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Abstract: Osteoarthritis (OA) is the most common joint disease, but no effective and safe disease-
modifying treatment is available. Risk factors such as age, sex, genetics, injuries and obesity can
concur to the onset of the disease, variably triggering the loss of maturational arrest of chondrocytes
further sustained by oxidative stress, inflammation and catabolism. Different types of nutraceu-
ticals have been studied for their anti-oxidative and anti-inflammatory properties. Olive-derived
polyphenols draw particular interest due to their ability to dampen the activation of pivotal signaling
pathways in OA. Our study aims to investigate the effects of oleuropein (OE) and hydroxytyrosol
(HT) in in vitro OA models and elucidate their possible effects on NOTCH1, a novel therapeutic target
for OA. Chondrocytes were cultured and exposed to lipopolysaccharide (LPS). Detailed analysis was
carried out about the OE/HT mitigating effects on the release of ROS (DCHF-DA), the increased gene
expression of catabolic and inflammatory markers (real time RT-PCR), the release of MMP-13 (ELISA
and Western blot) and the activation of underlying signaling pathways (Western blot). Our findings
show that HT/OE efficiently attenuates LPS-induced effects by firstly reducing the activation of
JNK and of the NOTCH1 pathway downstream. In conclusion, our study provides molecular bases
supporting the dietary supplementation of olive-derived polyphenols to revert/delay the progression
of OA.

Keywords: osteoarthritis; chondrocytes; LPS; oxidative stress; inflammation; NOTCH1; MMP-13;
nutraceuticals

1. Introduction

Despite different timing across species, healthy articular cartilage is a post-mitotic
tissue committed to failure with age [1].

This “programmed” failure may be even anticipated by conditions that contribute
to aging of the articular cartilage, such as low-grade systemic inflammation, obesity and
trauma, both in humans and in animal models. Indeed, the correct architecture and func-
tionality of articular cartilage are guaranteed by the active maintenance of the so-called
“maturational arrest” that prevents chondrocytes entering their default route to hypertro-
phy and terminal differentiation, and subsequent endochondral ossification. This block
is guaranteed by the correct functionality of cellular homeostatic mechanisms such as
autophagy that ensures the disposal of damaged organelles and molecules, thus also
counteracting the activation of signaling pathways that sustain osteoarthritis (OA) patho-
genesis [2,3]. Therefore, the prevalence of human OA is gradually increasing, along with

Int. J. Mol. Sci. 2023, 24, 5830. https://doi.org/10.3390/ijms24065830 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24065830
https://doi.org/10.3390/ijms24065830
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-8418-9693
https://orcid.org/0000-0001-8789-4542
https://orcid.org/0000-0002-6900-4910
https://orcid.org/0000-0003-4133-4894
https://doi.org/10.3390/ijms24065830
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24065830?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 5830 2 of 16

increased life span and the increasing impact of obesity and metabolic syndrome [4], which
may impair the cellular homeostatic mechanisms [5]. A recent survey indicates that OA
affects nearly 7% of the population worldwide [4] and this percentage is at least doubled
in people with an age higher than 60, with women more affected than men [6]. Given the
dramatic impact on both the quality of life of affected individuals and expenditure of the
national health systems, much effort has been devoted to developing targeted therapies
that may delay the occurrence and progression of OA. However, due to its multifactorial
nature and heterogeneity [7,8], there have been no disease-modifying therapies available to
date, and pharmacological treatment mainly addresses pain management.

On the other hand, recent evidence has pointed at the usefulness of dietary interven-
tion to counteract the progression of degenerative, non-communicable diseases linked
to aging. A large European project (http://www.nu-age.eu (accessed on 21 September
2022)) listed at clinicaltrials.org has collected multiple findings showing that adherence
to the Mediterranean diet even has the ability to rejuvenate the epigenetic fingerprinting
of aging [9]. Olive oil is a basic component of the Mediterranean diet, and the efficacy
of olive-derived polyphenols in the treatment of both human OA or surgically induced
OA in animal models has already been underlined with multiple evidence “from bench
to bedside” [10]. Olive-derived bioactive compounds, such as oleocanthal, oleuropein
(OE), tyrosol, and hydroxytyrosol (HT), show interesting anti-inflammatory properties in
many inflammatory or degenerative conditions. Recent “state of the art” reviews have
been published providing molecular evidence whereby major olive oil polyphenols exert
their protective effects on human health [3,11]. These nutraceuticals are both available from
dietary intake or alternatively from nutritional supplements, with these molecules being
easily obtained from oil waste products.

In terms of concentration, the main polyphenols in olives are OE, its metabolite 2-
(3,4-dihydroxyphenyl)-ethanol, known simply as HT, and α-tocopherol [12–14]. Detailed
information about the biodistribution and metabolism of OE and HT is described else-
where [15]. With a concentration up to 14% in the fruit, OE is the most abundant phenolic
compound in olives, even though in the so-called “green phase” of fruit maturation, its
concentration progressively decreases [16].

In the present study, we employed both primary chondrocytes as well as C28/I2
immortalized chondrocytes, widely used for their phenotype that more closely matches
that of differentiated articular chondrocytes [17] compared to other available chondrocyte
cell lines. C28/I2 chondrocytes were used to explore the signaling mechanisms, since the
experimental settings required a high cell availability.

