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ABSTRACT 23 

Bioplastics are promoted as safer alternatives to tackle the long-term persistence of 24 

conventional plastics. However, information on the potential release of additives and non-25 

intentionally added substances (NIAS) in the surrounding environment is limited, and 26 

biological effects of the leachates have been little studied. Leachates produced from three 27 

bioplastics, i.e. compostable bags (CB), bio-polyethylene terephthalate bottles (bioPET) and 28 

polylactic acid cups (PLA), and a control polymeric material, i.e. rubber tire (TR), were 29 

examined. The chemical nature of bioplastic polyesters PET, PLA and poly(butylene 30 

adipate-co-terephthalate) (PBAT) in CB, was confirmed by analytical pyrolysis. Fragments 31 

were incubated in artificial sea water for 14 days at 20 °C in darkness and leachate contents 32 

examined by GC-MS and HPLC-MS/MS. Catalysts and stabilizers represented the majority 33 

of chemicals in TR, while NIAS (e.g. 1,6-dioxacyclododecane-7,12-dione) were the main 34 

components of CB. Bisphenol A occurred in all leachates at a concentration range 0.3 - 4.8 35 

µg/L. Trace metals at concentrations higher than control water were found in all leachates, 36 

albeit more represented in leachates from CB and TR. A dose response to 11 dilutions of 37 

leachates (in the range 0.6 -100%) was tested for biological effects on early embryo stages 38 

of Mytilus galloprovincialis. Embryotoxicity was observed in the whole range of tested 39 

concentrations, the magnitude of effect depending on the polymers. The highest 40 

concentrations caused reduction of egg fertilization (CB, bioPET, TR) and of larvae motility 41 

(CB, PLA, TR). TR leachates also provoked larvae mortality in the range 10-100%.  Effects 42 

on adult mussel physiology were evaluated after a 7-day in vivo exposure to the different 43 

leachates at 0.6% concentration. Nine biomarkers concerning lysosomal functionality, 44 

neurotransmission, antioxidant and immune responses were assessed. All lysosomal 45 

parameters were affected, and serum lysozyme activity inhibited. Harmonized chemical and 46 

biological approaches are recommended to assess bioplastic safety and support production 47 

of sustainable bioplastics. 48 



1. Introduction49 

50 

The issue of ocean plastic pollution represents a global concern for its potential impact on 51 

ecosystems’ health (Agamuthu et al., 2019). Well before being degraded, plastics are 52 

fragmented to micro and nano plastics, with higher potential to bioaccumulate and cause 53 

detrimental health effects in marine species (Gallo et al., 2018; Peng et al., 2020). Plastic 54 

fragmentation and weathering may facilitate the leaching of chemical additives, i.e. 55 

compounds intentionally mixed with polymeric matrixes during manufacturing to confer the 56 

final product specific requirements (Jia et al., 2020). Additives are polymer- and function-57 

specific, and include plasticizers, flame retardants, stabilizers, antioxidants, pigments, 58 

biocides, etc. Their presence can vary from relatively low to significant amounts (from 0.05 59 

wt% for antioxidants up to 70 wt% for phthalate esters in flexible PVC), according to their 60 

function (Gunaalan et al., 2020).   61 

Among organic additives, bisphenols, phthalates, brominated flame retardants, organotin 62 

compounds, alkylphenols, formaldehyde, antimicrobials and azocolorants are included 63 

(Gunaalan et al., 2020; Luo et al., 2022). Many of the above chemicals are known or 64 

suspected Endocrine Disrupting Chemicals (EDCs), i.e. compounds able to interfere at 65 

different levels of the endocrine regulation inducing multiple adverse effects (Balbi et al., 66 

2016; Canesi and Fabbri, 2015; Wang et al., 2020). Trace metals represent a prominent 67 

group of inorganic additives, often demonstrated as hazardous to human and environmental 68 

health (e.g. Capolupo et al., 2020). In addition, further intentionally and non-intentionally 69 

added substances including unreacted monomers and side or breakdown products do occur 70 

in plastic items (Muncke, 2009).  71 

Recent reports using experimentally produced plastic leachates have shown that plastics 72 

can release a variety of organic and inorganic additives into seawater within 1 to 14 days 73 
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(Capolupo et al., 2021a, 2020), providing evidence that plastic additive leachates are 

chemically complex, and can affect marine organisms’ growth, development and survival. 

To tackle the long-term persistence of conventional plastics, bioplastics are promoted as 

safer alternatives. Bioplastics commonly encompass a diverse family of polymeric materials 

that originates from biomass and/or are biodegradable. Confusion usually occurs among 

bio-, bio-based and bio-degradable plastics (Lambert and Wagner, 2017; Wang et al., 2022). 

Biobased plastics are those containing organic carbon of renewable origin from the natural 

environment, while biodegradable plastics are made of polymers susceptible to 

mineralization into CO2, biomass and water by biological activity (Kjeldsen et al., 2019; 

Razza and Degli Innocenti, 2012). Synthetic polyesters are commonly employed in the 

production of biodegradable plastics based on fossil resources, such as poly (butylene 

adipate-co-terephthalate) (PBAT), polymers that are both bio-based and biodegradable 

such as polylactic acid (PLA), and further polymers partially biobased such as poly(ethylene 

terephthalate) (PET) from biobased ethylene. Bioplastics made of these polyesters can be 

manufactured in forms of composites, as for instance PBAT/PLA and PBAT/starch. 

The market share of bioplastics is relatively low compared to conventional thermoplastics; 

however, it is steeply increasing worldwide after new law regulations have been approved 

in many countries (Konti et al., 2022). Although most studies have shown no harmful effects 

from degradation of biodegradable polymers (Haider et al., 2019), very little is known on the 

bioplastic chemical safety, the chemical nature of compounds included in the items, and the 

potential toxicity of the leachates for ecosystem and human health. It has been reported that 

bioplastics contain similar additives as their conventional counterparts (Lehtiniemi et al., 

2021) and may be similarly toxic (Uribe-Echeverría and Beiras, 2022; Zimmermann et al., 

2020a). Bioplastics undergo ageing processes mediated by abiotic and biotic agents 

(mechanical abrasion, thermal degradation, hydrolysis, photo-oxidation, biodegradation) 

that can deeply affect the properties of the polymer matrix, with consequent additive release.  99 



Moreover, bioplastics are more vulnerable to degradation with respect to conventional 100 

plastics, thus can produce microplastics or release associated toxic chemicals more readily 101 

