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Abstract

Although recent semantic segmentation methods have

made remarkable progress, they still rely on large amounts

of annotated training data, which are often infeasible to col-

lect in the autonomous driving scenario. Previous works

usually tackle this issue with Unsupervised Domain Adap-

tation (UDA), which entails training a network on synthetic

images and applying the model to real ones while min-

imizing the discrepancy between the two domains. Yet,

these techniques do not consider additional information

that may be obtained from other tasks. Differently, we

propose to exploit self-supervised monocular depth esti-

mation to improve UDA for semantic segmentation. On

one hand, we deploy depth to realize a plug-in compo-

nent which can inject complementary geometric cues into

any existing UDA method. We further rely on depth to

generate a large and varied set of samples to Self-Train

the final model. Our whole proposal allows for achieving

state-of-the-art performance (58.8 mIoU) in the GTA5→CS

benchmark. Code is available at https://github.com/

CVLAB-Unibo/d4-dbst.

1. Introduction

Semantic segmentation is the task of classifying each

pixel of an image. Nowadays, Convolutional Neural Net-

works can achieve impressive results in this task but re-

quire huge quantities of labelled images at training time

[44, 3, 34, 41]. A popular trend to address this issue con-

cerns leveraging on computer graphics simulations [42] or

game engines [40] to obtain automatically synthetic images

endowed with per-pixel semantic labels. Yet, a network

trained on synthetic data only will perform poorly in real

environments due to the so called domain-shift problem.

In the last few years, many Unsupervised Domain Adap-

tation (UDA) techniques aimed at alleviating the domain-

shift problem have been proposed in literature. These ap-
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Figure 1. D4 can be plugged seamlessly into any existing method

to improve UDA for Semantic Segmentation. Here we show how

the introduction of D4 can ameliorate the performance of two re-

cent methods like LTIR [22] and Stuff and Things [55].

proaches try to minimize the gap between the labeled source

domain (e.g. synthetic images) and the unlabeled target do-

main (e.g. real images) by either hallucinating input images,

manipulating the learned features space or imposing statis-

tical constraints on the predictions [58, 8, 65, 18].

At a more abstract level, UDA may be thought of as the

process of transferring more effectively to the target do-

main the knowledge from a task solved in the source do-

main. This suggests that it may be possible to improve

UDA by transferring also knowledge learned from another

task to improve performance in the real domain. In fact,

the existence of tightly related representations within CNNs

trained for different tasks has been highlighted since the

early works in the field [60], and it is nowadays standard

practice to initialize CNNs deployed for a variety of di-

verse tasks, such as, e.g., object detection [46], semantic

segmentation [4] and monocular depth estimation [14], with

weights learned on Imagenet Classification [11]. The notion

of transferability of representations among CNNs trained to

solve different visual tasks has been formalized computa-

tionally by the Taskonomy proposed in [63]. Later, [38] has

shown that it is possible to train a CNN to hallucinate deep

features learned to address one task into features amenable

to another task related to the former.

Inspired by these findings, we argue that monocular

depth estimation could be an excellent task in order to

gather additional knowledge useful to address semantic seg-

https://github.com/CVLAB-Unibo/d4-dbst
https://github.com/CVLAB-Unibo/d4-dbst


mentation in UDA settings. First of all, a monocular depth

estimation network makes predictions based on 3D cues

dealing with the appearance, shape, relative sizes and spa-

tial relationships of the stuff and things observed in the

training images. This suggests that the network has to pre-

dict geometry by implicitly learning to understand the se-

mantics of the scene. Indeed, [37, 21, 24, 15] show that a

monocular depth estimation network obtains better perfor-

mances if forced to learn jointly a semantic segmentation

task. We argue, though, the correlation between geometry

and semantics to hold bidirectionally, such that a semantic

segmentation network may obtain useful hints from depth

information. This intuition is supported by [38], which

shows that it is possible to learn a mapping in both direc-

tions between features learned to predict depth and per-pixel

semantic labels. It is also worth observing how depth pre-

diction networks tend to extract accurate information for re-

gions characterized by repeatable and simple geometries,

such as roads and buildings, which feature strong spatial

and geometric priors (e.g. the road is typically a plane in

the bottom part of the image) [13, 14, 47, 57]. Therefore,

on one hand predicting accurately the semantics of such

regions from depth information alone should be possible.

On the other, a semantic network capable of reasoning on

the geometry of the scene should be less prone to mistakes

caused by appearance variations between synthetic and real

images, the key issue in UDA for semantic segmentation.

Despite the above observations, injection of geometric

cues into UDA frameworks for semantic segmentation has

been largely unexplored in literature, with the exception of

a few proposals, which either assume availability of depth

labels in the real domain [56], a very restrictive assumption,

or can leverage on depth information only in the synthetic

domain due to availability of cheap labels [53, 27, 6]. In

this respect, we set forth an additional consideration: nowa-

days effective self-supervised procedures allow for training

a monocular depth estimation network without the need of

ground-truth labels [14, 12, 70].

Based on the above intuitions and considerations, in this

paper we propose the first approach that, thanks to self-

supervision, allows for deploying depth information from

both synthetic and unlabelled real images in order to inject

geometric cues in UDA for semantic segmentation. Pur-

posely, we adapt the knowledge learned to pursue depth

estimation into a representation amenable to semantic seg-

mentation by the feature transfer architecture proposed in

[38]. As the geometric cues learned from monocular images

yield semantic predictions that are often complementary to

those attainable by current UDA methods, we realize our

proposal as a depth-based add-on, dubbed D4 (Depth For),

which can be plugged seamlessly into any UDA method to

boost its performances, as illustrated in Fig. 1.

A recent trend in UDA for semantic segmentation is

Self-Training (ST), which consists in further fine-tuning

the trained network by its own predictions [72, 73, 68, 29,

33, 30]. We propose a novel Depth-Based Self-Training

(DBST) approach which deploys once more the availabil-

ity of depth information for real images in order to build a

large and varied dataset of plausible samples to be deployed

in the Self-Training (ST) procedure1.

Our framework can improve many state-of-the-art meth-

ods by a large margin in two UDA for semantic segmen-

tation benchmarks, where networks are trained either on

GTA5 [40] or SYNTHIA VIDEO SEQUENCES [42] and

tested on Cityscapes [10]. Moreover, we show that our

DBST procedure enables to distill the whole framework into

a single ResNet101 [16] and achieve state-of-the-art perfor-

mance. Our contributions can be summarized as follows:

• We are the first to show how to exploit self-supervised

monocular depth estimation on real images to pursue

semantic segmentation in a domain adaptation settings.

• We propose a depth-based module (D4) which can

be plugged into any UDA for semantic segmentation

method to boost performance.

• We introduce a new protocol (DBST) that exploits

depth predictions to synthesize augmented training

samples for the final self-training step deployed often-

times in UDA for semantic segmentation pipelines.

• We show that leveraging on both D4 and DBST allows

for achieving 58.8 mIoU in the popular GTA5→CS

UDA benchmark, i.e., to the best of our knowledge,

the new state-of-the-art.

