Supplementary Materials

Copper(II) Lysinate and Pseudoproline Assistance in the Convergent Synthesis of the GLP-1 Receptor Agonists Liraglutide and Semaglutide

Ivan Guryanov,^{*,‡,I} Andrea Orlandin,[‡] Ivan De Paola[‡], Angelo Viola,[‡] Barbara Biondi,[§] Denis Badocco,[§] Fernando Formaggio,[§] Antonio Ricci,^{*,‡} and Walter Cabri^{‡†}

[‡]Fresenius Kabi iPSUM Srl, via San Leonardo 23, Villadose (RO), 45010 Italy [§]ICB, Padova Unit, CNR, Department of Chemistry, University of Padova, Padova, via Marzolo 1, 35131 Italy ¹Institute of Chemistry, St. Petersburg State University, St. Petersburg, Peterhof, Universitetskij pr. 26, 198504 Russia [†]Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum – University of Bologna, via Selmi 2, 40126 Bologna

Table of Contents

Figure S1	HPLC profile and ¹ H NMR spectrum of Pal-Glu-OtBu	S 2	
Figure S2	FT-IR spectrum of Pal-Glu-OtBu		
Figure S3	HPLC profile and ¹ H NMR spectrum of H-Lys(Pal-Glu-OtBu)-OH	S 4	
Figure S4	FT-IR spectrum of H-Lys(Pal-Glu-OtBu)-OH	S5	
Figure S5	¹ H NMR and FT-IR spectrum of Fmoc-Lys(Pal-Glu-OtBu)-OH	S 6	
Figure S6	HPLC profile and ¹ H NMR spectrum of <i>t</i> BuOCO-(CH ₂) ₁₆ -CO-Glu-O <i>t</i> Bu	S 7	
Figure S7	FT-IR spectrum of tBuOCO-(CH ₂) ₁₆ -CO-Glu-OtBu	S 8	
Figure S8	HPLC profile and ¹ H NMR spectrum of <i>t</i> BuOCO-(CH ₂) ₁₆ -CO-Glu(AEEA-AEEA)-OtBu	S 9	
Figure S9	FT-IR spectrum of tBuOCO-(CH ₂) ₁₆ -CO-Glu(AEEA-AEEA)-OtBu	S10	
Figure S10	HPLC profile H-Lys(tBuOCO-(CH ₂) ₁₆ -CO-Glu(AEEA-AEEA)-OtBu)-OH	S11	
Figure S11	¹ H NMR spectrum of Fmoc-Lys(<i>t</i> BuOCO-(CH ₂) ₁₆ -CO-Glu(AEEA-AEEA)-O <i>t</i> Bu)-OH	S11	
Figure S12	FT-IR spectrum of Fmoc-Lys(tBuOCO-(CH ₂) ₁₆ -CO-Glu(AEEA-AEEA)-OtBu)-OH	S12	
Figure S13	HPLC profiles of the protected fragment 1-8, deprotected fragments 9-16 and 17-31 of Liraglutide	S13	
Figure S14	HPLC profile of the fragment 9-31 of Liraglutide and Semaglutide	S14	
Figure S15	HPLC profiles of the protected fragment 1-8 and deprotected fragments 17-31 and 9-31 of		
	Semaglutide	S15	
Figure S16	HPLC profiles of crude Liraglutide (step-by-step SPPS) and crude Liraglutide and Semaglutide		
	prepared by convergent approach	S16	
Table S1	Impurities observed in crude Liraglutide (step-by-step approach)	S17	
Table S2	Impurities observed in crude Liraglutide (convergent approach)	S18	
Table S3	Impurities observed in crude Semaglutide (convergent approach)	S19	

Figure S1. HPLC profile (top) and ¹H NMR spectrum (bottom) of Pal-Glu-O*t*Bu (Analytical method 1, see Experimental part).

Figure S2. FT-IR spectrum of Pal-Glu-OtBu (KBr).

Figure S3. HPLC profile (top) and ¹H NMR spectrum (bottom) of H-Lys(Pal-Glu-O*t*Bu)-OH (Analytical method 1, see Experimental part).

Figure S4. FT-IR spectrum of H-Lys(Pal-Glu-OtBu)-OH (KBr).

Figure S5. ¹H NMR (top) and FT-IR spectrum (bottom) of Fmoc-Lys(Pal-Glu-OtBu)-OH.

Figure S6. HPLC profile (top) and ¹H NMR spectrum (bottom) of $tBuOCO-(CH_2)_{16}$ -CO-Glu-OtBu (Analytical method 1, see Experimental part).

Figure S7. FT-IR spectrum of *t*BuOCO-(CH₂)₁₆-CO-Glu-O*t*Bu (KBr).

Figure S8. HPLC profile (top) and ¹H NMR spectrum (bottom) of *t*BuOCO-(CH₂)₁₆-CO-Glu(AEEA-AEEA)-O*t*Bu (Analytical method 1, see Experimental part).

Figure S9. FT-IR spectrum of *t*BuOCO-(CH₂)₁₆-CO-Glu(AEEA-AEEA)-O*t*Bu (KBr).

Figure S10. HPLC profile H-Lys(*t*BuOCO-(CH₂)₁₆-CO-Glu(AEEA-AEEA)-O*t*Bu)-OH (Analytical method 1, see Experimental part).