(Wang et al., 2022).  102 

In general, hidden compromises and vagueness are found in the information provided by 103 

the manufacturers both for bioplastic item composition as well as for their degradation due 104 

to environmental agents (Haider et al., 2019; Nazareth et al., 2019), which hampers 105 

establishing correlations between exposure and potential biological effects. To get this type 106 

of information for bioplastics, a research effort focusing on both chemical and biological 107 

aspects is needed (Xia et al., 2022).  108 

The present work investigated the biological responses in mussels, Mytilus galloprovincialis 109 

exposed to seawater leachates from different types of bioplastics. Mussels of the genus 110 

Mytilus are worldwide considered as a suitable sentinel organism for biomonitoring the 111 

effects of contaminants in coastal waters (OSPAR Commission, 2013). Leachates were 112 

experimentally produced and chemically characterized in terms of inorganic and organic 113 

chemical content to identify possible relationships with biological effects. The screening of 114 

a wide range of leachate concentrations was performed for the impairment of mussel 115 

gamete fertilization, embryonic development, and larvae survival and motility. An array of 116 

cellular, biochemical and physiological responses (biomarkers) was also investigated to 117 

evaluate adult mussel health status after in vivo exposure to the leachates.  118 

119 

2. MATERIALS AND METHODS120 

2.1. Bioplastic leachate preparation 121 

Leachates were obtained from three commercial products representative of bioplastic 122 

materials made of aliphatic and aromatic polyesters: (1) PLA from commercial cups; (2) 123 

bioPET from water bottles; and (3) PBAT mixed with PLA from compostable carrier bags 124 



(CB). In addition, one conventional polymer was included, namely tire rubber (TR), used as 125 

positive control (Bejgarn et al., 2015; Capolupo et al., 2020; Gualtieri et al., 2005; Wik and 126 

Dave, 2006). Contamination was avoided by using glass or polytetrafluoroethylene materials 127 

whenever feasible; laboratory items were rinsed with acetone (pico-grade, LGC Standards) 128 

and glassware annealed at 200 °C for ≥3 h.  129 

Leachates were produced in artificial seawater (ASW), prepared according to ASTM (2004) 130 

as previously described (Capolupo et al., 2020). Briefly, selected materials were ground into 131 

<5 mm pieces and individually added to ASW at a final concentration of 80 g plastic / L. 132 

Samples were placed in a rotating incubator (125 rpm) at RT (~20 °C) for 14 d in the dark 133 

to allow for chemical leaching. Leachates were then passed through a sterile filter (0.2 mm 134 

Nalgene®) to eliminate particles and kept in darkness at 4 °C until use.   135 

136 

2.2. Chemical analysis 137 

The procedure was carried out as previously reported by Capolupo et al. (2020) with a few 138 

modifications. Seawater leachate samples (2 mL) were introduced into a 10 mL glass test 139 

tube, added with internal standard (tri-tert-butyl benzene from Sigma-Aldrich) and extracted 140 

3 times with ethyl acetate (1 mL) under vigorous magnetic stirring for 10 min. The organic 141 

extracts were collected and concentrated under nitrogen stream down to 0.5 mL; 1 μL was 142 

then used for GC-MS analysis. A control seawater (ASW) leachate was analysed with the 143 

same procedure, while procedural blank analyses with distilled water were performed in 144 

between sample analyses. The overall procedure was run in triplicate for all samples. An 145 

aliquot of the organic extracts (100 μL) of seawater samples, including control, was 146 

subjected to trimethylsilylation with 100 μL of N,O-bis(trimethylsilyl)trifluoroacetamide for 2 147 

hours at 60 °C. 148 

149 
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2.2.1 Analysis of bioplastic materials 

The chemical identity of the commercial plastic items was investigated by analytical pyrolysis 

(Py-GC-MS) and infrared spectroscopy. Specks of plastic materials (0.14 ± 0.02 mg) were 

pyrolysed at 500 °C with a Multi-Shot Pyrolizer (EGA/PY-3030D Frontier Lab, Japan) 

interfaced to a gas chromatograph coupled with mass spectrometer (7890B and 5977B 

Agilent Technology, USA). Thermally evolved products were injected in the GC at 280 °C 

under 1:100 split ratio and separated with a HP-5ms Ultra Inert Agilent 19091S-433UI 

column 30 m, 0.25 mm i.d., 0.25 μm film thickness operating from 40 °C (2 min) to 305 °C 

at 20 °C/min. MS acquisition was performed under 70 eV electron ionization at m/z 35-600. 

Plastic items cut in small fragments with the help of a scalpel were analysed by an ATR-

FTIR spectrometer (Cary 630 FT-IR Spectrometer, Agilent, USA, with ATR diamond crystal) 

in the 650 – 4000 cm-1 wavenumber range.   

2.2.2 Analysis of leachates 

Gas chromatography-mass spectrometry (GC-MS) was performed on both underivatized 

and silylated organic extracts using a Shimadzu GC-2010 - GCMS-QP2010S system in 

splitless mode at 250 °C under helium. Compounds were separated by a DB-5ms column 

30 m, 0.250 mm i.d., 0.25 μm film thickness, with 1.1 mL min-1 column flow working from 40 

°C (2 min) to 320 °C at 10 °C min-1, held at 320 °C for 6 min. The quadrupole mass 

spectrometer operated under electron ionisation at 70 eV recording spectra in the 35 – 500 

m/z interval. Temperature of MS source and quadrupole were set at 230 °C and 240 °C, 

respectively. Chemical analyses of BPA were carried out with an HPLC system (Agilent 

1.200 series, Agilent Technologies Italia S.p.A) coupled with a MS/MS spectrometer, 

equipped with an electrospray ionization source (Quattro Premier XE Micromass, Waters 

S.p.A.). Analytical details are reported in Supplemental material and in (Valbonesi et al., 

2021). For trace metals assessment, samples were diluted in MilliQ water before internal  174 



standards (103Rh and 115In) were added. Analysis was performed using an Agilent 8800 175 

Triple Quadrupole ICP-MS (ICP-QQQ) equipped with a SPS 4 Autosampler, and 176 

quantification performed using standards from Inorganic Ventures. 177 

2.3 Mussel early life stages endpoints 178 

Early life stages endpoints investigated in this work encompassed mussel gamete 179 

fertilization, embryotoxicity, larvae motility and survival. Biological effects of 11 different 180 

leachate concentrations were assessed in vitro, ranging from 100% (no dilution) to 0.6% 181 

(167 times dilution) leachate concentrations in seawater. All experiments were carried out 182 

in quadruplicate (N = 4); parallel samples were run as controls (CTR, filtered seawater). 183 