2. Related Work

Domain Adaptation. Domain Adaptation is a promis-

ing way of solving semantic segmentation without annota-

tions. Pioneering works [17, 58, 2, 9, 31, 66, 62, 28, 22]

rely on CycleGANs [71] to convert source data into the

style of target data, reducing the low-level visual appear-

ance discrepancy among domains. Other works exploit ad-

versarial training to enforce domain alignment [49, 50, 54,

67, 59, 36, 1, 52]. [55] extended this idea by aligning dif-

ferently objects with low and high variability in terms of

appearance. Few works tried to exploit depth information

to boost UDA for semantic segmentation. [53], for exam-

ple, proposes a unified depth-aware UDA framework that

leverages the knowledge of depth maps in the source do-

main to perform feature space alignment. [43] extends this

idea by modelling explicitly the relation between different

visual semantic classes and depth ranges. [7], instead, con-

siders depth as a way to obtain adaptation at both the input

and output level. [56] is the first work to consider depth

1See also [19] for concurrent work that proposes a similar idea.



Figure 2. From left to right: ground truth, semantics from depth,

semantics by LTIR [22]. The semantic labels predicted from

depth are more accurate than those yielded by UDA methods in

regularly-shaped objects (such as the wall in the top image and the

sidewalk in the bottom one), whilst UDA approaches tend to per-

form better on small objects (see the traffic signs in both images).

in the target domain, although assuming supervision to be

available. Conversely, we show how to deploy depth in the

target domain without availability of ground-truth depths.

Self-Training. More recently, a new line of research

focuses on self-training [26], where a semantic classi-

fier is fine-tuned directly on the target domain, using its

own predictions as pseudo-labels. [72, 73, 30] cleverly

set class-confidence thresholds to mask wrong predictions.

[69, 33, 68] propose to use pseudo-labels with different reg-

ularization techniques to minimize both the inter-domain

and intra-domain gap. [64] instead, estimates the likelihood

of pseudo-labels to perform online correction and denoising

during training. Differentely, [48] synthesizes new samples

for the target domain by cropping objects from source im-

ages using ground truth labels and pasting them onto target

images. Inspired by this work, we propose a novel algo-

rithm for generating new samples to perform self-training

on the target domain. In contrast to [48], our strategy is ap-

plied to target images only and relies on the availability of

depth maps obtained through self-supervision.

Task Adaptation. All existing approaches tackle inde-

pendently task adaptation or domain adaptation. [51] was

the first paper to propose a cross-tasks and cross-domains

adaptation approach, considering two image classification

problems as different tasks. UM-Adapt [25] employs a

cross-task distillation module to force inter-task coherency.

Differently, [38], directly exploits the relationship among

tasks to reduce the need for labelled data. This is done

by learning a mapping function in feature space between

two networks trained independently for two separate tasks,

a pretext and target one. We leverage on this intuition but,

unlike [38], our approach does not require supervision to

solve the pretext task in the target domain.

3. Method

In Unsupervised Domain Adaptation (UDA) for seman-

tic segmentation one wishes to solve semantic segmentation

in a target domain, DT , though labels are available only in

another domain, referred to as source domain DS . In the

following we describe the two ingredients of our proposal

to better tackle this problem. In Sec. 3.1 we show how to

transfer information from self-supervised monocular depth

to semantic segmentation and merge this knowledge with

any UDA method (D4-UDA, Depth For UDA). Then, in

Sec. 3.2 we introduce a Depth-Based Self-Training strat-

egy (DBST) to further improve semantic predictions while

distilling the whole framework into a single CNN.

3.1. D4 (Depth For UDA)

Semantics from Depth. The main intuition behind our

work is that semantic segmentation masks obtained exploit-

ing depth information have peculiar properties that make

them suitable to improve segmentation masks obtained with

standard UDA methods. However, predicting semantics

from depth is an arduous task. Indeed, we experiment sev-

eral alternatives (see Sec. 4.4 Alternative strategies to ex-

ploit depth) and find out that the most effective way is a

procedure similar to the one proposed in [38], which we

adapt to the UDA scenario. The pipeline works as follows:

train one CNN to solve a first task on DS and DT , train

another CNN to solve a second task on DS only (i.e. the

only domain where ground truth labels for the second task

are available) and, finally, train a transfer function to map

deep features extracted by the first CNN into deep features

amenable to the second one. As the second CNN has been

trained only on DS , also the transfer function can be trained

only on DS but, interestingly, it can generalize to DT . As

a consequence, at inference time one can solve the second

task in DT based on the features transferred from the first

task. We refer to [38] for further details.

Hence, if we assume the first and second task to con-

sist in depth estimation and semantic segmentation, respec-

tively, the idea of transferring features might be deployed in

a UDA scenario since it gives the possibility to solve the

second task on DT without the need of ground truth la-

bels. However, the learning framework delineated in [38]

assumes availability of ground-truth labels for the first task

(depth estimation in our setting) also in DT (real images).

As pointed out in Sec. 1, this assumption does not comply

with the standard UDA for semantic segmentation problem

formulation, which requires availability of semantic labels

for source images (DS ) alongside with unlabelled target im-

ages only (DT ). To address this issue we propose to rely

on depth proxy-labels attainable from images belonging to

both DS and DT without the need of any ground-truth in-

formation. In particular, we propose to deploy one of the

recently proposed deep neural networks, such as [14], that

can be trained to perform monocular depth estimation based

on a self-supervised loss that requires availability of raw im-

age sequences only, i.e. without ground-truth depth labels.

Thus, in our method we introduce the following protocol.
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Figure 3. Overview of our proposal. RGB images are first processed by two different segmentation engines to produce complementary

predictions that are then combined by a weighted sum which accounts for the relative strengths of the two engines (Eq. 3). During the next

step (DBST), predictions from D4-UDAi are used to synthesize augmented samples by mixing portions of different images according to

depth and semantics. The augmented samples are used to train a final model, so as to distill the whole pipeline into a single network.

First, we train a self-supervised monocular depth estimation

network on both DS and DT . Then, we use this network

to generate depth proxy-labels for both domains. We point

out that we use such network as an off-the-shelf algorithm

without the aim of improving depth estimation. Finally, ac-

cording to [38], we train a first CNN to predict depth from

images on both domains by the previously computed depth

proxy-labels, a second CNN to predict semantic labels on

DS and a transfer network which allows for predicting se-

mantic labels from depth features in DT . In the following,

we will refer to such predictions as “semantics from depth”

because they concern semantic information extracted from

features amenable to perform monocular depth estimation.

Combine with UDA. Fig. 2 compares semantic pre-

dictions obtained from depth by the protocol described in

the previous sub-section and from a recent UDA method.

The reader may observe a clear pattern: predictions from

depth tend to be smoother and more accurate on objects

with large and regular shapes, like road, sidewalk, wall

and building. However, they turn out often imprecise in

regions where depth predictions are less informative, like

thin things partially overlapped with other objects or fine-

grained structures in the background. As UDA methods

tend to perform better on such classes (see Fig. 2), our

D4 approach is designed to combine the semantic knowl-

edge extracted from depth with that provided by any chosen

UDA method in order to achieve more accurate semantic

predictions. Depth information helps on large objects with

regular shapes, which usually account for the majority of

pixels in an image. On the contrary, UDA methods perform

well in predicting semantic labels for categories that typ-

ically concern much smaller fractions of the total number

of pixel in an image, like e.g. the traffic signs in Fig. 2.

This orthogonality suggests that a simple yet effective way

to combine the semantic knowledge drawn from depth with

that provided by UDA methods consists in a weighted sum

of predictions, with weights computed according to the fre-

quency of classes in DS (the domain where semantic labels

are available). As weights given to UDA predictions (wuda)

should be larger for rarer classes, they can be computed as:

wuda = [w1

uda, . . . , w
C
uda] where wi

uda =
1

ln(δ + f i)
(1)

where C denotes the number of classes and f i = ni

ntot de-

notes their frequencies at the pixel level, i.e. the ratio be-

tween the number ni of pixels labelled with class i in DS

and the total number ntot of labelled pixels in DS . Eq. 1

is the standard formulation introduced in [34] to compute

bounded weights inversely proportional to the frequency of

classes. We set δ in Eq. 1 to 1.02, akin to [34].