To set up in vitro models, we exposed the cells to lipopolysaccharide (LPS) to mimic
what happens in metabolic OA [18] as also confirmed in animal models [19], where a high-
fat diet is responsible for an unhealthy microbiota that causes increased gut permeability
and the absorption of LPS, with high serum levels. This seems to be a mechanism shared
by many chronic degenerative diseases. An increased serum level of LPS is then able
to activate innate immunity via triggering Toll-Like receptors 4 (TLR4) in macrophages
and chondrocytes [20]. Noteworthily, increased expression of TLR4 has been described in
OA [21].

Downstream of TLR4 engagement, several signaling pathways become activated,
including the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and
the mitogen-activated protein kinases (MAPKs) p38 and c-Jun NH2-Terminal Kinase (JNK),
the latter leading to the phosphorylation-mediated activation of c-Jun, a member of the
Activator protein 1 (AP-1) family [22]. These events are finally responsible for the activated
transcription of pro-inflammatory and catabolic molecules [20,23]. Among the latter, Matrix
Metallopeptidase 13 (MMP-13) has been considered as a key protagonist in driving the
failure of cartilage extracellular matrix beyond a no-return point [24,25]. MMP-13 is,
therefore, a candidate target for therapeutic strategies. Mengshol et al. previously reported
the requirement of an interaction between Runt-related transcription factor 2 (RUNX2)
and AP-1 in MMP-13 transcription [26]. Recent work from our and other groups has
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underlined that, in MMP-13 transcription, a fundamental role is also played by Notch
homolog 1 (NOTCH1) signaling that promotes RUNX2 activation [27,28]. Since a crosstalk
between JNK and the NOTCH1 signaling pathway has been described in macrophages
in the regulation of inflammatory responses, with the former activating the latter [29],
we explored whether this crosstalk also occurs in articular chondrocytes. In addition, we
investigated whether OE and HT are able to attenuate JNK activation and the LPS-induced
transcription of inflammatory and catabolic genes.

We found that pretreatment with either OE or HT significantly dampened LPS-induced
expression of most inflammatory and catabolic genes. This effect was achieved by means of
the reduction in LPS-induced ROS and, consequently, of the activation of major signaling
pathways: first JNK, and then NOTCH1.

2. Results
2.1. LPS Induces the Transcription of Inflammatory Genes in Both Primary Chondrocytes and
C-28/I2 Cells

We firstly assessed the suitability of C28/I2 cells as a convenient cell model to tease out
the molecular crosstalk downstream exposure to LPS. To this end, we compared primary
articular chondrocytes and C28/I2 cells, both exposed to LPS for 6 h (Figure 1).
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Figure 1. Effects of lipopolysaccharide (LPS) on inflammatory responses. mRNA expression of
inflammation markers in primary chondrocytes (a) and C28/I2 chondrocytes (b) significantly in-
creased 6 h after LPS stimulation. Data from cells treated with LPS (dashed pattern) were compared
to appropriate control and obtained from the same set of samples (n = 13 to 15 different primary
chondrocyte cultures or n = 5 for C28/I2). Quantification of expression levels was calculated for
each target gene and normalized using the reference housekeeping gene GAPDH. Values obtained in
chondrocytes were calculated according to the formula 2−∆Ct and expressed as number of molecules
per 100,000 GAPDH molecules. Results are means ± SEM. Statistical analysis was performed by
Student’s t test for paired samples (* p < 0.05; ** p < 0.01; and *** p < 0.001).

We investigated the induction of genes contributing to the amplification of the in-
flammatory/hypertrophic deregulation of chondrocytes: Inducible Nitric Oxide Synthase
(INOS), involved in the generation of nitric oxide species and exerting a key role in OA
pathogenesis [30]; Cyclooxygenase-2 (COX2), involved in the production of prostaglandins,
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mediators of pain [31]; and NOTCH1, which we recently showed as pivotal in supporting
many pathways of loss of maturational arrest in chondrocytes [27].

With both cell types, we found a statistically significant increase in the induction
of these target genes, although C28/I2 cells were somehow less reactive than primary
chondrocytes [17].

2.2. OE and HT Show Antioxidant Activities against LPS-Induced ROS Production in
C28/I2 Cells

As previously reported [32], LPS exposure of chondrocytes yields the production of
intracellular ROS as assessed by means of 2′-7′-dichlorofluorescein diacetate (DCHF-DA), a
fluorogenic dye that allows a sensitive quantification of ROS within the cells. A time-course
assessment of ROS levels in C28/I2 cells after exposure to LPS is shown in Figure 2a. LPS
treatment provoked a progressive increase in ROS production starting from 2 h up to 120 h.
ROS induction following LPS exposure was comparable with that elicited by exposure
to two positive controls, hydrogen peroxide (100 µM) and its stabilized form tert-butyl
hydrogen peroxide (TBHP, 55 µM). We found that the longer the incubation with LPS, the
larger the increase in ROS production (Figure 2a). Anyway, due to the high variability at
120 h post-stimulation, the 48 h time point was chosen for statistical analysis. We, therefore,
confirmed even in C28/I2 chondrocytes that LPS induces a significant increase in ROS
production (Figure 2b). Noteworthily, in these experimental settings, we observed the
antioxidant properties of HT and OE. Indeed, C28/I2 cells pretreated for 16 h with either
one of the two polyphenols prior of exposure to LPS showed a statistically significant
decrease in LPS-induced ROS production. These results confirm that OE and HT exert
an antioxidant action and a consequent protective effect inhibiting oxidative stress in our
experimental model.
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following LPS Exposure in Chondrocytes 