2.3.1 Fertilization and embryo-larval development 184 

The effect of bioplastic leachates on gamete fertilization was evaluated as previously 185 

reported by Capolupo et al. (2020), by exposing sperms to the leachates (100% to 0.6% 186 

concentration) for 1 h prior to add eggs in 1:5 proportion as in ASTM (2004).The reaction 187 

was blocked after 30 min by adding calcium buffered formalin (4%). The acute 188 

embryotoxicity test (ASTM, 2004) was adapted to 96 microwell plates (Fabbri et al., 2014) 189 

to screen the impact of bioplastic leachates on M. galloprovincialis embryo-larval 190 

development. Prior to leachate exposure, mussel oocytes were fertilized by mixing eggs and 191 

spermatozoa at a 1:5 ratio in 96-well plates. Fifty eggs/well were used for fertilization test. 192 

After microscopical verification of (> 90%) fertilization success, embryos (50 embryos/well) 193 

were exposed for 48 h to different dilutions of bioplastic leachates; the test was blocked as 194 

above described, and samples examined at 40 x magnification using an inverted 195 

microscope.  196 



Normally developed larvae showing the typical “D-shaped” veliger stage in the absence of 197 

developmental failures (i.e. uncomplete shell, protruding velum) were identified. According 198 

to ASTM (2004), the test was considered acceptable if showing > 70% of normal D-veligers. 199 

2.3.2. Larvae motility and survival 200 

D-shaped larvae obtained by egg fertilization were reared until 5 days post fertilization (dpf)201 

in laboratory conditions and then exposed to the leachates in 96-well microplates at a 202 

density of 50 larvae/well, as previously described (Capolupo et al., 2020). Results were 203 

recorded up to 48 h (motility) and 216 h (mortality) following the criteria previously reported 204 

by  (Sprung, 1984).   205 

206 

2.4. Adult mussel exposure and biomarker evaluation 207 

2.4.1. Experimental design 208 

Adult mussels (M. galloprovincialis) were purchased from a mussel farm (Cesenatico, Italy) 209 

and acclimated in controlled laboratory conditions (filtered seawater, 16 °C, 14 h:10 h 210 

light/dark conditions) for four days before experimental treatment. Ten mussels were then 211 

placed in aquaria (3 per experimental condition) each containing 10 L of filtered seawater, 212 

and exposed to 0.6% concentration of leachate (167 x dilution of the original leachates) for 213 

seven days in line with previous experimental exposure using thermoplastic leachates 214 

(Capolupo et al., 2021a). All leachates were tested in triplicate, each aquarium representing 215 

a single experimental replicate (n=3). Aquaria for control condition (CTR) with only filtered 216 

seawater were run in parallel (n=3). The exposure was performed in controlled conditions of 217 

temperature (16-18 °C), photoperiod 14 h: 10 h light/dark) and feeding (1,200 cells/mL of 218 

the green alga Nannochloropsis oculata), as previously described (Capolupo et al., 2021a). 219 

Leachates and food were renewed daily after water change. 220 
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2.4.2. Biomarker analysis 

After exposure, mussel tissues were dissected and, depending on the parameter to be 

tested, frozen in Liquid N2 then stored at -80 °C, or immediately used for analysis. A battery 

of nine biomarkers was assessed following the OSPAR 2013 protocol (OSPAR Commission, 

2013), namely lysosome membrane stability (LMS), lysosome/cytosol ration (LYS/CYT), 

neutral lipid (NL), malondialdehyde (MDA),  and lipofuscin (LF) accumulation, and lysozyme 

(LYZ), catalase (CAT), glutathione S-transferase (GST), and acethylcholinesterase (AChE) 

activities. Haemocytes were collected from 4 mussels per vessel and LMS evaluated by the 

Neutral Red Retention Assay (NRRA) (Martínez-Gomez et al., 2015). LYS/CYT, NL and LF 

accumulation were assessed on 10 micron cryo-sections of mussel digestive glands as 

published by Capolupo et al. (2021a). Enzymatic assays were performed in pools of 

digestive glands and/or gills taken from 6 mussels per vessel (18 mussels per experimental 

condition). After homogenization and centrifugation, specific assays were conducted 

spectrophotometrically (Capolupo et al., 2021a). Gills homogenates were used for 

determination of AChE activity; after incubation with 0.5 mM acetylthiocholine iodide and 

0.33 mM 5.50-dithiobis-2-nitrobenzoic acid (DTNB) changes in absorbance were followed 

at 405 nm for 10 min (Valbonesi et al., 2003). Serum LYZ activity was measured as 

previously described (Capolupo et al., 2021b), following for 10 min the decrease in 

absorbance due to the LYZ effect on Micrococcus lysodeikticus. Details on methods for 

biomarker measurements are reported in Supplemental materials. 

2.5. Statistical Analysis 

The statistical software packages ‘R’ and SigmaPlot 12 (Systat Software Inc. San Jose, CA, 

USA) were employed. All data were tested for normality using the Shapiro-wilk test and for 

variance equality using the Levene’s test. On these bases, One-way Analysis of Variance 

(ANOVA), followed by the Bonferroni post hoc test, was applied to assess statistically  245 



significant variations. Differences were considered significant for p < 0.05. When applicable, 246 

EC50 was calculated on data for early life stages bioassays using the Log- model LL.3 247 

included in the ‘R’ statistical package. 248 

249 

3. RESULTS AND DISCUSSION250 
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The need to obtain public information on the composition of plastics was stressed (Groh et 

al., 2019), even more when proposing bioplastics as safer alternative to conventional 

plastics (Venâncio et al., 2022; Zimmermann et al., 2020b). Effect-based approaches are 

needed to assess the overall toxicity of plastic items, which consider known and unknown 

additives released by plastic items, including NIAS, and their effects as mixtures. To the best 

of our knowledge only two investigations are available that report on bioplastic leachates 

composition and their biological effects on marine organisms, i.e. marine bacteria 

(Zimmermann et al., 2020c) and sea urchin larvae (Uribe-Echeverría and Beiras, 2022). 

Zimmermann et al. (2020b) applied methanol extraction and 1 hour- sonication in order to 

obtain leachates from several bioplastics; a large number of different compounds (> 1,000 

chemicals each in 80% of the samples) including toxic chemicals were found in the 

bioplastics and plant-based items examined, including erucamide, Irganox 1076, tris(2-

nonylphenyl) phosphate etc. which also occurred in petroleum-based plastics. The Authors 

also showed that commercial bio-based and/or biodegradable items may cause toxicity 

similar to the conventional ones.   