Accordingly, weights applied to semantic predictions

drawn from depth (wdep) are given by:

wdep = [w1

dep, ..., w
C
dep] where wi

dep = 1− wi
uda. (2)

Thus, at each pixel of a given image we propose to com-

bine semantics from depth and predictions yielded by any

chosen UDA method as follows:

ŷf = wdep · φT (ỹdep) + wuda · φT (ỹuda), (3)

where ŷf is the final prediction, ỹdep and ỹuda are the logits

associated with semantics from depth and the selected UDA

method, respectively, φT denotes the softmax function with

a temperature term T that we set to 6 in our experiments.

As illustrated in Fig. 3, the formulation presented in Eq.

3 and symbolized as
⊕

can be used seamlessly to plug

semantics obtained from self-supervised monocular depth

into any existing UDA method. We will refer to the combi-

nation of a given UDA method with our D4 with the expres-

sion D4-UDA. Experimental results (Sec. 4.3) show that all

recent s.o.t.a. UDA methods do benefit significantly from

the complementary geometric cues brought in by D4.



Figure 4. The rightmost column is synthesized by copying pixels

from the left column into the central one. Pixels are chosen ac-

cording to their semantic class (second row) and stacked accord-

ing to their depths (third row). The white pixels in the depth maps

represent areas too far from the camera that cannot be selected.

3.2. DBST (Depth­Based Self­Training)

We describe here our proposal to further improve seman-

tic predictions and distill the knowledge of the entire system

into a single network easily deployable at inference time.

First, we predict semantic labels for every image in DT by

our whole framework (i.e. D4 alongside a selected UDA

method, referred to as D4-UDA); then, we use these labels

to train a new model on DT . This procedure, also known

as self-training [26], has become popular in recent UDA

for semantic segmentation literature [72, 73, 68, 29, 33, 30]

and consists in training a model by its own predictions, re-

ferred to as pseudo-labels, sometimes through multiple it-

erations. On the other hand, we only perform one iteration,

and the novelty of our approach concerns the peculiar abil-

ity to leverage on the depth information available for the

images in DT to generate plausible new samples.

Running D4-UDA on DT yields semantic pseudo-labels

for every image in DT . Yet, as described in Sec. 3.1 (Se-

mantics from Depth), each image in DT is also endowed

with a depth prediction, provided by a self-supervised

monocular depth estimation network. We can take advan-

tage of this information to formulate a novel depth-aware

data augmentation strategy whereby portion of images and

corresponding pseudo-labels are copied onto others so as

to synthesize samples for the self-training procedure. The

crucial difference between similar approaches presented in

[32, 48] and ours consists in the deployment of depth in-

formation to steer the data augmentation procedure towards

more plausible samples. Indeed, a first intuition behind our

method deals with semantic predictions being less accurate

for objects distant from the camera: as such predictions play

the role of labels in self-training, we prefer to pick closer

rather than distant objects in order to generate training sam-

ples. Moreover, we reckon certain kinds of objects, like per-

sons, vehicles and traffic signs, to be more plausibly trans-

ferable across different images as they tend to be small and

less bound to specific spatial locations. On the contrary,

it is quite unlikely to merge seamlessly a piece of road or

building from a given image into a different one.

Given N randomly selected images xn from DT , with

n ∈ {1, . . . , N}, paired with semantic pseudo-labels sn and

depth predictions dn, we augment x1, by copying on it pix-

els from the set X src = {x2, · · · , xN}. For each pixel of

the augmented image we have N possible candidates, one

from x1 itself and N − 1 from the images in X src. We fil-

ter such candidates according to two criteria: the predicted

depth should be lower than a threshold t and the semantic

prediction should belong to a predefined set of classes, C∗.

Hence, we define the set of depths of the filtered candidates

at each spatial location p as:

Dp = {dnp | dnp < t ∧ snp ∈ C∗} n ∈ {1, . . . , N}. (4)

In our experiments, for each image the depth threshold t is

set to the 80th percentile of the depth distribution, so as to

avoid selecting pixels from the farthest objects in the scene.

C∗ contains all things classes (e.g. person, car, traffic light,

etc.), which include foreground elements that can be copied

onto other images without altering the plausibility of the

scene, while excluding all the stuff classes, which include

background elements that cannot be easily moved across

scenes. This categorization is similar to the one proposed

in [55] and we consider it easy to replicate in other datasets.

Then, we synthesize a new image xz and corresponding

pseudo-labels sz , by assigning at each spatial location p the

candidate with the lowest depth, so that objects from differ-

ent images will overlap plausibly into the synthesized one:

xz
p = xk

p szp = skp (5)

k =

{
1, Dp = ∅

n s.t. dnp = minDp, Dp ̸= ∅
(6)

In Fig. 4 we depict our depth-based procedure to synthesize

new training samples, considering, for the sake of simplic-

ity, the case where N is 2.

Hence, with the procedure detailed above, we synthesize

an augmented version of DT , used to distill the whole D4-

UDA framework into a single model by a self-training pro-

cess. This dataset is much larger and exhibits more variabil-

ity than the original DT . Due to its reliance on depth infor-

mation, we dub our novel technique as DBST (Depth-Based

Self-Training). The results reported in Sec. 4.3 prove its

remarkable effectiveness, both when used as the final stage

following D4 as well as when deployed as a standalone self-

training procedure applied to any other UDA method.

4. Experiments

4.1. Implementation Details

Network Architectures. We use Monodepth2 [14] to

generate depth proxy-labels for the procedure described in
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AdaptSegNet [49] 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.6 32.5 35.4 3.9 30.1 28.1 42.4 85.6

D4-AdaptSegNet + DBST 93.1 53.0 85.1 42.8 27.3 35.8 43.9 18.5 85.9 39.0 89.9 63.0 31.6 86.6 39.8 36.7 0 42.4 35.0 50.0 90.3

MaxSquare [5] 88.1 27.7 80.8 28.7 19.8 24.9 34.0 17.8 83.6 34.7 76.0 58.6 28.6 84.1 37.8 43.1 7.2 32.2 34.5 44.3 86.9

D4-MaxSquare + DBST 92.9 51.2 84.7 43.5 22.2 35.7 42.5 20.0 86.2 42.0 90.0 63.7 33.0 86.9 45.5 50.9 0 42.2 41.4 51.3 90.3

BDL [28] 88.2 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5 89.2

D4-BDL + DBST 93.2 52.6 86.4 44.1 31.2 36.5 42.4 36.1 86.3 41.0 89.8 63.3 37.4 86.3 42.8 57.8 0 40.3 37.9 52.9 90.7

MRNET [69] 90.5 35.0 84.6 34.3 24.0 36.8 44.1 42.7 84.5 33.6 82.5 63.1 34.4 85.8 32.9 38.2 2.0 27.1 41.8 48.3 88.3

D4-MRNET + DBST 93.2 51.6 86.1 45.9 24.5 37.9 47.4 40.4 85.3 37.5 89.6 64.7 39.8 85.8 41.1 53.2 8.9 17.1 33.4 51.7 90.0

Stuff and things* [55] 90.2 43.5 84.6 37.0 32.0 34.0 39.3 37.2 84.0 43.1 86.1 61.1 29.9 81.6 32.3 38.3 3.2 30.2 31.9 48.3 88.8

