Supporting Information

Anticancer Potential of Diruthenium Complexes with Bridging Hydrocarbyl Ligands from Bioactive Alkynols

Giulio Bresciani,^a Ján Vančo,^b Tiziana Funaioli,^a Stefano Zacchini,^c Tomáš Malina,^b Guido Pampaloni,^a Zdeněk Dvořák,^d Zdeněk Trávníček,^{b,*} Fabio Marchetti ^{a,*}

- ^a University of Pisa, Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi 13, I-56124 Pisa, Italy
- ^b Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, CZ-779 00 Olomouc, Czech Republic
- ^c University of Bologna, Dipartimento di Chimica Industriale "Toso Montanari", Viale del Risorgimento 4, I-40136 Bologna, Italy
- ^d Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27,
 CZ-779 00 Olomouc, Czech Republic

*E-mail addresses: <u>fabio.marchetti@unipi.it</u>, <u>zdenek.travnicek@upol.cz</u>

Table of contents	Pages
Figures S1-S9: NMR spectra of diruthenium complexes	S2-S6
Figures S10-S19: UV-Vis experiments	S7-S11
Figures S20-S26: Mass spectrometry studies	S12-S18
Figure S27: Cyclic voltammetry profiles	S19

Figure S1. ¹H NMR spectrum (401 MHz, acetone-d₆) of 2a.

Figure S2. ¹³C{¹H} NMR spectrum (101 MHz, acetone-d₆) of 2a.

Figure S4. ¹³C{¹H} NMR spectrum (101 MHz, acetone-d₆) of 2b

Figure S5. ¹H NMR spectrum (401 MHz, acetone-d₆) of 2c.

Figure S6. ¹³C{¹H} NMR spectrum (101 MHz, acetone-d₆) of 2c.

Figure S8. ¹H NMR spectrum (500 MHz, 253 K, acetone-d₆) of 3b.

Figure S9. ¹H NMR spectrum (500 MHz, 253 K, acetone-d₆) of 3c.

Figure S10. Comparison of UV-Vis spectra at different time of **2a** in H_2O/CH_3OH (5:1 v/v). Green line t = 0; blue line t = 30 minutes; black line t = 120 minutes; red line t = 18 hours

Figure S11. Comparison of UV-Vis spectra at different time of **2b** in H_2O/CH_3OH (5:1 v/v). Green line t = 0; black line t = 15 minutes; red line t = 30 minutes.

Figure S12. Comparison of UV-Vis spectra at different time of **2b** in **DMEM/CH₃OH** (5:1 v/v). Red line t = 0; black line t = 120 minutes; green line t = 18 hours.

Figure S13. Comparison of UV-Vis spectra at different time of **2c** in H_2O/CH_3OH (5:1 v/v). Blue line t = 0; black line t = 30 minutes; green line t = 120 minutes; red line t = 18 hours

Figure S14. Comparison of UV-Vis spectra at different time of **3a** in H_2O/CH_3OH (5:1 v/v). Green line t = 0; black line t = 120 minutes; red line t = 18 hours

Figure S15. Comparison of UV-Vis spectra at different time of **3a** in **DMEM/CH₃OH** (5:1 v/v). Black line t = 0; red line t = 120 minutes; green line t = 18 hours.

Figure S16. Comparison of UV-Vis spectra at different time of **3b** in H_2O/CH_3OH (5:1 v/v). Blue line t = 0; green line t = 30 minutes; black line t = 120 minutes; red line t = 18 hours;

Figure S17. Comparison of UV-Vis spectra at different time of **3b** in **DMEM/CH₃OH** (5:1 v/v). Black line t = 0; red line t = 120 minutes; green line t = 18 hours

Figure S18. Comparison of UV-Vis spectra at different time of **3c** in H_2O/CH_3OH (5:1 v/v). Green line t = 0; black line t = 120 minutes; red line t = 18 hours

Figure S19. Comparison of UV-Vis spectra at different time of **3c** in **DMEM/CH₃OH** (5:1 v/v). Black line t = 0; red line t = 120 minutes; green line t = 18 hours

Figure S20. ESI-MS spectra of: **3a** in MeOH after 24h (panel A); **3a** in MeOH/H₂O (1:1 v/v) after 24h (panel B). The red-colored inset displays the theoretical isotopic distribution corresponding to the molecular peak of the cation of **3a**.

Figure S21. ESI-MS spectra of: **3b** in MeOH after 24h (panel A); **3b** in MeOH/H₂O (1:1 v/v) after 24h (panel B). The red-colored inset displays the theoretical isotopic distribution corresponding to the molecular peak of the cation of **3b**.

Figure S22. ESI-MS spectra: of **3c** in MeOH after 24h (panel A); **3c** in MeOH/H₂O (1:1 v/v) after 24h (panel B). The red-colored inset displays the theoretical isotopic distribution corresponding to the molecular peak of the cation of **3c**.

Figure S23. ESI-MS spectra of: **3a** in MeOH after 24h (panel A); **3a** (10 µM) after 2 h incubation with reduced glutathione (GSH, 10 mM) (panel B); **3a** (10 µM) after 24h incubation with GSH (10 mM) (panel C). The red color highlights the peak related to the cation of **3a**, while the green lines evidence the peaks related to GSH.

Figure S24. ESI-MS spectra of: **3b** in MeOH after 24h (panel A); **3b** (10 μ M) after 2 h incubation with reduced glutathione (GSH, 10 mM) (panel B); **3b** (10 μ M) after 24h incubation with GSH (10 mM) (panel C). The red color highlights the peak related to the cation of **3b**, while the green lines evidence the peaks related to GSH.

Figure S25. ESI-MS spectrum of MeOH/H₂O solution (1:1 v/v) of **3a** (10 μ M) after 24h incubation with L-cysteine (120 μ M) in the range 100-1000 *m/z* (panel A), and portion of the same spectrum in the range 400-600 *m/z* (panel B).

Figure S26. MALDI-TOF MS spectra of: native bovine serum albumin (BSA, *top panel*); **3b** after 24h incubation with BSA at 37 °C (*middle panel*); **3a** after 48h incubation with BSA at 37 °C (*bottom panel*). Each indicated value represents the average mass determined from six independent measurements ± standard deviation.

Figure S27. CV profiles recorded at a Pt electrode in CH_2Cl_2 solution of **2a** (blue line) and **3a** (red line). [NBu₄][PF₆] (0.2 mol dm⁻³) supporting electrolyte. Scan rate: 0.1 V s⁻¹.

