulator types.

Stimulation of tongue (tM1) and ECR (aM1) motor represen-
tations from the same scalp site was not possible. Thus, we per-
formed two separate stimulation sessions whose order was
counterbalanced. From tM1 and aM1 optimal scalp positions
(OSP, i.e. the stimulation positions that induce MEPs of maximal
amplitude from the corresponding muscle), the resting motor
threshold (rMT) was defined as the lowest intensity of stimula-
tion that produced five MEPs with an amplitude > 50 uV on 5
out of 10 consecutive pulses (Rossini et al., 2015). During the ex-
perimental conditions, MEPs were elicited by stimulating the
OSP with an intensity of 120% of rMT and stored on a computer
for offline analysis.

Procedure

Participants were comfortably seated in front of a computer
screen. Each stimulation session (Tongue, ECR) consisted of
three 48-trial blocks (food, invertebrates, faces) whose order
was randomized. In each block, 16 MEPs were recorded during
presentation of a fixation cross (8 MEPs at the beginning and 8
MEPs at the end of the block) and the remaining 32 MEPs were
recorded during the presentation of emotional stimuli (i.e. 4
stimuli x 4 repetitions x 2 emotion categories: disgusting vs
positive). In each trial, a fixation cross was presented at the cen-
ter of the screen for 1s. In the fixation trials, the cross remained
on the screen for another 2s. In the emotional stimulus trials,
one picture was presented for 2s. During cross/picture presen-
tation, a single pulse of TMS was administered over either the
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tM1 or aM1, and a MEP was recorded from the corresponding
target muscle. TMS was delivered at random times ranging be-
tween 1100 and 1400 ms after cross/picture onset to avoid any
priming effects that might influence MEP amplitude (Vicario
et al., 2013a, b; Vicario et al., 2015). The inter-stimulus interval
was 7000ms. The inter-pulse interval was > 10s to avoid
changes in motor excitability due to TMS per se (Chen et al.,
1997). The lack of change was confirmed by comparing MEPs
during the fixation baseline across block orders (Supplementary
Materials).

To maintain attention and check picture recognition, in six
vigilance trials (two per block), subjects were asked to verbally
describe the last picture they saw. To avoid changes in excitabil-
ity due to preparation of verbal responses (Tokimura et al., 1996;
Meister et al., 2003), participants were instructed to provide their
response about 2-3s after the release of the magnetic pulse
(Candidi et al., 2010; Tidoni et al., 2013). All participants correctly
described the pictures in all the vigilance trials.

Finally, we tested inter individual differences in susceptibil-
ity to the experience of disgust by using the Disgust Scale (DS)
(Haidt et al., 1994), the most widely used self-report scale for as-
sessing disgust propensity. We used the revised version of the
DS-R recommended by Olatunji et al. (2007). This version in-
cludes 13 true-false items (scored O or 1) where participants are
asked to report their agreement with a statement (e.g. ‘Even if I
was hungry, I would not drink a bowl of my favorite soup if it
had been stirred by a used but thoroughly washed flyswatter’)
and 12 items that are rated on a 3-point scale (scored 0, 0.5 and
1) that assesses the extent to which participants find a given ex-
perience (e.g. ‘you are about to drink a glass of milk when you
smell that it is spoiled’) not disgusting at all, slightly disgusting
or very disgusting. We computed a global score of disgust sensi-
tivity (range 0-25) by summing responses to the 25 items (DS-R)
(Olatunji et al., 2007).

Data analysis

Two participants were not able to complete the experimental
session, due to mild discomfort during tM1 stimulation.
Therefore, the analysis of tongue MEPs was conducted on 14
participants. Due to a technical failure during MEP recording,
ECR data from one participant were lost and, thus, the analysis
of ECR MEPs was conducted on thirteen participants. Trials with
EMG activity prior to TMS were discarded from the analysis
(11.5%). Mean MEP amplitude values in each condition were
measured peak-to-peak (in mV). Outlier values (+2.5 SD of the
mean) were identified in each condition and removed (2.5%).
Logarithmic transformation was applied to raw amplitude val-
ues [log (mean MEP amplitude value + 1)] in order to reduce
skewness and inter individual variability. Because the Shapiro-
Wilk test showed that the transformed data were not normally
distributed, MEP amplitudes were analyzed by means of non-
parametric Friedman analysis of variance (ANOVA) and
Wilcoxon matched-pairs tests (see also Supplementary
Materials). The significance level was set at P = 0.05.