Figure 2. Antioxidant effect of OE and HT in C28/I2 chondrocytes. (a) LPS treatment increases
ROS production progressively from time 2 h to 120 h compared to control. ROS were assessed by
fluorescence intensity of DCHF-DA. (b) Pretreatment of C28/I2 chondrocytes with olive-derived
nutraceuticals OE and HT showed a statistically significant reduction in LPS-induced oxidative stress
at 48 h. Data represent results from multiple analysis (n = 4) of quadruplicate samples for each
experimental condition expressed as mean ± SEM and normalized with respect to the control at
48 h. Statistical analysis was performed by ANOVA, followed by Newman–Keuls’ post hoc test,
with ** p < 0.01.

2.3. OE and HT Prevent LPS-Mediated Induction of Inflammatory and Catabolic Genes following
LPS Exposure in Chondrocytes

ROS have been recognized to activate the signaling pathways downstream of LPS
exposure [20], i.e., NF-κB [33] and the MAPK pathways [34]. Since both OE and HT were
able to reduce the ROS increase following LPS stimulation, we speculated that this could
be reflected in a reduced activation of signaling pathways. Therefore, we investigated
OE/HT’s ability to reduce the expression of a wide panel of genes. These included inflam-



Int. J. Mol. Sci. 2023, 24, 5830 5 of 16

matory genes, such as INOS, COX2, IL6 and IL8 (Figure 3), as well as other genes coding for
relevant intermediates of signaling pathways, such as NFKB1 (indicating activation of the
NF-κB) [33], NOTCH1 (responsible for the hypertrophy of chondrocytes in close connection
with NF-κB) [35], CHUK (IKKα, a downstream target of the NOTCH1 pathway itself [36],
with relevant roles in the NF-κB pathway and chondrocyte differentiation [37]) (Figure 4).
We also assessed the effects of OE and HT in mitigating the increased expression of MMP13
(Figure 4). Pretreatment with the nutraceuticals significantly attenuated the LPS-dependent
increased expression of inflammatory (INOS, COX2, IL6 and IL8) and catabolic (MMP13)
genes as well as of NFKB1 and NOTCH1, suggesting the inhibition of both NF-κB and the
NOTCH1 pathways.
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Figure 3. Effects of OE and HT on inflammatory markers. LPS treatment increases markers of OA
in primary OA chondrocytes and pretreatment with either OE (upper graphs) or HT (lower graphs)
efficiently inhibits this effect. Results are means ± SEM (n = 5 to 9 different primary chondrocyte
cultures), normalized using the reference housekeeping gene GAPDH according to the formula
2−∆Ct and expressed as number of molecules per 100,000 GAPDH molecules. Statistical analysis was
performed by ANOVA, followed by Newman–Keuls’ post hoc test, with ** p < 0.01, *** p < 0.001.
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Figure 4. Effects of OE and HT on relevant intermediates of signaling pathways, and on the pivotal
catabolic enzyme in OA. LPS treatment increases the expression of these genes in primary OA
chondrocytes and pretreatment with either OE (upper row) or HT (lower row) efficiently inhibits this
effect. Results are means± SEM (n = 4 to 9 different primary chondrocyte cultures), normalized using
the reference housekeeping gene GAPDH according to the formula 2−∆Ct and expressed as number
of molecules per 100,000 GAPDH molecules. Statistical analysis was performed by ANOVA, followed
by Newman–Keuls’ post hoc test, with * p < 0.05, ** p < 0.01, *** p < 0.001. ns = not significant.
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2.4. OE and HT Prevent JNK Activation following LPS Exposure in Chondrocytes

As shown in Figure 5, pretreatment with OE/HT proved able to reduce JNK activation
(P-JNK) in primary chondrocytes as assessed with Western blotting.
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Figure 5. Left: activation of JNK by LPS exposure in primary OA chondrocytes. To account for
the different solubility requirements of the two polyphenols, two different set of samples were
prepared, with either DMSO as a vehicle (to assess OE effects) or ethanol (to assess HT effects).
Right graph: quantification of phosphorylated JNK intensity relative to β-actin, and expressed as
fold change relative to the control for each set of samples. Stimulation with LPS increased the levels
of phosphorylated JNK while pretreatment with either OE or HT prevented this activation.