D4-Stuff and things + DBST 93.3 54.0 86.5 46.4 32.3 37.7 45.2 39.5 85.5 39.4 90.0 63.7 32.8 85.5 32.0 39.5 0 37.7 35.5 51.4 90.5

FADA [54] 92.5 47.5 85.1 37.6 32.8 33.4 33.8 18.4 85.3 37.7 83.5 63.2 39.7 87.5 32.9 47.8 1.6 34.9 39.5 49.2 88.9

D4-FADA + DBST 93.9 58.2 86.4 45.9 29.6 36.9 44.6 27.0 86.3 39.4 90.0 64.9 41.0 85.8 34.6 51.2 9.9 24.2 37.3 52.0 90.7

LTIR [22] 92.9 55.0 85.3 34.2 31.1 34.4 40.8 34.0 85.2 40.1 87.1 61.1 31.1 82.5 32.3 42.9 3 36.4 46.1 50.2 90.0

D4-LTIR + DBST 94.2 59.6 86.9 43.9 35.3 36.9 45.7 36.1 86.2 40.6 90.0 65.9 38.2 84.4 33.3 52.4 13.7 46.2 51.7 54.1 91.0

ProDA [64] 87.8 56.0 79.7 46.3 44.8 45.6 53.5 53.5 88.6 45.2 82.1 70.7 39.2 88.8 45.5 59.4 1.0 48.9 56.4 57.5 89.1

D4-ProDA + DBST 94.3 60.0 87.9 50.5 43.0 42.6 50.8 51.3 88.0 45.9 89.7 68.9 41.8 88.0 45.8 63.8 0 50.0 55.8 58.8 92.1

Table 1. Results on GTA5→CS. When available, checkpoints provided by authors are used. * denotes method retrained by us.
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AdaptSegNet* [49] 75.6 78.0 89.7 28.5 3.4 76.0 28.5 85.1 27.2 55.3 46.6 0 49.5 86.9

D4-AdaptSegNet + DBST 87.7 80.1 94.0 61.8 66.0 81.1 32.2 85.4 31.3 59.0 52.3 0 55.9 90.2

MaxSquare* [5] 72.4 79.2 89.2 36.0 4.6 75.7 31.5 84.9 30.7 55.8 45.8 8.6 51.2 87.3

D4-MaxSquare + DBST 87.5 80.0 93.7 61.8 7.3 80.8 33.2 84.6 35.1 58.1 48.1 8.2 56.5 90.1

MRNET* [69] 84.6 79.7 93.9 56.3 0 80.5 35.4 88.9 27.2 59.4 56.3 0 54.5 90.0

D4-MRNET + DBST 88.3 79.9 93.9 63.0 6.3 81.3 35.5 84.3 31.3 59.5 47.9 0 55.9 90.2

Table 2. Results on SYNSEQ→CS. * denotes method retrained by us.

Sec. 3.1. We adapt the general framework presented in

[38] to our setting by deploying the popular Deeplab-v2 [3]

for depth estimation and semantic segmentation networks.

Both networks consist of a backbone and an ASPP mod-

ule [3], which substitute, respectively, the encoder and de-

coder used in [38]. The backbone is implemented as a di-

lated ResNet50 [61]. We also remove the downsampling

and upsampling operations used in [38] when learning the

transfer function between depth and semantics. More pre-

cisely, in our architecture the transfer function is realized as

a simple 6-layers CNN with kernel size 3 × 3 and Batch

Norm [20]. Following the recent trend in UDA for se-

mantic segmentation [49, 5, 28, 69, 55, 54, 22], during

DBST we train a single Deeplab-v2 [3] model, with a di-

lated ResNet101 pre-trained on Imagenet [11] as backbone.

Training Details. Our pipeline is implemented using

PyTorch [35] and trained on one NVIDIA Tesla V100 GPU

with 16GB of memory. In every training and test phase

we resize input images to 1024×512, with the exception of

DBST, when we first perform random scaling and then ran-

dom crop with size 1024×512. During DBST we use also

color jitter to avoid overfitting on the pseudo-labels. In our

version of [38], the depth and the transfer network are opti-

mized by Adam [23] with batch size 2 for 70 and 40 epochs,

respectively, while the semantic segmentation network is

trained by SGD with batch size 2 for 70 epochs.The final

model obtained by DBST is trained again with SGD, batch

size 3 and for 30 epochs. We adopt the One Cycle learn-

ing rate policy [45] in every training, setting the maximum

learning rate to 10−4 but in DBST, where we use 10−3.

4.2. Datasets

We briefly describe the datasets adopted in our exper-

iments, pointing to the Suppl. Mat. for additional details.

We follow common practice [49, 22, 28] and test our frame-

work in the synthetic-to-real case using GTA5 [39, 40] or

SYNTHIA [42] as synthetic datasets. The former consists

in synthetic images captured with the game Grand Theft

Auto V, while the latter is composed of images generated

by rendering a virtual city. Since our method requires video

sequences to train Monodepth2 [14], we use the split SYN-

THIA VIDEO SEQUENCES (SYNTHIA-SEQ) in the ex-

periments involving the SYNTHIA dataset. As for real

images, we leverage the popular Cityscapes dataset [10],

which consists in a large collection of video sequences of

driving scenes from 50 different cities in Germany.

4.3. Results

We report here experimental results obtained in two do-

main adaptation benchmarks, which show how the combi-

nation with our D4 method allows to boost performance of

recent UDA for semantic segmentation approaches.



Figure 5. From left to right: RGB image, prediction from UDA method, prediction from D4-UDA + DBST, GT. The top two rows deal

with GTA5→CS, the other two with SYNSEQ→CS. Selected methods are, from top to bottom: LTIR [22], BDL [28], MaxSquare [5] and

MRNET [69]. In all these examples our proposal can ameliorate dramatically the output of the given stand-alone method, especially on

classes featuring large and regular shapes, like road in rows 1-3, sidewalk in rows 2-4 and wall in row 2.

GTA5→CS. Tab. 1 reports results on the most pop-

ular UDA benchmark for semantic segmentation, i.e.

GTA5→CS, where methods are trained on GTA5 and tested

on Cityscapes. We selected the most relevant UDA ap-

proaches proposed in the last years [49, 5, 28, 69, 55, 54,

22, 64], using checkpoints provided by authors when avail-

able. We report per-class and overall results in terms of

mean intersection over union (mIoU) and pixel accuracy

(Acc), when each method is either used stand-alone or de-

ployed within our proposal (i.e. D4 + DBST). The reader

may notice how every UDA method does improve consid-

erably if combined with our proposal, despite the variabil-

ity of their stand-alone performances. Indeed, AdaptSeg-

Net [49], which yields about 42 in terms of mIoU, reaches

50 when embedded into our framework. Likewise, ProDA,

currently considered the s.o.t.a. UDA method, improves

in mIoU from 57.5 to 58.8. Moreover, we can observe in

Tab. 1 that our method produces a general improvement for

all classes, although we experience a certain performance

variability for some of them (such as train, motorbike and

bicycle), probably due to noisy pseudo-labels used during

DBST. Conversely, our method yields consistently a sig-

nificant gain on classes characterized by large and regular

shapes, namely road, sidewalk, building, wall and sky. This

validates the effectiveness of a) the geometric cues deriv-

able from depth to predict the semantics of these kind of

objects and b) the methodology we propose to leverage on

these additional cues in UDA settings. This behavior is also

clearly observable from qualitatives in Fig. 5. We point out

that, to the best of our knowledge, the performance obtained

by D4-ProDA + DBST, i.e. 58.8 mIoU (last row of Tab. 1)

establishes the new state-of-the-art for GTA5→CS.