Figure S11. ¹H NMR spectrum of Fmoc-Lys(*t*BuOCO-(CH₂)₁₆-CO-Glu(AEEA-AEEA)-O*t*Bu)-OH.

Figure S12. FT-IR spectrum of Fmoc-Lys(*t*BuOCO-(CH₂)₁₆-CO-Glu(AEEA-AEEA)-O*t*Bu)-OH (KBr).

Figure S13. HPLC profiles of the protected fragments 1-8 (top), 9-16 (middle) and 17-31 (bottom) of Liraglutide (Analytical method 2 for 1-8, 3 for 9-16 and 4 for 17-31, see Experimental part).

Figure S14. HPLC profile of the fragment 9-31 of Liraglutide (Analytical method 4, see Experimental part).

Figure S15. HPLC profiles of the protected fragment 1-8 (top) and deprotected fragments 17-31 (middle) and 9-31 (bottom) of Semaglutide (Analytical method 1, see Experimental part).

Figure S16. HPLC profiles of crude Liraglutide prepared by step-by-step SPPS (top) and crude Liraglutide and Semaglutide prepared by convergent approach (middle and bottom, respectively) (Analytical method 1, see Experimental part).

Table S1. Impurities observed in crude Liraglutide (step-by-step appr	oach)
---	-------

Entry	Retention time	Area	Entry	Retention time	Area
Linti	(min)	(%)	<u> </u>	(min)	(%)
1	6.28	0.43	50	23.14	1.63
2	6.76	0.21	51	23.25	1.86
3	7.97	0.34	52	23.29	1.67
4	8.04	0.44	53	23.41	1.87
5	8.11	0.29	54	23.69	1.81
6	8.17	0.28	55	23.75	1.96
7	8.88	0.38	56	23.81	1.25
8	9.38	0.65	57	24.02	1.32
9	10.55	0.08	58	24.09	2.65
10	10.65	0.74	59	24.16	1.05
11	10.95	0.26	60	24.27	0.98
12	11.34	0.61	61	24.39	1.40
13	11.61	0.54	62	24.61	1.41
14	11.88	0.62	63	24.73	1.39
15	12.50	0.34	64	25.00	1.44
16	12.58	0.52	65	25.17	0.73
17	12.65	0.31	66	25.29	1.02
18	12.75	0.29	67	25.46	0.46
19	12.83	0.28	68	25.55	0.74
20	12.96	0.24	69	25.75	0.45
21	13.25	0.26	70	25.81	1.07
22	13.44	0.88	71	25.91	0.38
23	13.59	0.27	72	26.06	0.17
24	13.84	0.71	73	26.31	0.25
25	13.96	1.09	74	26.57	0.17
26	14.12	0.10	75	26.95	0.31
27	14.50	0.14			
28	14.62	0.10			
29	14.72	0.35			
30	16.23	0.17			
31	17.06	0.15			
32	20.52	0.30			
33	20.63	0.39			
34	20.75	0.45			
35	20.96	0.71			
36	21.05	0.81			
37	21.28	1.37			
38	21.36	1.07			
39	21.52	2.26			
40	21.69	2.36			
41	21.70	2.94			
42	21.93	1.26			
43	22.00	1.86			
44	22.17	35.97			
45	22.52	0.86			
46	22.59	1.23			
47	22.76	1.40			
48	22.87	1.94			
49	23.09	1.32			

 Table S2. Impurities observed in crude Liraglutide (fragment approach)

Retention				
Entry	time	Area		
-	(min)	(%)		
1	8.12	1.22		
2	17.08	0.40		
3	21.39	0.61		
4	21.53	1.30		
5	21.67	0.57		
6	21.78	3.44		
7	22.10	0.67		
8	22.19	64.10		
9	22.62	0.36		
10	22.73	1.46		
11	22.78	1.03		
12	23.08	0.97		
13	23.19	0.49		
14	23.28	1.40		
15	23.38	1.09		
16	23.56	0.61		
17	23.76	1.01		
18	23.98	1.72		
19	24.10	7.53		
20	24.55	0.31		
21	24.98	0.20		
22	25.06	0.29		
23	25.24	0.36		
24	25.58	0.23		
25	25.81	5.11		
26	25.89	0.73		
27	26.16	0.08		
28	26.25	0.19		
29	26.45	0.34		
30	26.79	0.78		
31	26.96	1.30		
32	27.04	0.09		

Table S3. Impurities observed in crude Semaglutide (fragment approach)

Entry	Retention time	Area (%)	
Lifting	(min)	111 cu (70)	
1	12.30	0.37	
2	12.73	1.93	
3	14.87	1.25	
4	16.73	3.34	
5	17.66	0.30	
6	17.77	0.63	
7	19.04	0.55	
8	19.11	0.96	
9	19.17	0.37	
10	19.32	1.12	
11	19.39	4.43	
12	19.51	0.58	
13	19.60	0.80	
14	19.71	1.59	
15	19.85	41.99	
16	19.99	1.33	
17	20.13	1.00	
18	20.25	1.29	
19	20.32	0.35	
20	20.63	1.14	
21	20.74	0.41	
22	20.95	1.83	
23	21.00	11.09	
24	21.14	1.19	
25	21.28	1.53	
26	21.41	1.40	
27	21.52	3.05	
28	21.64	4.50	
29	21.72	0.57	
30	21.97	4.81	
31	22.47	1.40	
32	23.35	2.13	
33	23.74	0.26	
34	25.16	0.50	