2.5. Following LPS Exposure, JNK Activation Triggers NOTCH1 Pathway Leading to Increased
MMP-13 Gene Transcription

The crosstalk between JNK and NOTCH1 pathway was investigated in C28/I2 chon-
drocytes, exploiting conventional inhibitors. At 1 h posttreatment, LPS was able to strongly
increase the level of phosphorylated JNK (Figure 6a, left). As expected, cells treated
with the JNK inhibitor SP600/125 showed a significantly decreased JNK activation in
LPS-stimulated conditions. Instead, the DAPT-mediated inhibition of canonical NOTCH
pathway activation further enhanced the level of activated JNK. In addition, pretreatment
with DAPT significantly increased the degree of c-Jun phosphorylation (6 h) in both control
and LPS-stimulated conditions (Figure 6a, middle). These results are in keeping with
already-reported inhibitory activity exerted by NOTCH1 on JNK activation [38]. Figure 6a
(right) also illustrates how the levels of activated NOTCH (cleaved at Val1744) showed
a highly significant increase at 6 h post LPS treatment. As expected, DAPT significantly
abrogated the formation of cleaved NOTCH in LPS-stimulated conditions. Treatment with
SP600/125 instead resulted in levels similar to those of control samples, in both the control
and stimulated conditions, confirming the involvement of JNK in modulating NOTCH
signaling pathway in our experimental model.

Indeed, the assessment of MMP-13 mRNA level in C28/I2 cells (6 h after LPS) showed
a trend that confirmed the pivotal role of JNK, and was suggestive of the contribution of
this pathway for MMP-13 expression (Figure 6b).

Collectively, these data suggest that in MMP-13 induction, phosphorylated JNK acts
by both enhancing NOTCH1 activation [29] and mediating the phosphorylation of c-Jun for
MMP-13 induction. On the other hand, NOTCH1 has a mitigating effect on JNK activation.
Indeed, the highest levels of P-c-Jun were observed after DAPT treatment in both basal and
LPS-stimulated conditions. In keeping with this observation, after LPS treatment, P-c-Jun
showed higher values in chondrocytes treated with NOTCH siRNA compared to control
siRNA (Supplementary Figure S1).
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Figure 6. Activation of JNK pathway (phosphorylation of JNK and c-Jun) and of NOTCH1 (cleavage
of Val1744) following LPS exposure and their effects on MMP-13 transcription. (a) In C28/I2, stimula-
tion with LPS (1 h) strongly increased the levels of phosphorylated JNK and, after 6 h, that of cleaved
NOTCH1. DAPT-mediated inhibition of NOTCH1 cleavage (Val1744) and activation enhances phos-
phorylated JNK after LPS exposure. Representative Western blots are shown for P-JNK (n = 4), P-c-Jun
(n = 7) and NOTCH1 Val1744 (n = 3) In the latter case, rearrangement (switch) of LPS and DAPT
lanes was performed for consistency with the other Western blots (see Supporting information file).
(b) MMP-13 mRNA (6 h) showed a trend that was found in correlation with that of phosphorylated
JNK (1 h). Statistical analysis was performed by ANOVA, followed by Newman-Keuls’ post hoc test,
with * p < 0.05, ** p < 0.01, *** p < 0.001. ns = not significant.

2.6. OE/HT Pretreatment of Both C28/I2 and Primary Chondrocytes Inhibits MMP-13 Synthesis
and Release following LPS Exposure

Collectively, the above-reported data describe the signaling network leading to MMP-
13 activation, and in particular, the central role of JNK that we found inhibited by OE/HT
pretreatment. Therefore, we then aimed at investigating whether OE and HT delivered to
C28/I2 or primary chondrocytes were able to dampen the synthesis and/or the release
of MMP-13.

C28/I2 cells pretreated (16 h) with either OE or HT and then evaluated at 6 h following
LPS exposure showed reduced MMP-13 intracellular levels (Figure 7).

Interestingly, differently from OE, exposure to plain HT itself led to an increased
MMP-13 expression in C28/I2 chondrocytes. However, HT pretreatment was successful in
reducing LPS-dependent MMP-13 induction.

However, MMP-13 levels are more conveniently assessed in the supernatant, since this
collagenase is not normally expressed in healthy chondrocytes nor stored intracellularly,
but promptly induced upon stimulation and released. In addition, this marker is better
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assessed in primary chondrocytes that are endowed with relevant genes for ECM anabolism
and catabolism [17].
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Figure 7. Inhibiting effects of OE and HT on LPS-induced MMP-13 expression in C28/I2 chondrocytes,
following 6 h exposure to LPS. Right graph: quantification of MMP-13 intensity relative to β-actin
(2 experiments).

Therefore, we moved to assess the inhibitory effects of pretreatment with either OE or
HT on the LPS-induced release of MMP-13 on the supernatants of primary chondrocytes,
seeded at high density to reproduce the differentiated phenotype of chondrocytes within
the tissue [39]. Three different primary cultures were tested, and each condition was tested
in triplicate wells.

The release was assessed after a 24 h exposure to the inflammatory stimulus, as
previously reported [40]. The results obtained (Figure 8) showed that OE exhibited the
more effective protecting activity against LPS, since the decrease was statistically significant
with p < 0.001. Supplementary Figure S2 shows the data obtained from each primary
culture. The three different cultures exhibited a similar pattern. In addition, the levels of
MMP-13 in OE + LPS samples were always significantly lower compared to those with HT
+ LPS treatment and no statistically significant differences were observed between MMP-13
levels of OE + LPS compared to control samples.
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Figure 8. Inhibiting effects of OE and HT pretreatment on LPS-induced MMP-13 release from OA
chondrocytes, following 24 h exposure. Cumulative data obtained from three patients (mean ± SEM,
n = 3), with triplicate wells seeded for each condition for each patient. Oleuropein was confirmed as
exhibiting a complete inhibiting activity on MMP-13 release induced by LPS treatment. Data were
compared by ANOVA, followed by Newman–Keuls’, with ** p < 0.01, *** p < 0.001.
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3. Discussion

In this study, we used an experimental setting useful to mimic in vitro the inflam-
matory environment of OA and selected LPS as a stimulus to replicate the condition of
metabolic OA [18]. We explored the mitigating effects of OE and HT on MMP-13 release
and upstream signaling pathways. Primary OA chondrocytes were tested at high density,
a condition that promotes a differentiated phenotype [39], useful to draw meaningful
“translational” information, to be transferred from bench to bedside.