Uribe-Echeverría and Beiras (2022) investigated the chemical composition of leachates 

obtained in seawater (24 hours) from 3 different bioplastics, i.e. polyhydroxybutyrate resin 

(PHB), polylactic acid cups (PLA) and polylactic acid/polyhydroxyalkanoate items 

(PLA/PHA). Unexpectedly, a wide range of additives was found in PHB including chlorinated 

(1-chloro-tetradecane), brominated (dodecyltrimethylammonium bromide) and iodinated (1- 270 

https://www-sciencedirect-com.ezproxy.unibo.it/topics/earth-and-planetary-sciences/solvent-extraction


iodo-hexadecane) biocides. A few chemicals were released from PLA (oxo-methanol 271 

benzoate, 1,5-dimethyl-1H-Pyrazole-3,4-diamine) and PLA/PHA (including Isocrotonic and 272 

crotonic acid, and 2-Pentenoic acid) items. The mixture toxicity for sea urchin larvae 273 

fertilization and development was observed after exposure to PHB leachates, while PLA and 274 

PLA/PHA were ineffective.  275 

Complementary to the above studies, the present experiments aimed to analyze the 276 

chemicals released by bioplastic items after incubation for 14 days in seawater. Impairment 277 

of biological endpoints were evaluated after exposure of both early-larval stages and adult 278 

mussels to the leachates. Data were compared with control sample (seawater, incubated in 279 

parallel) and a positive sample represented by tire rubber leachate.  280 

3.1 Characterisation of plastic materials 281 

Py-GC-MS and ATR-FTIR were used to confirm the chemical identity of the polymers 282 

composing the commercial materials. As an example of the importance of this analytical 283 

check, Klein et al. (2021b) found that bottles labelled as PLA resulted to contain other 284 

polymers after analysis by Py-GC-MS and ATR-FTIR.  285 

The GC-MS traces (pyrograms) from Py-GC-MS of the investigated materials named as 286 

PLA and bioPET (Fig. 1S) and the chemical composition of the pyrolysates (Table 1S) 287 

confirmed the identity of the corresponding polymers (Tsuge et al., 2012). BioPET produced 288 

a series of derivatives of terephthalic acid and benzoic acid. Lactides (meso and D,L forms) 289 

were the main pyrolysis products of PLA along with their thermal degradation products 290 

acetaldehyde, 2,3-pentadione and acrylic acid. Pyrogram of TR (Fig. 1S, Table 1S) was 291 

featured by limonene and 2,4-dimethyl-4-vinylcyclohexene, typical marker of polyisoprene 292 

rubber (Tsuge et al., 2012). Besides thermal degradation products of the rubber, two 293 

additives could be identified that evolved by volatilisation, namely benzothiazole and 1,2-294 

dihydro-2,2,4-trimethyl quinoline (Fig.1S).  295 



Identification of materials composing CB was more challenging being a mixture of at least 296 

two polymers (Fig. 1). The presence of both meso and D,L-lactides in the pyrolysate 297 

indicated the presence of PLA. Several peaks not associated to PLA were tentatively 298 

identified as butyl esters of adipic acid (1,6-hexane dioic acid) and terephthalic acid. These 299 

pyrolysis products are consistent with building block of PBAT (Fig. 1) produced from the 300 

polycondensation of 1,4-butanediol with terephthalic and adipic acids (Jian et al., 2020). 301 

Raw PBAT was pyrolyzed for confirmation and the resulting pyrogram (Fig. 1) presented 302 

some of the products detected in the pyrogram of CB. In particular, a cyclic molecule, 303 

virtually derived from the condensation of 1,4-butandiol and adipic acid, the 1,6-304 

dioxacyclododecane-7,12-dione (Fig. 1, peak 7) was tentatively identified by NIST library 305 

comparison. PBAT is used in packaging technology, in combination with other polyesters 306 

combined with starch to improve properties and reduce costs while maintaining 307 

biodegradability (Jian et al., 2020). Pyrolysis markers of starch were not detected indicating 308 

that this compostable plastic bag was not based on starch. ATR-FTIR spectra of bioplastic 309 

materials confirmed the polymeric species identified by Py-GC-MS (Fig. 2S). 310 

311 

3.2 Chemical composition of sea water leachates 312 

3.2.1 Organic compounds 313 

The compounds tentatively identified in seawater leachates that were extracted with ethyl 314 

acetate are reported in Table 1 along with their GC-MS data. Quantitation was not 315 

performed because not all the compounds were commercially available for calibration. TR 316 

was utilised as positive control for the several studies on the toxicity of leachates to water 317 

organisms (see Capolupo et al., 2020). In fact, several compounds were released into the 318 

sea water (Table 1). Among them benzothiazole and dicyclohexylamine were found in 319 



particle tire leachates in citrate buffered water where aniline was also tentatively identified 320 

(Seiwert et al., 2020). Aniline was also reported among the potential toxicants for aquatic 321 

organisms in the elutriates of sediments containing tire and road wear particles (Marwood 322 

et al., 2011). Benzothiazole and N-cyclohexylformamide were found in the water leachates 323 

of car tire rubber obtained under similar conditions by Capolupo et al. (2020). 324 

In leachates from CB compounds that are structurally related to the PBAT backbone were 325 

found, namely the monomer 1,4-butandiol and the cyclic ester 1,6-dioxacyclododecane-326 

7,12-dione; this latter was a relevant pyrolysis product of CB (compound # 7 in Fig 1). In 327 

accordance to our study, 1,6-dioxacyclododecane-7,12-dione was found in the leachates 328 

obtained from weathered and original compostable plastic bags (Balestri et al., 2019). 329 

Besides, 1,6-dioxacyclododecane-7,12-dione was found among the chemicals that migrated 330 

into water from infant teether toys (Liu et al., 2021), as a potential migrant into isoctane from 331 

polyurethane adhesives in laminates typical of food packaging (Félix et al., 2012) or into air 332 

from volatilisation from materials based on polyurethanes (Thiébaut et al., 2007; Watanabe 333 

et al., 2007). Moreover, 1,6-dioxacyclododecane-7,12-dione and other cyclic esters were 334 

identified among the chemicals that migrated from adhesives of food packaging materials 335 

into a solid food simulant (Canellas et al., 2015). These substances were presumed to be 336 

NIAS associated to the aliphatic polyester-based portion consisting of adipic acid and 1,4-337 

butanediol, as in PBAT. It is known that linear and cyclic oligomers of polyesters are 338 

inevitably formed during manufacturing, probably through a “back-biting” mechanism of the 339 

polymer backbone, and may occur in the final product as NIAS affecting its properties 340 