SYNSEQ→CS. Akin to common practice in literature

we present results also on the popular SYNTHIA dataset.

As our pipeline requires video sequences to train the self-

supervised monocular depth estimation network, we select

the SYNTHIA VIDEO SEQUENCES split for training and

the Cityscapes dataset for testing. We will call this setting

SYNSEQ→CS. To address it, we re-trained the UDA meth-

ods for which the code is available and the training proce-

dure is more affordable in terms of memory and run-time re-

quirements, namely AdaptSegNet [49], MaxSquare [5] and

MRNET [69]. The results in Tab. 2 show that all the se-

lected UDA approaches exhibit a substantial performance

gain when coupled with our proposal, with a general im-

provement in all classes. In particular, similarly to the re-

sults obtained in GTA5→CS, we observe a consistent im-

provement for classes related to objects with large and reg-

ular shapes (as depicted also in Fig. 5), with the only excep-

tion of a slight performance drop for the class building when

using MRNET [69] (last row of Tab. 2). We argue that our

approach is relatively less effective with MRNET [69] as,

unlike AdaptSegNet [49] and MaxSquare [5], it yields al-

ready satisfactory results in those classes which are usually

improved by the geometric clues injected by D4.

In the Suppl. Mat. we show that it is also possible to

exploit the depth ground-truths provided by the SYNTHIA

dataset as an additional source of supervision during the

training of Monodepth2 [14], obtaining a small improve-

ment in the performances of the overall framework.

4.4. Analysis

We report here the most relevant analysis concerning our

work. Additional ones can be found in the Suppl. Mat..

Ablation studies. In Tab. 3, we analyze the impact on

the performance of our two main contributions, i.e. injec-



tion of geometric cues into UDA methods by D4 and DBST.

Purposely, we select the GTA5→CS benchmark and, for

the top performing UDA methods, we report the mIoU fig-

ures obtained by using the stand-alone UDA method (col-

umn UDA), combining it with D4 (column D4-UDA), ap-

plying DBST directly on the stand-alone method (column

UDA + DBST) and embedding the method into our full

pipeline (column D4-UDA + DBST). We can observe that

each of our novel contributions improves the performance

of the most recent UDA methods by a large margin, which

is even more remarkable considering that the selected meth-

ods already include one or more step of self-training. More-

over, D4 and DBST further enhance the performances of

any selected method when deployed jointly, as shown in the

column D4-UDA + DBST, suggesting that they are com-

plementary. In order to further assess the effectiveness of

DBST, in the column D4-UDA + ST we report results ob-

tained by D4-UDA in combination with a baseline self-

training procedure, which consists in simply fine-tuning the

model by its own predictions on the images of the target

domain. As the only difference between this procedure and

our DBST is the dataset employed for fine-tuning, the re-

sults prove the effectiveness of DBST in generating a varied

set of plausible samples more amenable to self-training than

the original images belonging to the target domain.

Alternative strategies to exploit depth. As explained in

Sec. 3.1 Semantics from Depth, we rely on the mechanism

of transferring features across tasks and domains from [38]

to inject depth cues into semantic segmentation. To validate

our choice, we explore two possible alternatives, namely

DeepLabV2-RGBD and DeepLabV2-Depth. Both consist

in the popular DeepLabV2 [3] network, with RGBD images

in input in the first case and depth maps (no RGB) in the

second (more details in the Suppl. Mat.). Tab. 4 compares

the performance of these alternatives with our method, ei-

ther when used standalone (rows 2, 3, and 4) or when com-

bined with LTIR [22] according to the strategy presented in

Sec. 3.1 Combine with UDA. Results allow us to make some

important considerations. First, our intuition on the possi-

bility of exploiting depth to improve semantics is correct

since also simple approaches improve over the baseline (re-

ported in the first row of the table). Nonetheless, these naive

methods produce a significantly smaller improvement com-

pared to our approach, showing that our decision to adapt

[38] to the UDA scenario is not obvious. Moreover, [38]

requires only RGB images at test time. Finally, when com-

bined with LTIR [22], a stronger depth-to-semantic model

provides better results, validating our choice once again.

Impact of video sequences. As described in Sec. 3.1,

we obtain depth proxy-labels with a self-supervised depth

estimation network [14], that we train using the raw video

sequences (just RGB images) provided by the datasets in-

volved in our experiments. In order to validate that using

Method UDA D4-UDA UDA +

DBST

D4-UDA +

DBST

D4-UDA +

ST

BDL [28] 48.5 49.6 51.7 52.9 50.1

MRNET [69] 48.3 49.6 50.0 51.7 50.3

Stuff and Things* [55] 48.3 49.1 50.4 51.4 49.4

FADA [54] 49.3 49.9 51.4 52.0 50.0

LTIR [22] 50.2 51.1 53.1 54.1 51.5

ProDa [64] 57.5 57.6 58.0 58.8 56.8

Table 3. Impact on performance of the two components of our pro-

posal (D4, DBST) when applied separately or jointly to selected

UDA methods on GTA5→CS. * indicates that the method was re-

trained by us. Results are reported in terms of mIoU.

Method mIoU

DeepLabV2-RGB 34.5

DeepLabV2-RGBD 35.5

DeepLabV2-Depth 36.5

Semantics from depth (Sec. 3.1) 43.1

DeepLabV2-RGBD
⊕

LTIR [22] 47.7

DeepLabV2-Depth
⊕

LTIR [22] 49.3

D4-LTIR 51.1

Table 4. Comparison between alternative methods to infer se-

mantics from depth. DeepLabV2-RGB, DeepLabV2-RGBD and

DeepLabV2-Depth stand for DeepLabV2 [3] trained on DS , using

respectively RGB images, RGBD images or depth proxy-labels as

input, while “Semantics from depth” is the approach described in

Sec. 3.1 Semantics from Depth. The symbol
⊕

represents the

merge operation described in Sec. 3.1 Combine with UDA. Re-

sults are reported in terms of mIoU on the Cityscapes dataset.

video sequences from the target domain doesn’t provide any

advantage to our framework, we train AdaptSegNet [49]

on GTA5→CS using the whole training split available for

Cityscapes (i.e. 83300 images with temporal consistency).

We choose AdaptSegNet [49] since it can be considered the

building block of many UDA methods. We observe a drop

in performances from 42.4 to 41.9 mIoU, showing that us-

ing video sequences does not boost semantic segmentation

in a UDA setting, probably because of the similarity be-

tween consecutive frames, and that the improvement pro-

duced by our framework is provided by the effective strat-

egy that we adopt to exploit depth.

5. Conclusion

We have shown how to exploit self-supervised monoc-

ular depth estimation in UDA problems to obtain accurate

semantic predictions for objects with strong geometric pri-

ors (like road and buildings). As all recent UDA approaches

lack such geometric knowledge, we build our D4 method as

a depth-based add-on, pluggable into any UDA method to

boost performances. Finally, we employed self-supervised

depth estimation to realize an effective data augmentation

strategy for self-training. Our work highlights the possibil-

ity of exploiting auxiliary tasks learned by self-supervision

to better tackle UDA for semantic segmentation, paving the

way for novel research directions.