The LPS triggering of TLR4 induces ROS generation via multiple mechanisms. This is
a relevant observation, since, as also stated elsewhere, “excess levels of these ROS not only
cause oxidative-damage but, perhaps more importantly, cause a disruption in cell signaling
pathways that are redox-regulated, including Akt and MAP kinase signaling [41]”. Most
of the knowledge accumulated so far derives from studies performed on macrophages.
However, many shared features have been described for OA chondrocytes and activated
macrophages [42], including the ability to produce reactive oxygen species. Most of the
early ROS generation after the triggering of TLR4 derives from a mechanism that involves
the IRAK1/ERK activation of a dimer composed of p67phox (a 67 kD subunit of the multi-
protein NADPH oxidase, responsible for a burst of superoxide) and NOX2 [43,44]. This
ROS burst and the downstream activation of inflammatory pathways are indeed prevented
by either TLR4 inhibition, NADPH oxidase inhibition or N-acetylcysteine ROS scavenging
activity [44]. However, a nutraceutical-based strategy devoted to counteracting excessive
ROS generation is a convenient approach whereby maintaining cell homeostasis, rather
than TLR inhibition. Indeed, TLR4 has been recently shown to act as a double edge sword
in OA progression, since it is responsible for both activation of inflammatory signaling,
but at the same time for induction of homeostatic pathways, leading to antioxidant activi-
ties (SOD2), repair mechanisms (OGG1, responsible for mitochondrial functionality) and
autophagy induction [45].

Despite ROS may exert both detrimental and beneficial effects on longevity, depending
on condition and species [46], accumulating evidence indicates that in the case of OA,
ROS may trigger a lot of pathogenic pathways in chondrocytes sustaining DNA damage,
senescence, inflammation and ECM remodeling [5,41]. Therefore, it is noteworthy that
either OE or HT significantly prevented LPS-dependent ROS increase in C28/I2 cells after
prolonged exposure to LPS. To our knowledge, this work, for the first time, points at an
antioxidant activity of olive-derived polyphenols in chondrocytes exposed to LPS.

As expected, this antioxidant activity reduced the activation of signaling pathways.
ROS may indeed activate NF-κB [33] and also the MAPKs [34,41]. This resulted in the
increased expression of inflammatory markers (INOS, COX2, IL6, and IL8), but also of
relevant intermediates in signaling pathways, such as NOTCH1 and CHUK, a target gene
of the NOTCH1 pathway [36]. The latter has been previously found to be activated in
macrophages following their exposure to LPS [47]. NOTCH has been connected with ag-
ing [36] and indeed, in epithelial cells, its transcriptional regulation is controlled by p53 [48],
a critical effector of aging. In addition, in articular cartilage NOTCH1 is epigenetically
controlled by miR146a that counteracts aging by inhibiting NOTCH1, IL6 and IL8 [49].

Moreover, relevant activity of LPS was also observed in the induction of NFKB1, a
marker of NF-κB activation [33]. LPS induced the expression of MMP13, a gene that is
dispensable in healthy cartilage metabolism, but that, once re-expressed in OA cartilage,
indicates the triggering of hypertrophy towards terminal differentiation [24,25]. Being
a gene not normally expressed in chondrocytes, MMP13 level was found to be quite
variable among the different primary cultures enrolled, in keeping with the notion of “high”
and “low” responders among OA patients [50], in opposite correlation with the basal
level. Indeed, the extent of MMP-13 production following exposure to growth factors and
cytokines has been shown to be a function of the physiologic state of the cells [50].

In conclusion, LPS exposure significantly up-regulated the expression of inflamma-
tory markers and relevant players in OA pathophysiology, and these effects were signifi-
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cantly dampened by pretreatment with either OE or HT in keeping with other literature
reports [3,10,11,51].

Among the signaling pathways that ROS can activate downstream of LPS expo-
sure [20], we selected JNK and investigated whether OE and HT were able to prevent its
activation. JNK indeed could be critical for its ability of regulating NOTCH1 activation [29],
and therefore its downstream target MMP-13 [28]. The effects of modulating the signaling
pathways upstream MMP13 were investigated in C28/I2 cells, a convenient model whereby
exploring signaling mechanisms [52]. However, these cells do not fully substitute primary
chondrocytes with reference to the expression of extracellular matrix anabolic and catabolic
genes [17].

