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ABSTRACT: A detailed quantum chemical investigation of a new
reaction mechanism possibly leading to the formation of
cyanoketene (NC—CH=C=O0) in the interstellar medium
(ISM) was carried out. Different reaction channels have been
found by the AutoMeKin program, and the structures and
harmonic force fields of the key stationary points have been
characterized at the density functional theory level employing last-
generation double-hybrid functionals. Finally, single-point compu-
tations at those geometries by state-of-the-art composite wave
function methods provided accurate energies for the evaluation of
thermochemical and kinetic parameters in the framework of an Ab
Initio Transition State Theory based Master Equation (AITSTME)
strategy. Our results indicate that the barrier-less association
reaction of the formyl radical (HCO®) to the cyanocarbene radical (HCCN) can lead to the formation of cyanoketene under the
harsh conditions of the ISM. Canonical rate constants computed for temperatures up to 600 K show that the most abundant product
is indeed cyanoketene. The formation of other, even more stable, species involves higher activation energies and/or less favorable
multi-step processes. Furthermore, to aid the search of cyanoketene, still undetected in the ISM, its rotational spectrum was recorded
up to 530 GHz. The refined set of spectroscopic constants obtained in this way allows for spectral predictions from the microwave to
the terahertz region, particularly for the bright b-type transitions, which can be targeted for the identification of cyanoketene in
spectral line surveys. Despite cyanoketene was already sought without success in a variety of astronomical sources, we suggest to look
for it in those sources where HCO or HCCN have already been detected, namely, W3, NGC2024, W51, K3-50, IRC + 2016, and
TMC-1.
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1. INTRODUCTION cyanomethanimine and Tonolo et al.'’ for cyanoformalde-
hyde). Anyway, computational and experimental studies for
the addition of CN to ketene by Zhang and Du, Sun et al,, and
Edwards and Hershberger'*™'° showed that this reaction leads
to the formation of CO + H,C,N through a dissociative
recombination process. Because reaction ii is a radiative
association process, the final product is expected to be
stabilized by photon emission; otherwise, the excess energy
would lead to back dissociation to the initial reactants, as
already proposed in the case of the formation cyanoacetalde-
hyde."” For this reason, Margulés et al. considered this reaction
unlikely in the ISM but possible on grain surfaces. Finally, a

A recent joint laboratory—observational paper' addressed the
issue of the presence of cyanoketene (NC—CH=C=O0) in
the interstellar medium (ISM). The rationale for the search of
this molecule was the 44-year-old detection of ketene (H,C=
C=0)" and the existence of several CN-containing molecules
in the ISM,® such as cyanoformaldehyde,* aminoacetonitrile,°
benzonitrile,” and many cyanopolyynes.” "' Searched for in
several star-forming regions, cyanoketene was not detected,
and its chemical formation route was discussed by Margules et
al,, who suggested three possible pathways: (i) the addition of
the CN radical to ketene or (ii) to the ketenyl radical (H-C=
C=0) and (iii) the reaction of the C;N radical with water.
While the third reaction would probably lead to different Received: March 6, 2023
products,’ the first two reactions represent plausible formation Revised:  April 1, 2023
pathways for cyanoketene in the ISM. Indeed, the reaction Accepted:  April 3, 2023
between the CN radical and a neutral partner has already been Published: April 12, 2023
shown to be an effective formation route for some other

molecules in the ISM (see, e.g, Vazart et al.'? for
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computational investigation of reaction iii by Xie et al.'®

showed that it cannot occur at very low temperatures because
of a non-negligible energy barrier for the hydrogen abstraction.
The same authors also studied the catalytic effect of water on
the reaction and found that, with the increase of the number of
catalyzing water molecules, the reaction becomes barrierless.
However, as a result of the very low pressure characterizing the
ISM, reactions between more than two reactants are very
unlikely; thus, this reaction channel does not seem plausible for
cyanoketene synthesis.