A regression analysis was carried out to interpret any modu-
lation of tM1 excitability when observing foods and facial ex-
pressions associated with gustatory disgust. We tested whether
such a neurophysiological modulation would be predicted by
inter individual differences in DS-R disgust sensitivity. To com-
pute an index reflecting any modulation for gustatory disgust,
we calculated a MEP contrast index as the difference in MEP
amplitude between the disgust-related condition and the mean
MEP amplitude in the two control conditions (positive versions
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of food and facial stimuli and fixation baselines) and then aver-
aged the two differences. This index was entered as a depend-
ent variable in a regression analysis with the DS-R scores as a
predictor. Moreover, non-parametric correlations using the
Spearman coefficient (p) were computed.

Results

The Friedman ANOVA performed on tongue MEPs was significant
(x?s=17.45, P = 0.026), whereas the analysis on ECR MEPs was not
(x%s = 12.98, P = 0.11), suggesting that visual conditions consist-
ently modulated tM1 cortico-hypoglossal excitability but not aM1
cortico-spinal excitability (Figure 2). Further Friedman ANOVAs
and Wilcoxon matched-pairs tests were performed to isolate sig-
nificant tM1 modulations within the three experimental blocks.
Friedman ANOVAs restricted to food (% = 13.00, P = 0.0015) and
face blocks (x% = 10.71, P = 0.0047) were significant. Wilcoxon
tests showed that MEP amplitudes from the tongue were lower
for pictures of rotten foods (mean *+ SD: 0.171 mV * 0.156) than
for pictures of pleasant foods (0.186 mV =+ 0.162; Z = 2.17, P =
0.03) and the food block baseline (0.182 mV + 0.158; Z = 3.30, P <
0.001), which in turn did not differ from one another (Z=0.97,P =
0.33). Moreover, MEP amplitudes were lower for distaste expres-
sions (0.122 mV =+ 0.080) than for positive facial expressions
(0.142 mV + 0.091; Z = 2.73, P = 0.006) and the face block baseline
(0.138 mV = 0.090; Z = 2.92, P = 0.004) which in turn did not differ
from one another (Z = 0.28, P = 0.78).

This tM1 cortico-hypoglossal suppression was specific for
visual stimuli associated with oral disgust, as Friedman
ANOVAS (x*, = 0.43, P = 0.81) and Wilcoxon tests (all Z < 0.45, P
> 0.65) performed on the invertebrate block were not signifi-
cant. Moreover, tM1 suppression was comparable in the two
groups of participants tested at the University of Bologna and
the University of Queensland (Supplementary Materials).

To estimate the suppression effect induced by pictures of dis-
gusting food, we computed a MEP contrast index as the difference
between the tongue MEP amplitude recorded during disgusting
food pictures and the mean MEP amplitude recorded during
pleasant food pictures and the food block baseline. A similar MEP
contrast index was computed for disgusted facial expressions
(distaste expressions minus mean of pleasant faces and the face
block baseline) and invertebrates (disgusting minus pleasant in-
vertebrates and the invertebrate block baseline). A Friedman
ANOVA on these contrast indices was significant (y% = 7.00, P =
0.03). Wilcoxon tests showed that MEP contrast indices for dis-
gusting foods (—0.012 mV * 0.008) and facial expressions of dis-
taste (—0.015 mV = 0.016) were comparable (Z = 0.72, P > 0.47)
and lower than the MEP contrast index for disgusting inverte-
brates (0.014 mV + 0.048; all Z > 2.29, all P < 0.022).

The same analysis performed on MEP contrasts computed from
the ECR data showed no significant effects (Friedman ANOVA: 2,
= 0.46, P = 0.79; Wilcoxon tests: all Z < 0.17, all P > 0.86).