Most of the novelty of our work lies in the effects of OE and HT on the axis
JNK > NOTCH1. We chose to focus on the JNK pathway, in view of its reported ability to
activate the NOTCH1 pathway [29]. In addition, c-Jun, involved in MMP13 transcription,
in association with RUNX2 [26], is a substrate of JNK activity, and the “phosphorylation
of Jun by JNK is a prerequisite for the ability of the AP-1 complex to execute transcrip-
tional activation [53]”. Previous studies showed a peak in JNK activation 1 h following
exposure to the inflammatory stimulus [53], despite a certain variability occurring in pri-
mary chondrocyte cultures in the degree of response and kinetics. Furthermore, the same
report suggested a more central role of JNK in inflammatory responses compared to the
other MAPKs [53]. Our findings show that both OE and HT were able to prevent the
phosphorylation-dependent activation of JNK in primary chondrocytes. Further investi-
gation carried out on C28/I2 chondrocytes shows that JNK inhibition leads to reduced
NOTCH1 activation, while, conversely, NOTCH1 pathway inhibition via DAPT treatment
tends to increase the level of phosphorylated JNK and of its downstream signaling interme-
diate phosphorylated c-Jun, disclosing the occurrence of a negative feedback exerted by
NOTCH on JNK. This appeared confirmed by a higher level of phosphorylated c-Jun in
chondrocytes treated with NOTCH1 siRNA. The findings of DAPT effects on JNK > P-c-Jun
axis are in keeping with other literature reports that show that “Notch interferes with the
scaffold function of JNK-interacting protein 1 to inhibit the JNK signaling pathway” [38].
Noteworthily, our present data together with previously published results [27,28] would
suggest that, in chondrocytes, MMP-13 transcription depends on the combined activity
of activated NOTCH1 (cleaved at Val1744, by γ secretase) and phosphorylated c-Jun. In
addition, a crosstalk between Notch and NF-κB (noncanonical) signaling pathways has
been described as enhancing the transcription of many OA relevant genes, including IL6
and MMP13 [35].

Previously, Gualillo and colleagues demonstrated a chondroprotective action of oleo-
canthal, another phenolic compound derived from olives, in a similar experimental set-
ting [54,55], but to our knowledge, our study is the first that describes these effects for HT
and OE in both primary chondrocytes and C28/I2 cells.

Based on our findings, OE pretreatment generally exerts the more penetrant activity
in counteracting the effects of LPS exposure: ROS production, activation of signaling
pathways and transcription of inflammatory/catabolic markers. This is in keeping with its
already-reported ability of alleviating OA in both animal [56] and human, improving joint
functional capacity in older people with high knee joint pain [57]. In addition, OE has been
found to act as a senolytic/senomorphic agent promoting a pro-regenerative environment
in chondrocytes, synovial and bone cells [58].

In conclusion, our study confirms a key role for NOTCH1 in the pathogenesis of
OA, thus pointing at this signaling pathway as a potential target for therapy. However,
as extensively reviewed elsewhere [27], NOTCH1 is a kind of double-edged sword with
both homeostatic and unwanted effects. Therefore, to avoid the latter, attempts should be
made to develop a strategy for preventing excessive activation while sparing its ability
to inhibit JNK activation. From this perspective, the findings of our study, indicating
that olive-derived polyphenols have remarkable chondroprotective effects and are able to
modulate JNK and NOTCH1 activation, strongly support the urgency to investigate in vivo
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this chondroprotective action, in order to consider these compounds as a therapeutic option
for OA management.

4. Materials and Methods
4.1. Cells Isolation and Treatment

For this study, two in vitro models were used: primary chondrocytes and C28/I2,
an immortalized human chondrocyte line [17]. Human primary chondrocytes (n = 22)
were isolated from knee cartilage derived from OA patients undergoing arthroplasty as
previously indicated [27]. The study was conducted according to the guidelines of the Dec-
laration of Helsinki and approved by the Ethics Committee of Istituto Ortopedico Rizzoli
(ethic approval code: 0019715, approved on 28 September 2016), including documentation
of written patient informed consent. Primary chondrocytes retrieval and expansion were
conducted as described in [27], i.e., only P0 chondrocytes (i.e., cells that did not undergo
subculturing and, therefore, retained proper chondrocyte differentiation) were used for
functional studies. Then, chondrocytes were seeded at high density (62,500 cells/cm2) in
12-well plates. Under these conditions, chondrocytes are morphologically differentiated
with a round-to-polygonal shape instead of the elongated shape of dedifferentiated chon-
drocytes [59]. In addition, they retain the expression of collagen 2, the major phenotypical
marker of differentiated chondrocytes (Supplementary Figure S3). At a time of 48–72 h
after seeding, cells were starved for 24 h before pretreatment with either OE or HT. C28/I2
chondrocytes were expanded and seeded with DMEM with 10% FBS at the same cell
density. No starvation was performed with immortalized chondrocytes, since it has been
previously shown to induce mitochondria damage or dysfunction [60]. Then, both cellular
models were pretreated for 16 h with olive-derived nutraceuticals: 100 µM Oleuropein
(OE, 92167, Sigma) and 100 µM Hydroxytyrosol (HT, 70604, Cayman chemical, MI, USA)
before stimulation with 10 µg/mL lipopolysaccharide (LPS, L-2654, Sigma) for 1–120 h,
depending on subsequent use, as described below. As an inhibitor of NOTCH1 cleavage
at Val1744, the γ-secretase complex inhibitor DAPT (D5942, Sigma) was used. A stock
concentration of 5 mM was prepared in DMSO and diluted to a final concentration of 5 µM
in culture medium. SP600125 (SP600125, Tocris Bioscience, Bristol, UK) was 10 mM in
DMSO and used at a final concentration of 10 µM.