In addition to these possibilities, a computational study of
Xie et al."” found NCCHCO as an intermediate of the reaction
between atomic oxygen and cyanoacetylene (HC;N) in the gas
phase and on water ice. By investigation of both gas-phase- and
water-ice-catalyzed reactivity, it was shown that the activation
energy governing the gas-phase process can be strongly
lowered by the catalytic activity of water, up to producing a
barrierless process. Another mechanism, involving the reaction
between NCO and C,H,, was proposed by Xie et al.”’ and
leads to cyanoketene as one of the possible products.
Unfortunately, this process involves a non-negligible energy
barrier, which cannot be overcome under the ISM conditions.
Furthermore, the authors performed a kinetic analysis, and the
result demonstrated that the preferred products are HCN and
HC,0.

In the present work, we suggest an alternative mechanism
for the formation of cyanoketene, which involves two reactants
already detected in the ISM, namely, the cyanocarbene
(HCCN)*' and formyl (HCO)** radicals. To obtain an
accurate description of reaction energies and activation
barriers, a full quantum mechanical investigation of different
reaction paths has been carried out combining state-of-the-art
density functionals and wave function composite methods.**
Exploiting these data, a kinetic analysis has next been
performed employing a master equation (ME) approach to
compute the formation rate constants of the products and to
prove the effectiveness of the mechanism proposed.

Additionally, we have extended the study of the rotational
spectrum of cyanoketene into the submillimeter-wave range to
facilitate its astronomical observation. Although most of the
first interstellar detections relied on low-frequency observa-
tions,” the higher frequency spectral windows covered by
modern facilities [such as Atacama Large Millimeter/
Submillimeter Array (ALMA) or Stratospheric Observatory
for Infrared Astronomy (SOFIA)] offer further chances to
detect additional complex organic molecules (COMs), ie.,
molecules containing at least one carbon atom and a total of at
least six atoms. Their capabilities have been demonstrated
recently by the discovery of interstellar species (including
COMs) observable only in the terahertz (THz) domain®*~?°
by exploiting high-frequency ALMA band 10 spectral line
surveys. 28

Based on these premises, the rotational spectrum of
cyanoketene has been measured up to 530 GHz, with the
inclusion of additional b-type Q branch transitions with respect
to the data reported by Margulés et al.' These improvements
allowed for a refinement of all of the spectroscopic constants
and a precise determination of the purely K.,-dependent
centrifugal distortion constants up to the eighth order. On the
whole, the newly determined set of spectroscopic parameters
extends the range of reliable spectral predictions up to the
ALMA band 9 (602—720 GHz).
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2. COMPUTATIONAL DETAILS

2.1. Reaction Mechanism Discovery. Feasible reaction
paths have been generated by means of the AutoMeKin*"~>"
program, designed for the automated reaction mechanism
discovery. The program is based on the application of methods
and concepts rooted in graph theory, reactive molecular
dynamics, and electronic structure. The dynamic simulations
needed to obtain the initial structures of the transition states
(TSs) governing putative reaction mechanisms were per-
formed using the semi-empirical PM7 method® implemented
in the MOPAC package.” A total of 100 trajectories per
iteration (keyword ntraj) were calculated for a total of 10
iterations. The screening parameters used to avoid redundant
structures included a value of 100 cm™ for the smallest
accepted imaginary frequency (keyword imagmin) to also take
into account torsional transition states and a value of 0.1 for
the lowest eigenvalue of the Laplacian used to differentiate the
structures resulting from the fragmentation of an intermediate
(keyword eigLmax). Two other parameters (MAPEmax and
BAPEmax) used to compare the descriptors characterizing the
different structures obtained from the molecular dynamics
simulations were set to 0.002 and 1.5, respectively. Further
details about these screening parameters can be found in ref
37. After this step, optimized geometries and zero-point-
corrected electronic energies of reactants, transition states,
intermediates, and products along the reaction pathways were
obtained by the rev-DSD-PBEP86°*-GD3BJ* double-hybrid
functional in conjunction with the jun-cc-pVTZ basis set.*®
This combination of functional and basis set will be referred to
in the following as rDSD.