To test whether inter individual differences in disgust sensi-
tivity (DS-R) predict the magnitude of tM1 inhibition during ob-
servation of oral-related disgust pictures (indexed by the mean
MEP contrast for disgusting foods and facial expressions of dis-
taste), a regression analysis was performed. Because the two
variables were normally distributed (Shapiro-Wilk test: P > 0.24)
a parametric analysis was used. The regression model was sig-
nificant and it evidenced a negative relation with a large effect
size (,gR” = 0.31, B = —0.60, F; 1, = 6.83, P = 0.023; f* = 0.45) that
was confirmed using non-parametric correlation (Spearman
p=-0.54, P = 0.047). The model strongly improved after the

removal of one outlier with standard residual > 2 SD (ade2 =
0.55,p = -0.77,F1 11 = 15.82, P = 0.002; f2=1.24; Figure 3).

The negative relationship indicated that participants with
greater disgust sensitivity tended to show stronger reduction in
tM1 excitability when exposed to pictures related to oral dis-
gust. The same regression analysis performed on the MEP con-
trast calculated from the ECR was not significant (ade2 =0.03, B
= —0.0002, F < 1, P = 0.55; Spearman p = —0.13, P = 0.67; no out-
liers in the dataset).

Discussion

To establish the cortico-motor correlates of imaginative and so-
cial observational aspects of disgust, we measured tongue MEPs
as an index of tM1 cortico-hypoglossal output during the obser-
vation of pictures related to gustatory disgust and revulsion—
namely, rotten foods and facial expressions of distaste, as well
as pictures eliciting non-oral disgust (i.e. repulsion, originating
from disgusting invertebrates like worms) and control stimuli.

In line with our hypotheses, we detected a modulation of
tM1 excitability for the food and face picture categories, which
possess clear associations with the tongue, but not for the in-
vertebrate category. In contrast, no modulations of aM1 cortico-
spinal excitability were detected across stimulus categories.
These findings hint at somatotopic specificity when processing
visual signs of gustatory disgust. They suggest that tM1 cortico-
hypoglossal projections might be sensitive not only to disgust
and the imaginative aspects of disgust that are likely evoked by
the sight of disgusting foods (Supplementary Tables S1 and
S2)—and that may require inhibition of preparatory tongue ac-
tivity—but also to the perception of social signals of gustatory
disgust in others. In particular, we found that exposure to pic-
tures of rotten foods brought about a consistent reduction in
the amplitude of MEPs recorded from the tongue. Tongue MEPs
in this condition were lower than when participants observed
pictures of fresh food or a fixation cross (baseline). A similar re-
duction was found when watching pictures of faces expressing
distaste, compared with pictures of happy faces and the base-
line. No similar modulations were found when seeing disgust-
ing invertebrates that are more associated with repulsion and
physical withdrawal/not wanting to touch or be touched. This
selectivity suggests that tM1 cortico-hypoglossal excitability is
specifically affected by images related to gustatory revulsion
but not by non-oral repulsion.

We propose that the suppression of tM1 cortico-hypoglossal
excitability while seeing pictures of disgusting foods might reflect
an implicit avoidant-defensive mechanism of motor inhibition to
prevent the ingestion of potentially harmful contaminants. In
this sense, one might interpret this physiological phenomenon
as an index of anticipatory action inhibition that is triggered by
the sight of potentially threatening foods, and may have the ul-
timate role of preventing any toxin swallowing and contamin-
ation (Rozin et al., 2000; Oaten et al., 2009).

The idea that detecting potential threats taps into motor in-
hibitory mechanisms is in line with influential models of emo-
tion perception (Frijda 1986, 2009; Lang and Bradley, 2010).
Although behavioral studies have reported generalized freezing
effects, like the reduction of body sway when viewing aversive
pictures (e.g. Azevedo et al, 2005; Facchinetti et al., 2006;
Hagenaars et al., 2014), TMS evidence has documented specific
inhibitory defensive mechanisms. For example, reduced M1
cortico-spinal excitability was found during administration of
noxious stimulation to a specific body part (e.g. Farina et al.,
2001; Urban et al., 2004). Moreover, suddenly approaching
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objects (Makin et al., 2009) or sounds (Serino et al., 2009;
Avenanti et al., 2012) occurring near the body (i.e., within the
peripersonal space; Serino et al., 2011) were found to trigger
body-part specific cortico-spinal inhibition. More recently, it
was shown that observing signals of potential threats specific-
ally reduces the excitability of hand motor circuits controlling
approaching movements like grasping (Borgomaneri et al.,
2015c¢). However, all these studies have limited their investiga-
tion to upper limb motor excitability or postural sway and none
of them have specifically investigated the emotion of disgust.
Our data expand previous evidence by showing that observation
of potentially threatening spoiled foods selectively inhibits the
observers’ tM1 cortico-hypoglossal pathway, possibly to prevent
the organism from toxin contamination via oral ingestion.