(Zhang et al., 2022). This category of NIAS has the potential to migrate out the polymer. For 341 

instance, linear and cyclic oligomers of PLA and PBAT with several repeating units were 342 

observed to migrate from a compostable PBAT/PLA into acidic water or pineapple juice fruit 343 

(Ubeda et al., 2021). 344 



One monomer of PBAT, 1,4-butanediol, was detected upon silylation of the sea water 345 

extracts. Similar to our finding, 1,4-butanediol was identified by Serrano-Ruíz et al. (2020) 346 

upon silylation among the compounds that migrated into a water mineral phase from 347 

bioplastic materials containing PBAT. 348 

We cannot argue from the available data whether NIAS were originally present in the 349 

material or they have been formed by degradation during the leaching procedure. Canellas 350 

et al. (2015) proposed that cyclic esters can be neo-formed compounds derived from the 351 

cyclisation of 1,4-butandiol and adipic acid identified among the compounds prone to 352 

migrate from food packaging. 353 

The occurrence of lactic acid in the leachate was in accordance with the presence of PLA in 354 

the chemical composition of CB. Likewise, lactic acid was detected in the leachates of the 355 

PLA material investigated in this study. In agreement with the available literature, lactic acid 356 

was detected by GC-MS after silylation of lyophilised mineral aqueous phase incubated with 357 

biodegradable mulch blends containing PLA (Serrano-Ruíz et al., 2020). Lactic acid could 358 

be formed by abiotic degradation of PLA or be originally present in the plastic material. As 359 

discussed above, oligomers could be formed in the synthesis of polyesters and remain in 360 

the final materials with a potential to migrate. Finally, no peaks were identified in the 361 

chromatograms of the extracted samples of bioPET leachates with or without silylation. 362 

In the case of target additives, the attention was focused on BPA, worldwide exploited as a 363 

plastic monomer and plasticizer. It occurs in many commercial items, including bottles, cans, 364 

medical equipment, etc. (Prins et al., 2019). BPA occurred in all leachates analysed, from 365 

0.3 to 4.8 µg/L concentrations (Table 2). BPA was found in the aquatic environment from 366 

0.5 ng to 12 µg/L (Flint et al., 2012) and at these concentrations it has been reported to 367 

cause significant damages on exposed mussel embryo-larval stages (e.g Balbi et al., 2016). 368 



BPA exposure has clearly been correlated with endocrine disorders in humans (Valbonesi 369 

et al., 2021 and reference therein).  370 

The concentration of trace metals measured in the leachates is reported in Table 3. Zn 371 

resulted to be the most abundant transition metal in the leachates. Zn is a metal utilised in 372 

a variety of additives as slip agents (stearate), fillers and pigments (e.g. oxides) (Hahladakis 373 

et al., 2018). The relatively high content of Zn in polyester leachates could also be 374 

associated to catalysts for polycondensation. As an example, organometallic compounds 375 

based on Zn and Sn were reported in the synthesis of PBAT (Jian et al., 2020). Zn was 376 

reported to be among the prominent trace metals in tires, and is considered a main 377 

responsible for tire dust leachate toxicity (Marwood et al., 2011). However, Zn was present 378 

at comparable concentrations in control samples (ASW), suggesting multiple sources. 379 

Instead, copper was present at concentrations higher than ASW, in particular in CB. Salts 380 

containing Cu could be utilised as plastic additives (biocides, pigments) and can act as pro-381 

oxidants (Hahladakis et al., 2018). Iron, lead, nickel and arsenic were detected at very low 382 

albeit detectable levels higher than ASW in the leachates of CB; among them Fe and Pb 383 

could be components of some plastic additives (Hahladakis et al., 2018). 384 

Overall, the leachates composition is different from different bioplastics and medium of 385 

extraction (Uribe-Echeverría and Beiras, 2022; Zimmermann et al., 2020a; present work) 386 

however no shared protocols are available for plastic leachate preparation (Gunaalan et al., 387 

2020), yet.  388 

389 

3.3 Biological impact of leachates 390 

3.3.1 Mussel early life stages endpoints 391 
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In our experimental conditions, only leachates from TR significantly reduced the rate of egg 

fertilization starting from 4% concentration, with an EC50 of 12.55% concentration (Fig. 3S). 

Embryo development was the most affected endpoint (Fig. 2), in agreement with previous 

results on embryos exposed to additives from conventional plastics (Capolupo et al., 2020). 

Leachates from CB and TR induced significant effects already at 0.6% (CB) and 2% (TR) 

leachate concentration. Leachates from PLA and bioPET also significantly impaired the 

physiological larvae development with a consistent effect from 6% (PLA) and 10% (bioPET) 

concentrations. The adverse outcome might be related to the sensitivity of embryos to the 

metals found in the leachates.  

The co-occurrence of BPA in the leachates may also contribute to the final outcomes, and 

represents the predominant effect by PLA and bioPET leachates. Detrimental effects of BPA 

on marine wildlife is well documented (Canesi and Fabbri, 2015) and embryotoxicity and 

altered transcription effects on mussel embryo-larval stages were reported (Balbi et al., 

2016). A specific action of BPA was demonstrated on mussel early larvae development, 

where the xenobiotic affects both the deposition of the organic matrix as well as the 

calcification of the shell, thus provoking altered phenotypes at 48 hour post-fertilization 

(Miglioli et al., 2021).  

Several NIAS associated to the chemical structure of the polyester (monomers and 

oligomers of PLA and PBAT) were found in the leachates, as described in section 3.2.1. As 

discussed above, this finding agreed with literature as far as the susceptibility of these 

compounds to migrate out of the polymeric material into the surroundings medium is 

concerned. Water leachates from microplastics of bioplastic, presumably containing 

monomers/oligomers of different polyesters (among which PBAT) mixed with starch, 

resulted to have almost no adverse effects on L. variegatus freshwater oligochaete; 

however, toxicity was observed in the case of methanolic extracts, that represented a worst  416 
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situation, not extendible to environmental conditions (Klein et al., 2021a). It is worth 

underlining the ubiquity of the cyclic ester 1,6-dioxacyclododecane-7,12-dione in the mixture 

of compounds prone to be released from bioplastics containing PBAT. This cyclic ester was 

a major compound in the leachates of CB, but no information on its toxicity to marine 

organisms is available in published studies. Significantly reduced motility (at 48h) was 

observed in larvae exposed to TR leachates within a concentration range of 20-100% (Fig. 