References

[1] Matteo Biasetton, Umberto Michieli, Gianluca Agresti, and

Pietro Zanuttigh. Unsupervised domain adaptation for se-

mantic segmentation of urban scenes. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR) Workshops, June 2019. 2

[2] Wei-Lun Chang, Hui-Po Wang, Wen-Hsiao Peng, and Wei-

Chen Chiu. All about structure: Adapting structural infor-

mation across domains for boosting semantic segmentation.

2019 IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition (CVPR), Jun 2019. 2

[3] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,

Kevin Murphy, and Alan L. Yuille. Deeplab: Semantic im-

age segmentation with deep convolutional nets, atrous con-

volution, and fully connected crfs. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 40(4):834–848,

Apr 2018. 1, 6, 8

[4] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian

Schroff, and Hartwig Adam. Encoder-decoder with atrous

separable convolution for semantic image segmentation. In

Proceedings of the European conference on computer vision

(ECCV), pages 801–818, 2018. 1

[5] Minghao Chen, Hongyang Xue, and Deng Cai. Do-

main adaptation for semantic segmentation with maximum

squares loss. 2019 IEEE/CVF International Conference on

Computer Vision (ICCV), Oct 2019. 6, 7

[6] Yuhua Chen, Wen Li, Xiaoran Chen, and Luc Van Gool.

Learning semantic segmentation from synthetic data: A geo-

metrically guided input-output adaptation approach. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 1841–1850, 2019. 2

[7] Yuhua Chen, Wen Li, Xiaoran Chen, and Luc Van Gool.

Learning semantic segmentation from synthetic data: A geo-

metrically guided input-output adaptation approach. 2019

IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), Jun 2019. 2

[8] Yuhua Chen, Wen Li, and Luc Van Gool. Road: Reality ori-

ented adaptation for semantic segmentation of urban scenes.

2018 IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition, Jun 2018. 1

[9] Jaehoon Choi, Taekyung Kim, and Changick Kim. Self-

ensembling with gan-based data augmentation for domain

adaptation in semantic segmentation. 2019 IEEE/CVF Inter-

national Conference on Computer Vision (ICCV), Oct 2019.

2

[10] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe

Franke, Stefan Roth, and Bernt Schiele. The cityscapes

dataset for semantic urban scene understanding. In The

IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), June 2016. 2, 6

[11] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-

Fei. Imagenet: A large-scale hierarchical image database.

In 2009 IEEE Conference on Computer Vision and Pattern

Recognition, pages 248–255, 2009. 1, 6

[12] Ravi Garg, Vijay Kumar B.G., Gustavo Carneiro, and Ian

Reid. Unsupervised cnn for single view depth estimation:

Geometry to the rescue. Lecture Notes in Computer Science,

page 740–756, 2016. 2

[13] Clement Godard, Oisin Mac Aodha, and Gabriel J. Bros-

tow. Unsupervised monocular depth estimation with left-

right consistency. 2017 IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR), Jul 2017. 2

[14] Clement Godard, Oisin Mac Aodha, Michael Firman, and

Gabriel Brostow. Digging into self-supervised monocular

depth estimation. 2019 IEEE/CVF International Conference

on Computer Vision (ICCV), Oct 2019. 1, 2, 3, 5, 6, 7, 8

[15] Vitor Guizilini, Rui Hou, Jie Li, Rares Ambrus, and Adrien

Gaidon. Semantically-guided representation learning for

self-supervised monocular depth. In Proceedings of the

Eighth International Conference on Learning Representa-

tions (ICLR), 2020. 2

[16] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In 2016 IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 770–

778, 2016. 2

[17] Judy Hoffman, E. Tzeng, T. Park, Jun-Yan Zhu, Phillip Isola,

Kate Saenko, Alexei A. Efros, and Trevor Darrell. Cycada:

Cycle-consistent adversarial domain adaptation. In ICML,

2018. 2

[18] Judy Hoffman, Dequan Wang, Fisher Yu, and Trevor Darrell.

Fcns in the wild: Pixel-level adversarial and constraint-based

adaptation, 2016. 1

[19] Lukas Hoyer, Dengxin Dai, Yuhua Chen, Adrian Koring,

Suman Saha, and Luc Van Gool. Three ways to improve se-

mantic segmentation with self-supervised depth estimation.

In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 11130–11140, 2021.

2

[20] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift, 2015. 6

[21] Jianbo Jiao, Ying Cao, Yibing Song, and Rynson Lau. Look

deeper into depth: Monocular depth estimation with seman-

tic booster and attention-driven loss. In Proceedings of the

European Conference on Computer Vision (ECCV), Septem-

ber 2018. 2

[22] Myeongjin Kim and Hyeran Byun. Learning texture invari-

ant representation for domain adaptation of semantic seg-

mentation. 2020 IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), Jun 2020. 1, 2, 3, 6, 7, 8

[23] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In 3rd International Conference on

Learning Representations (ICLR), 2015. 6

[24] Marvin Klingner, Jan-Aike Termöhlen, Jonas Mikolajczyk,
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1. Additional Implementation Details

As stated in Sec. 3.1 of the main paper, we obtain depth

proxy-labels by deploying a self-supervised method for

solving monocular depth estimation from video sequences.

Specifically, we train Monodepth2 [6] following the train-

ing protocol and hyper-parameters used in the original pa-

per. We train it for 20 epochs using mixed mini-batch of

size 6, composed of 3 real and 3 synthetic images. We resize

samples at resolution 1024×512 for training and testing. It

is important to train the network on both domains jointly

because we want depth predictions to be aligned across do-

mains. Self-supervised depth methods typically estimates

depth maps up to a scale-factor. Thus, we train on both

domains simultaneously to force the network to yield pre-

dictions from the two domains that share the same range

and scale. When DS is synthetic, we can collect depth

ground-truth labels with minimum effort. In such case, we

could exploit these labels to provide an additional source

of supervision to Monodepth2. SYNTHIA-SEQ provides

much less images with smaller variability with respect to

GTA5, but provides depth ground-truth labels. Thus, in

the SYNSEQ→CS setting, we could train Monodepth2 by

adding a L1 loss between predictions and ground-truths of

SYNTHIA-SEQ to the set of Monodepth2 losses, so as

to achieve better pseudo-labels results. Nevertheless, the

availability of ground-truth labels is not crucial to improve

the performance of the considered UDA method. Indeed,

in Tab. 1 we can observe that the use of synthetic depth

ground-truth labels provides just a slight performance im-

provement (i.e. 1% mIoU or less).

As regards the training of semantics prediction from

depth features, we follow the protocol explained in [9]. We

train the depth network simultaneously on DS and DT , by

minimizing the mean absolute error (i.e. L1 loss) between

predicted depth maps and depth proxy-labels, previously

generated for both domains. Then, we train the semantic

network only on DS , using a weighted Cross Entropy loss

with weights computed as in [18]. The weights of the two

networks are pre-initialized on ImageNet, and, following a

common protocol [14, 18, 7], all Batch Normalization lay-

ers are frozen both at training and test time to use ImageNet

statistics. Differently from [9], we deploy the more perfor-

mant DeepLabV2 [1] architecture for both networks: as the

framework requires to split the network into an encoder and

a decoder, we consider the backbone as the encoder and the

ASPP module as the decoder. Hence, the transfer function

in D4 is learned by minimizing the mean squared distance

(i.e. L2 loss) between the semantic features extracted by

the semantic network encoder and the ones hallucinated by

the transfer function itself starting from the depth encoder.