Diagonalization of analytical rDSD Hessians®” allowed also
to characterize all of the critical points belonging to the
reaction pathways as minima (reactants, intermediates, and
products) and saddle points (TSs). The different elementary
steps were further characterized following rDSD intrinsic
reaction coordinates (IRCs)*® starting from the different TSs.

The results of the simulations have been analyzed using the
AMK tool,*® which allows for the examination of the extremely
complex reaction networks generated by AutoMeKin, by
visualizing molecular structures with their vibrational normal
modes and checking the potential energy profiles of the
reaction mechanisms investigated. Thanks to AMK, it has been
possible to find the reaction pathways that lead to the
formation of cyanoketene and to select the structures of all of
the critical points ruling these paths. For such structures,
improved electronic energies were obtained by single-point
computations exploiting the junChS-F12 composite scheme
described in more detail in the next subsection.

2.2. junChS-F12 Composite Scheme. It is well-known
that for systems not showing strong multireference character
the coupled-cluster (CC) model including single, double, and
perturbative estimates of triple excitations [CCSD(T)]*
delivers accurate electronic energies provided that complete
basis set (CBS) extrapolation and core valence (CV)
correlation are properly taken into account. The key idea of
the reduced cost cheap scheme (ChS)***'~* is that, starting
from frozen core (fc) CCSD(T) computations in conjunction
with a (partially augmented) triple-{ basis set,"*~*" CBS and
CV terms can be computed with good accuracy and negligible
additional cost employing the second-order Moller—Plesset
perturbation theory (MP2).** In particular, the CBS
extrapolation by the standard n~> two-point formula*’ employs

https://doi.org/10.1021/acsearthspacechem.3c00060
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Figure 1. Energetics of the reaction: junChS-F12 electronic energies augmented by rDSD anharmonic ZPE corrections. Energies are in k] mol™

relative to the reactant limit.

MP2/jun-cc-pV(X+d)Z energies with X = T and Q, whereas
the CV contribution is incorporated as the difference between
all-electron (ae) and fc MP2 calculations, both with the cc-
pCVW(T+d)Z basis set.”” Replacement of conventional
methods by the explicitly correlated (F12) variants®">* leads
to our current standard version of the approach, which is
referred to as junChS-F12.>°7>° A comparison to the most
accurate results available for reaction energies and activation
barriers””**° showed that junChS-F12 energy evaluations at
rDSD optimized geometries provide average absolute errors of
the order of 1 kJ mol™. Therefore, this approach was
employed for all of the stationary points in conjunction with
anharmonic zero-point vibrational energy corrections com-
puted in the framework of the second-order vibrational
perturbation theory®® employing rDSD anharmonic force
fields.

All density functional theory (DFT) calculations were
performed using Gaussian16,”” while junChS-F12 calculations
were performed using MOLPRO.>*~®

2.3. Kinetics. Global and channel-specific rate constants
have been computed in the framework of the Ab Initio
Transition State Theory based Master Equation (AITSTME)
approach employing the MESS software®' to solve the multi-
well one-dimensional master equation by the chemically
significant eigenvalue (CSE) method. The collisional energy
transfer probability is described using the exponential down
model® with a temperature-dependent (AEg,,,) of 260(T/
298)°% cm™! in an argon bath.

For elementary steps governed by distinct saddle points, rate
coeflicients are determined by the conventional transition state
theory (TST) within the rigid-rotor harmonic-oscillator
(RRHO) approximation and including tunneling as well as
non-classical reflection effects using the Eckart model.”®

Instead, rate constants for barrierless elementary reactions
are computed employing the phase space theory (PST).***
The long-range interaction between the incoming reactants is
described by an isotropic attractive potential V(R) = —Cq/R%.%
The C4 parameter (90.12a,°E,) has been obtained by a least
squares fitting of rDSD electronic energies computed at
different values of the HOC—CHCN distance. It is well-known
that PST can overestimate the rate constant of barrierless
association reactions leading to uncertainties of up to a factor
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of 2—3 on the total reaction rates with respect to experimental
data and/or theoretical estimations obtained by more
sophisticated methods.””*® However, the main aim of our
work is to provide a semi-quantitative support to the suggested
reaction mechanism. In this context, the above-mentioned
uncertainty does not impair the comparison between different
products because the entrance channel is common to all of
them. This comment does not detract, of course, from the
possibility of applying in forthcoming studies more elaborate
methods, which have proven to be more reliable in the
quantitative determination of the reaction rate constants.