4S); significantly reduced larvae survival (at 216 h) was caused by TR leachates in the range 

10-100% (Fig. 5S), with EC50 values of 17.3 and 11.9%, respectively. Other leachates were 

ineffective on survival, and PLA and CB only reduced motility at the highest concentrations 

tested.  

3.3.1 Biomarker evaluation in adult mussels 

Biological effects of 0.6% leachate concentrations were assessed after in vivo exposure of 

mussels for 7 days (Fig. 3), and a significant LMS reduction was found in haemocytes 

withdrawn from mussels exposed CB and TR leachates (Fig. 3 panel A). LMS decreased 

also after PLA and bioPET leachate exposure, without reaching significance. LMS reduction 

in haemocytes is the most sensitive biomarker of stress in mussels (Martínez-Gomez et al., 

2015). Its reduction reflects the loss of membrane integrity and the impairment of lysosome 

functionality, and is in fact an early warning signal for pathologies in Mytilus spp. (Moore et 

al., 2006; Viarengo et al., 2007). LMS has been correlated with animal scope for growth and 

total oxyradical scavenging capacity, and inversely correlated with protein catabolism, 

lipofuscin and neutral lipid accumulation, lysosomal swelling, and DNA damage (Moore et 

al., 2004). Significant reduction of LMS has previously been reported after mussel exposure 

to leachates from conventional plastics (Capolupo et al., 2021a) and other chemical insults 

such as polycyclic aromatic hydrocarbons, pesticides and metals (Shaw et al., 2019)  441 



including conventional and emerging contaminants such as BPA (Canesi et al., 2007), which 442 

occurs in all leachates presently tested.  Trace metals such as copper, zinc and lead are 443 

among the contaminants provoking destabilization of lysosome membranes (Giamberini and 444 

Pihan, 1997), and these occur in TR and CB leachates. Copper is much higher than in 445 

control water also in leachates from bioPET and PLA. Other compounds found in the 446 

leachates could also affect LMS, alone or in combination. As previously shown, LMS is 447 

reduced also after mussel exposure to microplastics (Canesi and Fabbri, 2015; Capolupo et 448 

al., 2021a; Sharifinia et al., 2020). Whether the microplastics ingested do have time enough 449 

to release additives along the digestive tract before elimination (Fernández and Albentosa, 450 

2019) is not known yet, however it is a challenging issue in wildlife as in humans. Overall, 451 

LMS is a useful biomarker to highlight the occurrence of low concentrations of organic and 452 

inorganic contaminants in water either alone or in mixtures.  Reduction of LMS often leads 453 

to lysosome increase in size and fusions (Lowe et al., 1981; Moore, 2008).The increase of 454 

the lysosomal volume is a condition predictive of impairment of viability and functionality of 455 

digestive gland cells (Orbea et al., 2006). The increasing size of the lysosome compartment 456 

(LYS) with respect to cytosol (CYT) has been measured in mussels exposed to leachates. 457 

LYS/CYT ratios were significantly higher than in controls in mussels exposed to TR, CB and 458 

PLA (Fig. 3 panel B). Metals occurring in the leachates could be in part responsible for this 459 

effect. In fact, Cu and other metals produced lysosome enlargement and organelle fusion, 460 

with a mechanism at least in part mediated by a calcium dependent-phospholipase A2 461 

stimulation (Marchi et al., 2004). High LYS/CYT ratio was measured in mussels which 462 

accumulated Cu and Zn from coastal lagoon waters (Capolupo et al., 2017).  These metals 463 

occur in all tested leachates at concentrations that in some cases are significantly higher 464 

than control water. Lysosomotropic effects could however be induced in mussels by further 465 

chemical additives or NIAS, whose properties are not known, at present.  466 



All leachates significantly enhanced the NL content in mussels with respect to the controls 467 

(Fig. 3 panel C), except for PLA (p=0.054). NL increases in digestive gland indicate lipidosis, 468 

a metabolic disorder consequence either of reduced lipid utilization or decrease in fatty acid 469 

processing  (Viarengo et al., 2007), (Dailianis, 2011). NL accumulation in mussels was also 470 

provoked by exposure to leachates from conventional plastics (Capolupo et al., 2021a), and 471 

by other water pollutants in laboratory (e.g. Canesi et al., 2007) as well as in field condition 472 

(Capolupo et al., 2017; Signa et al., 2015). Similarly, field exposure to metals that are also 473 

present in the leachates analyzed in the present work, were found to increase NL content in 474 

mussel digestive gland lysosomes (Brooks et al., 2018; Donnini et al., 2007; Fokina et al., 475 

2013).  476 

Reactive oxygen species (ROS) production is a known effect of pollutants (Regoli and 477 

Giuliani, 2014) able to induce lipid peroxidation (Moore, 2008). The products of lipid 478 

peroxidation are effectively sequestered by lysosomes, among these MDA, as intermediate 479 

compounds with respect to the final products represented by LF (Terman and Brunk, 2006). 480 

In particular, LF are insoluble aggregates made of lipid peroxidation residues which bind to 481 

food degradation by-products, oxidized proteins, carbohydrates, and metals (Terman and 482 

Brunk, 2006). These compounds are observed in mussels in response to oxidative pollutants 483 

including metals (Gomes et al., 2014; Maria and Bebianno, 2011). LF content in digestive 484 

glands was increased significantly after 1-week exposure to 0.6% leachates from TR and 485 

CB (Fig. 3 panel D). Increases, although not significant, were noted also for PLA and 486 

bioPET. It has to be underlined that 1 week is a minimum time for lipofuscin accumulation 487 

(Viarengo et al., 2007), thus the one represented on Fig. 3 (panel D) may not be the 488 

complete biomarker response. No significant change was instead noted for MDA content 489 

(Fig. 6S panel A). This response was different from what expected, especially in case of 490 

moderate peroxidation as from PLA and bioPET, where the accumulation of LF is not 491 



significant. Such a low MDA production after exposure to CB and TR leachates could instead 492 

be ascribed to its depletion to support LF production. Increase of LF contents is correlated 493 

to the LMS decrease found in haemocytes; such a correlation was previously reported 494 

(Donnini et al., 2007; Franzellitti et al., 2014) and confirms the relationship between oxidative 495 

stress and lysosomal disorders (Moore et al., 2006). 496 

Overall, biomarkers of lysosomal dysfunction in mussels are predictors for pathology and 497 

have ecosystem relevance (Moore, 2008; Moore et al., 2006), thus emphasising the 498 

importance of considering (bio)plastic leachates among the environmental hazards.  499 