These findings complement those of a previous study in
which tobacco-addicted patients were exposed to craving-
inducing visual cues (i.e. pictures of cigarettes) (Vicario et al.,
2014). In those conditions, increased tongue MEPs was found.
Although preliminary, the report of Vicario et al. (2014) and the
present study suggest that changes in the excitability of the tM1
cortico-hypoglossal pathway may reflect a somatomotor
marker of oral approach/avoidance.

In a similar fashion, the reduced tM1 excitability during ex-
posure to faces expressing distaste might be accounted for by a
mirroring phenomenon that associates the observation of dis-
gusted expressions with a specific somato-gustatory self-ex-
perience (i.e. distaste) and the consequent motor response (i.e.
inhibition of preparatory tongue activity to avoid swallowing).
This is in agreement with the notion of shared neural
representations for self-experience of an emotion and the ob-
servation of the same emotion in others (Wicker et al., 2003;
Avenanti et al, 2005; Oberman and Ramachandran, 2007
Niedenthal et al., 2010; Gallese and Sinigaglia, 2011; Lamm and
Majdandzi¢, 2015; Riitgen et al., 2015a, b).

Strong evidence of shared neural mechanisms in the human
motor system comes from studies showing that the sight of an
action facilitates those motor circuits involved in making the
same action (Fadiga et al., 2005; Avenanti et al., 2013a; Koch et al.,
2010; Mukamel et al., 2010). Notably, this mirroring might occur
at a relatively abstract level. Studies indicate that the observer’s
motor system reflects the encoding of the distal goal of the ac-
tion, irrespective of the specific movements performed to
achieve it (Cattaneo et al., 2009, 2013; Jacquet and Avenanti,
2015). A similar proposal has been put forward for the tendency
to imitate others’ emotional expressions (i.e. facial mimicry,
Dimberg et al., 2000), based on the evidence that people mimic
an interpretation of others’ emotions and not the actual expres-
sive movements they observe (Magnée et al., 2007; Hess and
Fischer, 2014; Fino et al., 2016). This is relevant for our study,
where the actors’ disgust was signaled by gaping mouth and
protruded tongue, i.e. an active movement of the tongue.
Previous studies have found that perception of tongue move-
ments may facilitate tongue MEPs (Fadiga et al., 2002; Sato et al.,
2010; D’Ausilio et al., 2011). Remarkably, however we found
tongue MEPs inhibition rather than facilitation for observed ex-
pressions of distaste. This reduction hints at the vicarious acti-
vation of tongue motor programs that mirror those activated by
imaginative aspects of gustatory disgust (i.e. elicited by the
sight of rotten food pictures), rather than the observed actor’s
tongue movements. Thus, we expand previous evidence by
showing that tM1 cortico-hypoglossal projections are modu-
lated in a similar mirror-like fashion when one is exposed to
stimuli potentially eliciting revulsion within oneself (pictures of
spoiled foods) and when exposed to facial expressions of

distaste. Moreover, our study supports the aforementioned no-
tions that motor mirroring may reflect high-level aspects of
observed behavior (i.e. the inferred action goal/emotion), rather
than the low-level motor pattern (i.e. the specific movement)
being observed (Cattaneo et al., 2009, 2013; Hess and Fischer,
2014; Jacquet and Avenanti, 2015).