Rate constants have been evaluated for a pressure of 1 X
107® bar in the 10—600 K temperature range to mimic the
typical conditions of different regions of the ISM. Next, the
rate constants at different temperatures have been fitted to a
three-parameter-modified Arrhenius equation, namely, the
Arrhenius—Kooij expression®””

k(T) — A(L) e—E/RT
300

where A, n, and E are the fitting parameters and R is the
universal gas constant.

The key results of the kinetic analysis have been further
checked by computations performed with the StarRate
program, specifically designed for reactions of astrochemical

. 71,72
interest.” ”’

3. POTENTIAL ENERGY SURFACE (PES)

A schematic diagram of the PES generated by AutoMeKin is
shown in Figure 1. The initial reactants, Rx1, are the HCO and
HCCN radicals, whose electronic ground states are a doublet
and a triplet, respectively. In analogy with the formation route
of ethanimine investigated by Balucani et al.”* and Baiano et
al,”* a total of six spin states are thus possible, including the
two components of the reactive doublet state, which can bring
the formation of a chemical bond and the four components of
the non-reactive quartet state.

3.1. Description of the Reaction Mechanism. We recall
that both the reactants representing the asymptotic limit (AL),
namely, HCCN (triplet state) and HCO (doublet state), have
been detected in the ISM. As shown in Figure 2, the formyl

https://doi.org/10.1021/acsearthspacechem.3c00060
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Figure 2. One-dimensional potential energy profile as a function of
C—C bond formation (A) for the reaction of HCCN + HCO —
MIN2 computed at the rDSD level.

radical carries out a barrierless attack on sp> carbon of the
cyanocarbene radical, which brings the formation of the new
C—C bond and leads to a strong stabilization of the system.
The intermediate reached at the end of this step (MIN2) lies
370.3 kJ mol™' below the AL. MIN2 can next undergo a
hydrogen transposition, which leads to the formation of
another (less stable) reaction intermediate MINI and,
subsequently, through the breaking of the C—O bond, leads
to the P3 products, ie., cyanoacetylene (HC;N) and the
hydroxyl radical (OH).

Another reactive pathway that can originate from MIN2 is
the dissociation with the simultaneous hydrogen transfer
reaction leading to the formation of P2 at —373.8 k] mol ™", i.e.,
carbon monoxide (CO) and the cyanomethyl radical
(H,C,N), the thermodynamically most stable products of
the reaction mechanism shown in Figure 1.

A third possible reaction channel is the transposition of
hydrogen from MIN2 to MIN3 through the transition state
TS8 at —173.9 kJ mol™" and the subsequent dissociation of
MIN3 to P2 through the transition state TS6 at —326.7 kJ
mol™". The elimination of a hydrogen atom from MIN2 gives
the final product by overcoming a barrier of 197.8 kJ mol™". In
the corresponding transition state TS4 (172.5 kJ mol™" below
the AL), a 7 bond is being formed between the two carbon
atoms. The P1 products, namely, cyanoketene and a hydrogen
atom, are 201.1 kJ mol™' more stable than the reactants.
Because the process is exothermic and the whole energy profile
lies below the AL, our computations suggest that this pathway
represents a plausible mechanism for the formation of
cyanoketene in the ISM. The relative electronic energies of
all of the stationary points obtained at the rDSD and junChS-
F12 levels are reported in Table 1.

4. RATE CONSTANTS

To prove that the reaction mechanism proposed in this work
could justify the formation of cyanoketene in the ISM, it is
necessary to perform kinetic computations.

The rate constants as a function of the temperature for the
products P1, P2, and P3 obtained for the reaction between
HCCN and HCO are shown in Figure 3. The parameters of
the corresponding Arrhenius—Kooij fits are collected in Table
2.