Leachate potential to trigger mussel antioxidant system has been evaluated addressing CAT 500 

and GST activities, in gills and digestive gland of exposed animals (Fig. 4). The different 501 

role of the enzymes in the two tissues was confirmed, with CAT having higher basal activity 502 

in digestive glands, where peroxidation reactions are mostly performed, and GST showing 503 

higher activity in gills, i.e. the first tissue exposed to environmental xenobiotics (Capolupo et 504 

al., 2021a). CAT activity was significantly reduced by leachates from bioPET in gills, and 505 

enhanced by leachates from CB in digestive glands (Fig. 4 panel A); GST was significantly 506 

enhanced by leachates from PLA in gills, and from CB in digestive glands (Fig. 4 panel B).  507 

Previous studies reported different responses of CAT and GST, increase, decrease or no 508 

effect, after pollutant exposure (Akcha et al., 2000; Cheung et al., 2004; Gowland et al., 509 

2002; Petushok et al., 2002; Regoli et al., 2004; Robillard et al., 2003). Cu and Zn were able 510 

to activate GST in Mytilus spp (Canesi et al., 1999; Capolupo et al., 2017); differently, a 511 

significant GST inhibition was reported in mussels after BPA exposure (Canesi et al., 2007). 512 

The data presently observed might be the result of opposite effects by the compounds 513 

included in the leachate mixture, or the low concentrations were not sufficient to stimulate 514 

bigger responses by the cellular defenses. 515 



Bivalves, as all invertebrates, display an innate immune system to fight against pathogens 516 

and xenobiotics. Lysozyme is a bacteriolytic enzyme concurring to the immune response 517 

with the specific effect to hydrolyse the β-1,4-linked glycoside bonds of bacteria wall (Gerdol 518 

et al., 2018). Lysozyme activity was found in bivalve hemolymph and tissues (e.g. Myrnes 519 

and Johansen, 1994) and modulated by several contaminants (Matozzo et al., 2008; Stabili 520 

and Pagliara, 2009). In our experimental trials, all leachates inhibited the lysozyme activity 521 

in exposed mussels, although only the responses to CB and TR reached statistical 522 

significance (Fig. 4 panel C).  523 

A reduction of lysozyme activity is a marker of immunosuppression, thus of lower resistance 524 

to bacterial insult. Lysozyme activity was also reduced by the estrogen-like compound 525 

tributyltin (Matozzo and Marin, 2005), while increased by 17-β estradiol (Canesi et al., 2006). 526 

suggesting that estrogen receptors may be involved in the control of enzyme activity.  527 

Although Mytilus spp. do not produce estradiol, they possess estrogen receptors that can 528 

be involved in this function (Balbi et al., 2019). Recent studies have shown that blood clam 529 

Tegillarca granosa lysozyme activity (together with some other innate immune effectors) 530 

was inhibited by BPA, microplastics and BPA plus microplastics (Tang et al., 2022). The co-531 

exposure of T. granosa to microplastics, B[a]P and E2, led to the highest reduction of 532 

lysozyme release and activity (Tang et al., 2022). Furthermore, the leachates also contained 533 

trace metals that may affect lysozyme activity. In fact, an effect of Cu on lysozyme molecular 534 

configuration was suggested many years ago from investigations on Mytilus haemocytes 535 

(Steinert and Pickwell, 1984). Copper was more recently reported to irreversibly inhibit 536 

chicken egg white lysozyme activity up to 80% at 390 μM, as a consequence of binding to 537 

specific aminoacidic residues at the catalytic site of the enzyme (Ko et al., 2018). Inhibition 538 

was also observed after exposure to Zn, Mn and Co, while Ca had no effect (Ko et al., 2018). 539 

Cr, Ni, Cd, B, Hg, and Pb in the range 10-50 mM caused dose-dependent reduction of hen 540 
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egg white lysozyme activity already after 4 h of exposure, and the effect remained of similar 

extent at 12 and 24 h (Pazmiño et al., 2018). The strongest effects were obtained after 

exposure to CrVI or Cd, which reduced the lysozyme activity to about 25% of the control 

already within 4 hours at the lowest concentration tested. The combination of the different 

compounds found in the leachates may lead to the overall reduction of lysozyme activity 

shown in Fig. 4 panel C. 

AChE is an enzyme involved in nervous transmission useful as biomarker of neurotoxicity 

(Valbonesi et al., 2003). Its inhibition, typically by organophosphates, induces a protraction 

of the nervous stimulus (Valbonesi et al., 2003). In our experimental trials, however, no 

change in AChE activity was detected of exposure to the different leachates at 0.6% 

concentration (Fig. 6S panel B). In mussels AChE was found to be affected by the mixture 

of BPA, carbamazepine and atrazine (Juhel et al., 2017), and inhibited by metals (Frasco et 

al., 2005); moreover, AChE inhibition by plastic leachates has recently been reported in fish 

(Walpitagama et al., 2019). The short exposure and/or the high dilution of the leachates may 

be the reason of the lack of effect in our experimental system, although at least BPA and 

trace metals occur. 

4.0 CONCLUSION 

This investigation increases the knowledge gained from two previous studies carried out by 

other laboratories which addressed the contents of polyester-based bioplastic leachates and 

their biological effects on marine organisms, challenging bacteria and sea-urchin larvae. The 

originality and strength of the present work is that both early-larval stages and adult mussels 

were exposed through in vitro (at 11 different dilutions) and in vivo approaches to leachates 

obtained after 14 days in seawater and chemically characterized. The study confirms that 

leachates from bio-plastics do contain organic compounds (additives, non-intentionally  565 
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added compounds such as oligomers) and trace metals, and exposure to leachates does 

affect M. galloprovincialis early embryo stages development and adult physiological 

parameters.  

Overall, the magnitude of the effects was different depending on the polymer tested, possibly 

reflecting the different chemical composition and/or concentration of the compounds in the 

leachate mixtures. However, the effects of some bioplastic leachates were comparable to 

(or even greater than) previously tested conventional polymers.  

Among ontogenetic parameters, the embryo-larval development showed the greatest 

adverse outcomes indicating the potential of all leachates to compromise the resilience of 

mussel populations in the long term. The use of a 96-microwell assay allowed to test 

simultaneously a wide range of concentrations and demonstrate dose-dependent effects. 

Its application helps understanding the relationship between xenobiotic exposure and 

detrimental effects in marine organisms, and may be recommended for regulatory purposes. 

Adult physiological parameters were also affected by leachates, with highest effects 

observed for lysosomal and immunological biomarkers in mussels exposed to compostable 

bag (mixture of PBAT/PLA) bioplastic and tire rubber.  