4.2. Western Blot

Western blotting was carried out to evaluate the modulatory effects of nutraceuticals
in the activation of signaling pathways downstream LPS exposure. To this end, cells were
recovered by scraping the cells at 1 h or 6 h post-stimulation with a small volume of
cold buffer. Pellets of either primary chondrocytes or C28/I2 were resuspended in RIPA
Buffer (ThermoFisher, Waltham, MA, USA, 89900) and added with Halt™ Protease and
Phosphatase inhibitor cocktail and EDTA 100x (78440, Thermo Fisher) according to the man-
ufacturer’s instructions. Extraction was carried out via sonication then the samples were
centrifuged for 15′ at 11,000× g. Total proteins were quantified by means of a Bradford As-
say with Coomassie Brilliant Blue G-250 (AppliChem, Council Bluffs, IA, USA, A3480) dye.
An equal amount of protein (in most cases 30 µg) was run in each experiment. SDS-PAGE
was performed on a BioRad apparatus on 10–12% Acrylamide gels. Page RulerTM Plus
Prestained Protein Ladder (26619, Thermo Fisher) was used as a molecular weight marker.
Proteins were transferred on nitrocellulose or PVDF membranes, treated for the blocking of
nonspecific bindings (5% dry milk in 0.1% Tween 20 in TBS), and then incubated overnight
at 4 ◦C in agitation with the following primary antibodies: cleaved Notch1 (Val1744) (rabbit
monoclonal anti-human NOTCH-1, clone D3B8, #4147, Cell Signaling Technology, 1:1000);
phospho-JNK (rabbit polyclonal anti-Phospho-SAPK/JNK) (Thr183/Tyr185, #9251, Cell
Signaling Technology, 1:1000); total SAPK/JNK (rabbit polyclonal, #9252, Cell Signaling
Technology, 1:1000), Phospho-c-Jun (Ser73) (rabbit polyclonal, #9164, Cell Signaling Tech-
nology, 1:1000); total-c-Jun (t-cJun, rabbit polyclonal, #9162, Cell Signaling Technology,
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1:1000); MMP-13 (goat polyclonal, AF511, R&D, 1:5000); and β-actin (mouse monoclonal,
#A5316, Sigma-Aldrich, 1:5000).

After three repeated washes in TSB + 0.05% Tween, the membranes were incubated 1 h
at R.T. in 3% dry milk added with either anti-mouse, anti-rabbit or anti-goat secondary an-
tibody (1:2000) (horseradish-peroxidase-conjugated anti-mouse IgG, 70765, Cell Signaling
Technology; horseradish-peroxidase-conjugated anti-rabbit IgG, 70745, Cell Signaling Tech-
nology; or horseradish-peroxidase-conjugated anti-goat IgG, Jackson ImmunoResearch).
Western blot bands were detected using ECL Select (GE Healthcare) with a ChemiDoc
MP system (BioRad). β-actin (A5316, Sigma) served as the loading control and for the
normalization of band intensity quantification carried out with the data analysis software
Image Lab (Version 4.1.). For the comparison shown in Figure 6, the following analyses
were undertaken: P-JNK: P-JNK values normalized to the corresponding levels of total JNK
(in this analysis, the 54 kDa JNK2 form was considered that appeared to be the prevalent
form in total JNK Western blot); P-c-Jun: phosphorylated c-Jun values normalized to the
level of β-actin; and cleaved NOTCH1 (Val1744): cleaved NOTCH1 values normalized
to β-actin.

4.3. DCHF-DA Cellular ROS Assay

C28/I2 chondrocytes were seeded at a density of ~15,000 cells/cm2 in a 96-well plate
with a clear flat bottom (Sarstedt). At a time of 24 h later, a 16 h pretreatment with either
100 µM OE or 100 µM HT was performed. Afterwards, DCHF-DA (2′,7′-dichlorofluorescein
diacetate) was added following the manufacturer’s instructions for a Cellular ROS detection
assay kit (ab113851, Abcam, Waltham, MA, USA). Cells were washed once with 100 µL 1X
Dilution Buffer and then incubated for 30′ at 37 ◦C with 25 µM DCHF-DA in 1X Buffer. The
solution was then removed and after being washed, the cells were treated with 10 µg/mL
LPS. A DCHF-DA signal was detected at 2–4–6–24–48–120 h at Ex/Em = 485/535 nm
with an Infinite NANO M+ plate reader (Tecan). Amounts of 55 µM Tert-Butyl Hydrogen
Peroxide (TBHP, Abcam) and 100 µM hydrogen peroxide were used as positive controls.
Each experimental condition was tested in triplicate or quadruplicate; the experiment was
repeated five times.