Finally, during DBST, the final distilled model is obtained

by minimizing a standard Cross Entropy loss on DT and

exploiting only the pseudo-labels, as explained in Sec. 3.2

of the main paper.

2. Additional Datasets Details

Cityscapes. The Cityscapes dataset [4] provides a large

collection of video sequences of driving scenes from 50 dif-

ferent European cities. The dataset is composed of 150000

video-sequence images, of which 83300 are used for train-

ing. A subset of 5000 images from Cityscapes is com-

monly used as benchmark for semantic segmentation, as

these images are annotated with high-quality pixel-level se-

mantic labels (19 classes). This subset is split into train,

validation and test with 2975, 500 and 1525 images re-

spectively. In our experiments we train Monodepth2 [6] on

the 83300 training sequences. For training D4 and DBST

we use the 2975 train images (without their semantic la-

bels) and, following the protocol adopted in recent works

[14, 2, 8, 18, 17, 16, 7], we evaluate our final model on

the validation split. The augmented dataset obtained dur-

ing DBST starting from the 2975 images accounts for 7500

samples.

GTA5. The GTA5 dataset [10, 11] consists in synthetic



images captured while playing the video-game Grand Theft

Auto V. It consists of 120000 video-sequence images that

we use in the Monodepth2 [6] training procedure. More-

over, the dataset provides 24966 samples with fine semantic

annotations (same 19 classes as Cityscapes). We train the

depth network of D4 on only 3000 randomly sampled im-

ages among the 24966 to keep the training balanced with

the 2975 images of Cityscapes. Finally, we train the seman-

tic and transfer network of D4 on the whole 24966 synthetic

images.

SYNTHIA VIDEO SEQUENCES. The SYNTHIA

dataset [12] is composed of images generated by render-

ing a virtual city created with the Unity development plat-

form. Since our method requires video sequences to train

Monodepth2 [6], we use the split SYNTHIA VIDEO SE-

QUENCES, selecting sub-sequences Spring, Summer, Fall,

Winter, Dawn and Fog. We collect thus a total of 26948 im-

ages, paired with fine-grained semantic labels (12 classes in

common with Cityscapes). In particular, we train on sky,

building, road, sidewalk, fence, vegetation, pole, car, traf-

fic sign, person, bicycle, traffic light. It is worth noticing

that to make the Cityscapes dataset consistent with SYN-

THIA VIDEO SEQUENCES, it is necessary to map the

Cityscapes class rider into bicycle and collapse bus and

truck into car. We use only 3000 randomly sampled im-

ages to train the depth, semantic and transfer network of D4,

as well as for the training of the other considered methods

which were retrained by us (* in Tab. 2 of the main paper)

due to the authors not providing their results on SYNTHIA

VIDEO SEQUENCES.

3. Semantics From Depth

In this section, we evaluate alternative ways to predict

semantics in the target domain by exploiting also the depth

cues available once depth proxy-labels have been computed

as discussed in sec 3.1 (Semantics from depth) of the main

paper. This study motivates our choice to rely on the mech-

anism of transferring features across tasks and domains [9],

with the improvements and modifications discussed in Sec.

4.1 of the main paper and Sec. 1 of this supplementary doc-

ument. As we have semantic labels only for the source do-

main DS , all approaches are trained only on DS , and their

ability to generalize is assessed on the target domain DT .

We investigate two possible alternatives, namely:

• a semantic segmentation network that processes RGB-

D images, where the proxy depth of each image is

stacked as an additional channel

• a semantic segmentation network that processes di-

rectly proxy depths, without using RGB information.

We realize both options by training the popular

DeepLabV2 [1] architecture to perform semantic segmen-

Method mIoU

AdaptSegNet* [14] 49.5

D4-AdaptSegNet + DBST (w/o synthetic GT) 55.9

D4-AdaptSegNet + DBST (w/ synthetic GT) 56.9

MaxSquare* [2] 51.2

D4-MaxSquare + DBST (w/o synthetic GT) 56.5

D4-MaxSquare + DBST (w/ synthetic GT) 57.4

MRNET* [18] 54.5

D4-MRNET + DBST (w/o synthetic GT) 55.9

D4-MRNET + DBST (w/ synthetic GT) 56.3

Table 1. Results on the SYNSEQ→CS benchmark with or without

synthetic ground-truths. * denotes method retrained by us.

tation on DS , initializing the network with ImageNet [5]

pre-trained weights. Moreover, in the first case, we add a

convolutional layer at the beginning of the architecture, to

reduce the input RGBD channels from 4 to 3, while in the

second case we obtain 3-channels input images by stacking

three times the proxy depth map. In the following, we will

call DeepLabV2-RGBD the first network and DeepLabV2-

Depth the second one. We also consider as baseline the

performance of DeepLabV2 trained only on RGB images,

referred to as DeepLabV2-RGB.

In Tab. 2 we report mIoU results obtained on Cityscapes

(i.e. our target domain) by DeepLabV2-RGB, DeepLabV2-

RGBD, DeepLabV2-Depth, and our method. We ob-

serve that the RGBD and the Depth versions yield slightly

better results compared to the RGB baseline. Inter-

estingly, DeepLabV2-Depth provides better results than

DeepLabV2-RGB and DeepLabV2-RGBD, which supports

our intuition about semantic cues extracted from depth

alone being more effectively transferable across different

domains due to their reliance on geometry rather than ap-

pearance. Yet, the ability to overcome the domain shift by

DeepLabV2-RGBD and DeepLabV2-Depth is limited, as

performance is low for both variants. On the contrary, by

tackling the problem with the method proposed in the main

paper, we can improve the baseline by 8.6% in terms of

mIoU.

Moreover, we evaluate DeepLabV2-RGBD and

DeepLabV2-Depth also in combination with an UDA

method, as proposed in Sec. 3.1 (Combine with UDA) of

the main paper. In the last three rows of Tab. 2, we report

mIoU results obtained by such combinations (row 5 and 6),

compared to our proposal (last row), while considering one

of the best performing UDA methods, namely LTIR [7]. As

intuitively expected, we observe that a better depth-based

semantic model leads to a better combination with the

selected UDA method, motivating once again the need

for an approach robust to domain-shift in order to infer

semantics from depth cues in UDA settings.

Rather than relying on self-supervised depth on both do-



Method mIoU

DeepLabV2 RGB 34.5

DeepLabV2-RGBD 35.5

DeepLabV2-Depth 36.5

Semantics from depth (sec 3.1) 43.1

DeepLabV2-RGBD
⊕

LTIR [7] 47.7

DeepLabV2-Depth
⊕

LTIR [7] 49.3

D4-LTIR (i.e. Semantics from depth
⊕

LTIR) 51.1

Table 2. Comparison between alternative methods to infer seman-

tics with the aid of depth cues. DeepLabV2-RGB, DeepLabV2-

RGBD and DeepLabV2-Depth stand for DeepLabV2 [1] trained

on DS , using respectively RGB images, RGBD images or depth

proxy-labels as input, while “Semantics from depth” is the ap-

proach described in the subsection with the same name of sec 3.1

in the main paper. The symbol
⊕

represents the merge operation

described in subsection Combine with UDA of Sec. 3.1 of the main

paper. Results are reported in terms of mIoU on the Cityscapes

dataset.

mains as done for the previous cases, one may try to use

just the depth provided by synthetic source dataset. To the

best of our knowledge, only two works [15, 3] proposed

to exploit depth in a UDA context for outdoor scenes seg-

mentation. We compare here our D4 module with [15],

the only publicly available framework, to show that the ad-

ditional information for the target domain is a key com-

ponent for Domain Adaptation. We retrained [15] with

the same hyper-parameters, and changed only the training

split (i.e. SYNTHIA-SEQ instead of SYTNHIA-RAND-

CITYSCAPES). As Tab 3 shows, D4 surpasses by a large

margin (3.6%) [15], suggesting that self-supervised infor-

mation for the target domain can be used to boost perfor-

mance in Domain Adaptation.