Comparing with previous data, it can be observed that composition of leachates is different 

from different bioplastics and medium of extraction, however, no shared protocols are 

available for plastic leachate preparation. Furthermore, different mixtures are expected to 

induce different effects however full chemical characterization of (bio)plastics is not possible, 

yet. Although the experimental conditions are not intended to mimic real environmental 

situations and the investigated items are not necessarily representative of the entire class 

of commercialised polyesters, the results presented in this study are important as a basis to 

identify mechanisms of action and draw possible adverse outcome pathways that can result 

in disturbances at the ecosystem level. They also support the use of effect-based tests for  590 



designing new and less harmful additives in order to produce “sustainable” bioplastics. 591 

Finally, they highlight that the leaching of additives and NIAS (e.g. monomers and oligomers) 592 

and their effects on aquatic organisms need to be carefully considered when assessing the 593 

environmental impacts of plastics. 594 
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CAPOLUPO ET AL., FIGURES (4) AND TABLES (3) 

Table 1. Tentative identification and GC-MS data (retention time in minutes, m/z of relevant 

ions in the mass spectrum with base peak in bold) of compounds detected in seawater 

leachates from polymeric materials. (*) Identified as pertrimethylsilyl derivative.  

Material Compound min m/z 

TR aniline 7.62 66, 93 

benzothiazole 11.6 69, 82, 108, 135 

N-cyclohexyl formamide 12.0 45, 56, 82, 84, 127 

N-cyclohexyl acetamide 12.5 56, 60, 98, 141 

dicyclohexylamine 14.3 82, 56, 138 

CB Lactic acid* 9.17 73, 117, 147 

1,4-butandiol* 10.6 73, 116, 147, 177 

2-(2-butoxyethoxy) ethanol 11.0 45, 57, 75, 87, 132 

2-(2-butoxyethoxy) ethanol* 13.1 57, 73, 101, 117, 131 

1,6-dioxacyclododecane-7,12-dione 15.9 55, 84, 100, 129 

oligomer of PBAT ? 25.6 55, 71, 101, 127, 173 

oligomer of PBAT ? 27.1 55, 71, 101, 127, 173 

PLA Lactic acid* 9.17 73, 117, 147 

Table 2. BPA concentration (µg/L) in leachates from bioplastics and tire rubber. 

CTR CB BioPET PLA TR 

<LOQ 0.51 0.34 0.30 4.81 

HPLC-MS/MS (LOQ 0.032 µg/L). See supplemental material for details. 



Table 3. Trace metals in leachates from bioplastics and tire rubber. Results are expressed in 

µg/L and represent the mean media ± expanded uncertainty (K=2; df= 10) of measured levels for 

each treatment.  

ASW: artificial sea water (Control) LOQ: limit of quantification 

µg/L Al Fe Cu Zn Pb Hg Cr Ni Cd As Sb Co Sr Mn 

ASW <5 <5 3.1 
± 

0.5 

150 
± 

46 

<1 <0.5 <1 <1 <1 <1 <1 <1 5100 12.0 

CB <5 11.1 
± 

1.4 

36.5 
± 

5.6 

110 
± 

35 

2.1 
± 

0.3 

<0.5 <1 5.0 
± 

1,5 

<1 1.9 
± 

0.5 

<1 <1 4900 12.9 

Bio 
PET 

<5 <1 16.8 
± 

2.6 

150 
± 

46 

<1 <0.5 <1 2.7 
± 

0,8 

<1 <1 <1 <1 4800 18.5 

PLA <5 <5 12.9 
± 

2.0 

82 
± 

25 

<1 <0.5 <1 <1 <1 <1 <1 <1 4900 18.5 

TR 6.5 
± 

0.9 

13.8 
± 

1.8 

2.8 
± 

0.4 

220 
± 

69 

1.6 
± 

0.3 

<0.5 1.3 
± 

0.5 

<1 <1 1.3 
± 

0.4 

<1 <1 5400 26.5 

LOQ 5 5 1 5 1 0.5 1 1 1 1 1  1 1 1 



Figure 1.  Total ion chromatogram (pyrogram) obtained from Py-GC-MS of CB (full line) 

compared with the pyrograms of PLA and PBAT. Tentative product identification: (1) 1,3 

butadiene; (2) tetrahydrofuran; (3) cyclopentanone; (4) meso lactide; (5) D,L-lactide; (6) 2-

(formyloxy)-1-phenyl- ethenone; (7) 1,6-dioxacyclododecane-7,12-dione; (8) dibutyl adipate; (9) 

unknown (m/z 54, 65, 121, 149, 166); (9) dibutylterephtalate. 
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Figure 2. Mean percentage of M. galloprovincialis normal D-veliger larvae after 48h exposure 

to leachates from bio-plastics (CB, Bio-PET, PLA) and conventional tire rubber (TR). Data are 

expressed as mean ± SEM (N = 5). Asterisks indicate significant differences compared to the control 

(p < 0.05, One way ANOVA, Bonferroni post-hoc comparison). EC50 values (95% C.I.) are also 

reported. 



Figure 3. Lysosomal parameters evaluated in adult mussels after in vivo 7-day exposure to 

0.6% concentrations bio-leachates (PLA, BioPET, CB) and tire rubber (TR) leachate.  A) 

Lysosome membrane stability; B) Lysosome/Cytosol ratio; C) unsaturated neutral lipid accumulation; 

D) lipofuscin accumulation. Data are expressed as mean ± SEM (N = 3). Asterisks indicate significant

differences compared to the control (p < 0.05, One-way ANOVA, Bonferroni post-hoc comparison). 



Figure 4. Enzymatic activities evaluated in adult mussels after in vivo 7-day exposure to 0.6% 

concentrations bio-leachates (SB, BPT, PLA) and tire rubber (TR) leachate.  A) Catalase activity 

in digestive glands and gills; B) Glutathione-S transferase activity in digestive glands and gills; C) 

Lysozyme activity in serum. Data are expressed as mean ± SEM (N = 3). Asterisks indicate 

significant differences compared to the control (p < 0.05, One-way ANOVA, Bonferroni post-hoc 

comparison).  

A) B) C)



Capolupo et al. HIGHLIGHTS 

1. Polyesters composing commercial bioplastics identified by Py-GC-MS and ATR-FTIR

2. Leachates contained BPA, trace metals and NIAS

3. Leachates caused embryotoxicity in the tested concentration range (0.6-100%)

4. Adult mussel lysosomal and immune parameters were impaired at 0.6% leachates

5. Harmonized chemical/biological approaches are needed to assess bioplastic toxicity
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