4.4. Real-Time RT-PCR Analysis

Total RNA was extracted with Trizol (15596-026, Invitrogen, Waltham, MA, USA)
from cell pellets collected 6 h after stimulation with LPS, according to the manufacturer’s
instructions. Total RNA was reverse-transcribed using SuperScript VILO cDNA Synthesis
Kit (11754-050, Invitrogen) following the manufacturer’s protocol. Real-time RT PCR
analysis was performed employing TB Green® Premix Ex Taq™ II (Tli RNase H Plus)
(RR82LR, TaKaRa) and following the standard protocol: Takara Ex Taq Hot Start DNA
Polymerase activation 95◦ followed by 45 cycles (denaturation 95◦ and amplification with
an annealing temperature variable according to the primer design as indicated in Table 1).
mRNA quantification was calculated for each target gene and normalized using GAPDH
as a reference gene. The results obtained from both primary chondrocytes and C28/I2 were
expressed according to the formula 2−∆Ct and represented as number of molecules per
100,000 GAPDH molecules. Primer specificity was assessed by the software Primer-BLAST,
and further checked via the evaluation of melting curves. The sequences of selected primer
pairs for each target genes and annealing temperature are shown below (Table 1).

Table 1. List of primers used for Real time RT-PCR.

Gene Forward Primer Reverse Primer Amplicon Size
(Annealing T)

GAPDH CGGAGTCAACGGATTTGG CCTGGAAGATGGTGATGG 218 bp (60 ◦C)

CHUK(IKKα) GCACAGAGATGGTGAAAATCATTG CAACTTGCTCAAATGACCAAACAG 86 bp (60 ◦C)

NFKB1 CAGGAGACGTGAAGATGCTG AGTTGAGAATGAAGGTGGATGA 109 bp (60 ◦C)
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Table 1. Cont.

Gene Forward Primer Reverse Primer Amplicon Size
(Annealing T)

NOTCH1 CCTGAAGAACGGGGCTAACA GATGTCCCGGTTGGCAAAGT 127 bp (60 ◦C)

MMP13 TCACGATGGCATTGCT GCCGGTGTAGGTGTAGA 277 bp (58 ◦C)

INOS ACATTGATCAGAAGCTGTCCCAC AAAGGCTGTGAGTCCTGCAC 235 bp (58 ◦C)

COX2 CAGCACTTCACGCATCAGTTT GCGCAGTTTACGCTGTCTA 129 bp (58 ◦C)

IL6 TAGTGAGGAACAAGCCAGAG GCGCAGAATGAGATGAGTTG 184 bp (60 ◦C)

IL8 CCAAACCTTTCCACCC ACTTCTCCACAACCCT 153 bp (60 ◦C)

4.5. ELISA Assay for MMP-13 Quantification

Primary chondrocytes were seeded and treated as described in 4.1. After 24 h of
LPS exposure, the cell supernatants were collected and preserved at −20 ◦C until use.
Human total MMP-13 was detected using the DuoSet ELISA Development System (DY511,
R&D). Then, 96-well microplates were coated O.N. at R.T. with mouse anti-human MMP-
13 Capture antibody (a final concentration of 4µg/mL) following the manufacturer’s
instructions. After the incubation, the solution was aspirated and each well was washed
4 times with wash buffer (0.05% Tween 20 in PBS). This step was repeated after each
incubation. The supernatant samples were appropriately (1:15) diluted in reagent diluent
(1% BSA in PBS); 100 µL was added to each well and incubated at R.T. for 2 h, and repaired
from light. For each experimental condition, samples were tested in triplicates. Then, the
detection step was started with Human MMP-13 Biotinylated Goat anti-human MMP13
Detecting Antibody (R&D) diluted in reagent diluent (final concentration: 100 ng/mL) and
left at R.T. for 2 h. Subsequently, 100 µL of working dilution of streptavidin-HRP (1:200
from stock solution) was added to each well and incubated at R.T. for 20′. The detection of
bound MMP-13 was achieved by adding 100 µL of the substrate solution consisting of a
1:1 mixture of color reagent A (H2O2) and color reagent B (tetramethylbenzidine) (R&D
Systems, DY999); after 20′, the reaction was blocked by adding 100 µL of stop solution
(2 N H2SO4; R&D Systems, DY994). The optical density of each well was determined
immediately at the end of incubation using the Infinite NANO M+ plate reader (Tecan)
set at 450 nm with a wavelength correction set at 540 nm. The value of each sample was
analyzed referring to a seven-point standard curve determined with recombinant human
MMP-13 Standard (R&D Systems, #843400, stock concentration 250 ng/mL, and used at a
two-fold dilution from 4000 to 62.5 pg/ml) according to the manufacturer’s protocol.

4.6. Statistical Analysis

Data are represented as the mean ± standard error of mean (SEM) and compared by
mean of Student’s t-test for paired samples or ANOVA (with Newman–Keuls’ post hoc
test) where appropriate using the GraphPad Prism 5.0 software (GRAPHPAD SOFTWARE,
La Jolla, CA, USA). In the case of MMP-13, given the high variability in the level of gene
expression in the different primary cultures evaluated, the comparison was performed
after variance normalization by using the Log10 of the values. In all the figures, in both the
main manuscript and the supplementary material, a consistent way of representing the
conditions was used, as follows: no pattern: unstimulated samples; dashed pattern: LPS-
stimulated samples; white fill: no pretreatment; grey fill: pretreatment with modulators of
signaling (nutraceutical/DAPT/SP600125). Differences were considered significant when
p < 0.05 with * p < 0.05; ** p < 0.01; and *** p < 0.001.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms24065830/s1.
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