Inspection of the results reported in Figure 3 shows that the
formation rate constant of P1 ranges between 6.8 X 10" and
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Table 1. Anharmonic Zero-Point-Corrected Energies (kJ
mol™!) Relative to the Asymptotic Limit for All of the
Species Involved in the Reaction Computed Using the Two
Different Levels of Theory Discussed in Section 2

Species rDSD junChS-F12
Rx1 0.0 0.0
MIN1 —190.4 —212.0
MIN2 —384.6 —-370.3
MIN3 —381.9 —364.4
TS1 —-102.6 —100.4
TS2 —143.6 —126.5
TS3 —-50.2 —-31.6
TS4 —193.7 —-172.5
TS6 —338.7 —326.7
TS7 —189.1 —-170.2
TS8 —194.2 —-173.9
P1 —227.7 —201.1
P2 —382.5 —373.8
P3 —127.4 —114.1

“The RMS deviation of rDSD results from their junChS-F12
counterparts is 16.5 kJ mol™".

122 x 107" cm® molecule™ s7! and is higher than the

formation rate constants of P2 and P3 in the whole interval of
temperatures (0—600 K). This is mainly due to the nature of
the reaction pathways leading to P1, which includes the single-
step path MIN2—TS4—P1, governed by one of the lowest
activation energies of all of the reaction channels of MIN2
toward the possible products. The other single-step reaction
pathway is MIN2—TS3—P2, and in this case, the very high
activation energy (about 340 kJ mol™") makes it the most
kinetically disfavored. All of the other pathways found by
AutoMeKin involve multi-step reactions leading to the
formation of P1l, P2, and P3. Indeed, the second most
competitive route is the transposition of hydrogen through
MIN2—-TS8—MIN3. Although TS8 is the lowest energy
transition state, the multi-step nature of the corresponding
reaction channel makes this route less favorable with respect to
the MIN2—TS4—P1 pathway. P2 is the second most favored
product because its formation rate constant takes values
between 3.6 X 107" and 5.4 X 107" cm® molecule™ s7'.
Finally, the formation rate constant of P3 assumes values
between 2.0 X 107! and 6.6 X 107 cm?® molecule™ s7},
which is the lowest of all the products of the reaction. This is
probably due to the nature of the P3 formation pathway, which
involves the highest activation barriers.

In summary, a detailed kinetic analysis shows that, despite
the greater stability of P2 with respect to other possible
products, cyanoketene is formed preferentially under the
typical physical—chemical conditions of the ISM.

5. EXPERIMENT

5.1. Millimeter/Submillimeter-Wave Spectrometer.
The rotational spectrum of cyanoketene has been recorded
by means of a millimeter/submillimeter-wave frequency-
modulation spectrometer, described in detail elsewhere.”*"
Here, only a short summary is provided. A Gunn diode
emitting in the W band (80—115 GHz) was used as primary
source of radiation, whose frequency was locked via a phase-
locked loop to a radio frequency local oscillator referenced to a
S MHz rubidium atomic clock. Passive multipliers (doublers
and triplers) were used in cascade to achieve spectral coverage

https://doi.org/10.1021/acsearthspacechem.3c00060
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Figure 3. Temperature-dependence plots of the P1, P2 and P3 products of the HCCN.+ HCO reaction.
Table 2. Arrhenius—Kooij Parameters for the HCCN + HCO Reaction
P1 P2 P3
A (cm® molecule™ s7') 1.04 X 107'° 548 x 107! 1.11 X 107*2
n 0.22 0.02 0.68
E (KJ mol™) —44.60 132.46 —444.62
RMS” 2.90 x 1073 2.83 x 1073 1.86 x 107

“RMS stands for root-mean-square deviation of the fit.

at higher frequencies. The output radiation was sine-wave-
modulated at f = 48 kHz and fed to the free-space glass
absorption cell of the spectrometer, connected to the pyrolysis
apparatus at one end and to a pumping system at the other
end. Finally, the signal was detected by a liquid-He-cooled
InSb hot electron bolometer (QMC Instruments, Ltd.) and
demodulated by a lock-in amplifier set at twice the modulation
frequency (2f), so that the second derivative of the actual
spectrum was displayed. In this work, the uncertainty
associated with our measurements ranges from 15 to 40 kHz
depending upon the line width and the signal-to-noise ratio of
the spectral line.