Finally, we found that the suppression of tM1 excitability
was predicted by DS-R scores. That is, participants who showed
higher sensitivity to disgust in everyday life also showed greater
reductions in tM1 excitability when seeing oral-related disgust
(pictures of disgust-eliciting foods and facial expressions of dis-
taste). These findings are in line with studies demonstrating
that interindividual differences in disgust sensitivity modulate
disgust-related neural activations (Schienle et al., 2005; Calder
et al., 2007; Schafer et al., 2009; Borg et al., 2013). They are also in
keeping with studies showing that the magnitude of vicarious
activations is predicted by inter individual differences in per-
sonality and social attitudes (Dapretto et al., 2006; Bastiaansen
et al., 2009; Avenanti et al., 2009b, 2010; Borgomaneri et al.,
2015a). Importantly, these correlational data further demon-
strate a specific link between observational tM1 modulations
and the experience of disgust.

Previous investigations have shown that observation of
negative scenes affects the excitability of cortico-spinal projec-
tions to upper limb muscles (e.g. Schutter et al., 2008; Coombes
et al., 2009; Coelho et al., 2010; Borgomaneri et al., 2014), although
none of the previous studies have specifically tested disgust-
related scenes. In the current study, we did not find changes in
ECR MEPs (which reflect aM1 cortico-spinal excitability) for any
of the three stimulus categories. This result supports our hy-
pothesis of somatotopic specificity and suggests that pictures
signaling oral-related disgust do not suppress motor excitability
in general, but specifically in the tM1 cortico-hypoglossal path-
way, which is a key sector of the motor system involved in
avoiding ingestion of contaminants.

Our study has potential limitations that should be discussed.
First, the sample size of our study is not large and the experi-
ment was carried out in two laboratories. However, control ana-
lyses indicate comparable effect sizes in the two datasets
(Supplementary Materials), suggesting the reliability of the find-
ings. Second, it is well established that MEPs recorded from the
tongue reflect mainly tM1 cortico-hypoglossal excitability
(Muellbacher et al. 1994; Sato et al., 2010), yet stimulation of the
tM1 can activate other descending cortico-bulbar pathways (i.e.
the cortico-pharyngeal and cortico-vagal pathways that regu-
late swallowing) which may affect tongue MEPs due to volume-
conducted potentials. Although this influence is expected to be
minimal, future studies might simultaneously monitor the dy-
namics of different cortico-bulbar pathways involved in inges-
tion during imaginative and observational social aspects of
distaste. Third, although the experimental stimuli were eval-
uated in two pilot studies, participants in the main TMS experi-
ment did not provide subjective ratings of the visual stimuli or
the magnetic pulses. This prevented us from exploring the rela-
tions between disgust judgments, TMS discomfort and motor
excitability. Thus, future studies could test whether subjective
ratings of disgust closely parallel tongue MEPs, in a way that is
similar to the results of the regression analysis (Figure 3) re-
ported in the present study. Lastly, while the lack of ECR MEP
modulation speaks against a generalized effect of gustatory dis-
gust on motor excitability, a null finding should be interpreted
with caution. In keeping with the notion that emotions prime
the body for action (Frijda 1986, 2009; Lang and Bradley, 2010;
Vicario and Newman, 2013) one may expect that threatening
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stimuli requiring active avoidance may trigger activity in the ob-
server’s motor system. The lack of modulation in the present
experiment might have resulted from the general emotional
qualities of the stimuli or the minimal functional role of our
control muscle in approach/avoidance movements. Indeed, we
do not rule out that other sectors of the motor system may be
modulated by disgusting stimuli. For example, observing highly
disgusting pictures associated with strong repulsion and
arousal (e.g. spiders, dirty toilets, mutilations) could be expected
to modulate several upper limb motor representations. Future
studies will directly test these possibilities.

In sum, our study shows that pictures of revulsion-eliciting
foods and facial expressions of distaste selectively reduce the
excitability of tM1 cortico-hypoglossal projections, and this tM1
suppression is predicted by inter individual differences in dis-
gust sensitivity. Our study suggests an avoidant-defensive
mechanism in human cortico-hypoglossal circuits, and its vic-
arious activation during social perception of others’ distaste.
These findings support the notion of shared neural representa-
tions of disgust and suggest that inter individual dispositions to
experience disgust strongly affect such neural representations.
Thus, these findings support a role for the motor system in
emotion-driven motor anticipation and social cognition.
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