Method mIoU

DADA [15] 42.3

D4 (ours) 45.9

Table 3. Comparison between depth-based frameworks.

4. DBST vs DACS [13]

In Tab. 4 we compare our DBST with the method pre-

sented in DACS [13], as they share some similarities. In

particular, both approaches generate training samples by

copying portions of images onto other images. However,

they differ in three main aspects:

• [13] copies portions of images from DS onto images

from DT , while in our DBST we use exclusively im-

ages from DT .

• In our proposal, we copy only image patches whose se-

mantic predictions belong to a predefined set of classes

Method mIoU

D4-LTIR [7] 51.1

D4-LTIR [7] + DACS [13] 52.7

D4-LTIR [7] + DBST 54.1

Table 4. Comparison between the approach proposed in [13]

(DACS) and our DBST, when applied to our D4 combined with

[7]. Results are reported in terms of mIoU in the GTA5→CS

benchmark.

Method mIoU

AdaptSegNet (w/o video) [14] 42.4

AdaptSegNet (w/ video) 41.9

Table 5. AdaptSegNet [14] trained with or without additional un-

labeled target images

that we deem as more amenable to be moved across

images, like, e.g., person, car and pole; conversely, in

[13] no semantic filter is applied to select the patches

that will be copied across the images.

• Unlike [13], we exploit depth information to plausibly

stack objects in the generated sample.

In addition to these points, in our DBST we further exploit

depth information to guide the selection of the patches to be

copied by excluding areas of the scene that are too far away

from the camera, where semantic predictions are less likely

accurate. In Tab. 4 we report results in the GTA5→CS

benchmark when applying DBST or [13] to D4 combined

with [7]: our DBST outperforms the strategy proposed in

[13], though the latter can also yield a notable performance

improvement.

5. Adding videos to UDA methods

In this section, we empirically demonstrate that using ad-

ditional raw information is not directly useful for the UDA

setting in semantic segmentation. To this purpose, we adopt

[14], which makes use of adversarial training and it can be

considered as the main building block of many UDA meth-

ods proposed in the literature. Moreover, adversarial train-

ing is a plausible strategy to exploit additional unlabeled

images for the target domain. Driven by this reasoning,

we retrained [14] in the GTA5→CS benchmark using the

whole training split available in Cityscapes (i.e. 83300 im-

ages with temporal consistency). The result reported in Tab.

5 suggests that simply collecting more data is not enough

to boost semantic semantic segmentation in a UDA setting,

and more advanced techniques as the one proposed in this

work are necessary to extrapolate useful data.



6. Qualitative Results

In Fig. 1, 2, 3, 4, 5, 6 we report several qualitative re-

sults of our D4 proposal combined with the different UDA

methods reported in Tab. 1 and Tab. 2 of the main paper. In

every case, we observe an overall improvement in the qual-

ity of the predictions. In particular, thanks to the additional

information provided by depth maps, the errors in large ob-

jects with regular shapes are partially removed (see first and

second column of Fig. 1). Moreover, with the proposed

merging algorithm (Sec 3.1) and with the DBST algorithm

detailed in Sec. 3.2, we also preserve the good performance

of the selected UDA method for certain classes. For in-

stance, all the predictions concerning classes such as pole

and traffic sign are always maintained or even improved (see

second row of Fig. 2).

7. DBST - Qualitative Results

In Fig. 7 and 8 we show some training samples obtained

with our DBST algorithm. As explained in Sec. 3.2 of the

main paper, we use multiple images from DT as source,

alongside with the corresponding depth maps and predic-

tions (referred to as pseudo-labels), to synthesize new train-

ing pairs. We can notice how the newly generated sam-

ples contain a lot of patterns that would not be present in

the original images, enabling a more effective Self-Training

procedure. We also point out how, thanks to the use of depth

maps, the generated pairs look realistic. For example, in the

third row of Fig. 7, the rider on the left side of the image

is pasted in front of the pole since it appears closer in the

depth maps of the two images.

8. Depth Proxy-Labels

Fig. 9, 10, 11 report depth proxy-labels obtained in the

first step of our pipeline by the self-supervised approach

proposed in Monodepth2 [6]. We note how the produced

depth maps are smooth and accurate on the static parts of

the scene (such as road and buildings), while they tend to

be noisy on moving objects (like cars and pedestrians). De-

spite these imperfections, depth proxy-labels produced by

[6] provide a solid base of geometric clues for objects with

large and regular shapes, which are extensively exploited in

our proposal.
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RGB AdaptSegNet D4-AdaptSegNet + DBST GT

Figure 1. Qualitative results in the GTA5→CS benchmark. From left to right: RGB, prediction from Adaptsegnet [14], prediction from

D4-AdaptSegNet + DBST (our proposal), Ground-Truth.

RGB MaxSquare D4-MaxSquare + DBST GT

Figure 2. Qualitative results in the GTA5→CS benchmark. From left to right: RGB, prediction from MaxSquare [2], prediction from

D4-MaxSquare + DBST (our proposal), Ground-Truth.



RGB LTIR D4-LTIR + DBST GT

Figure 3. Qualitative results in the GTA5→CS benchmark. From left to right: RGB, prediction from LTIR [7], prediction from D4-LTIR +

DBST (our proposal), Ground-Truth.

RGB BDL D4-BDL + DBST GT

Figure 4. Qualitative results in the GTA5→CS benchmark. From left to right: RGB, prediction from BDL [8], prediction from D4-BDL +

DBST (our proposal), Ground-Truth.



RGB AdaptSegNet D4-AdaptSegNet + DBST GT

Figure 5. Qualitative results in the SYNSEQ→CS benchmark. From left to right: RGB, prediction from AdaptSegNet [14], prediction

from D4-AdaptSegNet + DBST (our proposal), Ground-Truth.

RGB MaxSquare D4-MaxSquare + DBST GT

Figure 6. Qualitative results in the SYNSEQ→CS benchmark. From left to right: RGB, prediction from MaxSquare [2], prediction from

D4-MaxSquare + DBST (our proposal), Ground-Truth.



Figure 7. RGB and pseudo-labels generated for our DBST procedure using D4-LTIR in the GTA5→CS benchmark.



Figure 8. RGB and pseudo-labels generated for our DBST procedure using D4-MRNET in the SYNSEQ→CS benchmark.



Figure 9. Depth proxy-labels for the Cityscapes dataset obtained with Monodepth2 [6]. From top to bottom: RGB, depth obtained by

training Monodepth2 on Cityscapes and GTA5 sequences, depth obtained by training Monodepth2 on Cityscapes and SYNTHIA-SEQ

sequences. Depth maps are shown as inverse depth maps for a better visualization.

Figure 10. Depth proxy-labels for the GTA5 dataset obtained with Monodepth2 [6]. We show RGB images (first row) and corresponding

depth maps (second row), shown as inverse depth maps for a better visualization.

Figure 11. Depth proxy-labels for the SYNTHIA-SEQ dataset obtained with Monodepth2 [6]. We show RGB images (first row) and

corresponding depth maps (second row), shown as inverse depth maps for a better visualization.