5.2. Production of Cyanoketene. As pointed out in
previous papers,””’® substituted ketenes can be formed via
flash vacuum pyrolysis (FVP) of different precursors, namely,
Meldrum’s acid derivatives, isoxazolone compounds, or acetic
acid derivatives. In the present work, cyanoketene was
produced by the pyrolysis of gaseous methyl cyanoacetate
(NCCH,COOCH;, 99% purity, Sigma-Aldrich) in the same
apparatus previously employed for the study of other unstable
molecules.””~** The best yield of cyanoketene was attained by
flowing the vapors of the precursor through a quartz tube
heated at 1430 K by a tubular furnace. The pyrolysis products
were continuously injected into the cell and subsequently
pumped out from it, where the pressure was maintained at
about 10 Pa.

No unexpected or unusually high safety hazards were
encountered.

5.3. Spectrum Analysis and Results. Cyanoketene is a
near-prolate asymmetric rotor (k = —0.98) belonging to the C;
symmetry point group. All atoms lie in a plane defined by the
two principal inertial axes a and b, and only two components,
M, and pu, contribute to the total dipole moment pu =
3.542(15) D, with values of 2.844(12) and 2.112(9) D,
respectively.”’ The rotational energies of cyanoketene can be
derived using the standard semi-rigid Hamiltonian for an
asymmetric rotor.
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H="~H,

rot

+ X HE

" (1)
The rigid rotor part H,, contains the angular momentum
operator ]2 and its components

H,, = %(B +Of + [A _ %(3 + c)]jj
1 ~2 A2
+ E(B -0, -J") @)

where A, B, and C are the rotational constants and are related
to the moments of inertia about the pertinent axes. The
centrifugal distortion effects are recovered by adding several

‘Hgﬁth) terms, up to the required power n. Here, the terms with
n = 4 and 6 are expressed using the Watson-type S-reduced
Hamiltonian in terms of the quartic (D and d) and sextic (H
and h) centrifugal distortion constants.

ﬂgd = _D](jz)z - ]szjzz - D1<jz4 + d]jz U:rz +
+ &0+ 1+ HOY + H YL
+ qufzf; + Hszé + h1(fz)2(f+2 + f_z) + h,

PO #nG +10

)

3)
Higher order distortion terms have the general form®*
n/2 n/2
HGY = 20 4 ()
i=0 i=1
G +7" )

This work started when the spectroscopic parameters of
NCCHCO were available only from Hahn et al,*’ who
investigated the microwave spectrum of cyanoketene below 40
GHz. Their set of constants were used to obtain an initial guess
of the rotational spectrum above 80 GHz. By employing the
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spectrometer described in section 5.1, a systematic search of
the rotational transitions of cyanoketene was performed in
selected frequency ranges between 80 and 530 GHz. A total
number of 525 transitions (353 a type and 172 b type) have
been recorded and analyzed, together with those observed by
Hahn et al,*’ in a weighted least squares procedure as
implemented in the SPFIT/SPCAT suite of programs.*

After the completion of this analysis, however, we became
aware of the work published by Margulés et al.' Their study
focused on the spectral region below 330 GHz and reported an
extended analysis of several hundreds of a-type transitions,
while the investigation of the b-type spectrum was more
limited than in our work. Therefore, because of the different
information brought by different types of transitions, we
decided to perform a global fit of all of the available rotational
transitions of cyanoketene, to further improve the accuracy of
its spectroscopic parameters.

The determination of the complete set of octic centrifugal
distortion constants is the major improvement achieved in our
global fit. In particular, the determination of the Ly constant
together with the accurate values obtained for several purely
K,-dependent centrifugal distortion parameters, such as D and
Hy, is of great importance for predicting b-type 'R transitions,
whose intensity is the highest at any temperature up to 300 K.

The root-mean-square (RMS) error of the residuals of our
analysis is 0.027 MHz, which is comparable to the accuracy of
the experimental measurements, with the fit standard deviation
(o) being 0.90. A comparison of the final set of our
spectroscopic parameters to those determined by Margules et
al." is shown in Table 3.

A reformatted version of the FIT output file is provided in
the Supporting Information. The new set of spectroscopic
parameters allows for the reproduction and prediction of the
rotational spectrum of cyanoketene in a wide frequency range,
up to the ALMA band 9. The newly predicted frequencies can
assist future astronomical search for cyanoketene in a huge
frequency range, because the uncertainty in the line positions is
generally lower than the typical spectral resolution of radio
telescopes working in the millimeter/submillimeter domain.

6. DISCUSSION AND CONCLUSION

In this work, we have proposed a new formation route for
cyanoketene involving two species already detected in the ISM,
namely, the formyl and cyanocarbene radicals. The doublet
potential energy surface starting from those reactants has been
examined by an accurate yet feasible computational approach
combining last-generation density functionals and composite
wave function methods. To help the astronomical search of
this molecule, we also carried out laboratory measurements of
its rotational spectrum up to 530 GHz.

Because the results of our theoretical kinetic analysis support
the conclusion that cyanoketene can be formed from HCO and
HCCN by means of a hydrogen eliminitation reaction, we
suggest to search for cyanoketene in the ISM regions where
HCO and HCCN have been already detected. Unfortunately,
to the best of our knowledge, those two radicals have been
never detected in the same interstellar region. Anyway, the
regions where at least one of those molecules has been
detected are W3, NGC2024, W51, K3-50, IRC + 2016, and
TMC-1. Among them, only TMC-1 has been investigated by
Margules et al; therefore, we suggest to search for this
molecule in the other aforementioned regions.

Table 3. Spectroscopic Parameters” of Cyanoketene

Parameter Present work Margules et al!
A 29601.18220(77)% 29601.17783(98)
B 2812.149125(48) 2812.14944(11)
C 2563.721998(43) 2563.72222(11)
Dy x 10° 1.538791(19) 1.539026(76)
Dy X 10° —115.00852(48) —115.00801(47)
D¢ X 10° 2814.456(35) 2813.778(55)
d; x 10° —368.8083(61) —368.8395(72)
d, x 10° —9.1506(18) —9.1383(12)
Hj % 10° 0.0061426(35) 0.006213(22)
Hy X 10° —0.21744(15) —0.21768(16)
Hyy x 10° —24.0662(27) —24.0191(27)
Hy x 10° 834.52(61) 807.50(86)
hy x 10° 2.3411(16) 2.3535(20)
hy, X 10° 0.13843(73) 0.13074(31)
hy X 10° 0.04192(15) 0.04377(17)
Ly x 10" —0.03119(23) —0.0382(22)
Ly x 10" 1.431(15) 1.555(17)
Ly X 10° —0.03184(25) —0.05033(14)
Ligy X 10° 10.2005(95) 10.0790(97)
Ly X 10° —315.6(32)
I, x 10" —14.37(14) —15.85(18)
L x 10" —1.178(71)
I, x 10" —0.704(28) —1.17(38)
I, x 10" —0.0988(63) —0.0579(7)
Py % 10" —3.353(10) —3.206(10)
number of distinct lines 2050
RMS (kHz) 27.0
c 0.90

“Values in parentheses are standard errors in units of the last quoted

digits.

The second major outcome of this work is an improved set

of spectroscopic constants, which can be used to refine the
spectral predictions of cyanoketene from the microwave to the
THz region. In particular, b-type transitions (which are
expected to be bright across the whole spectrum) can be
targeted with high precision and can be unequivocal proof of
the presence of cyanoketene in spectral line surveys. High-mass
star-forming regions represent the most suitable sources®”*’
for performing future astronomical searches.
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