
18 August 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Filaseta A., Pianini D. (2023). Runtime Load-Shifting of Distributed Controllers Across Networked Devices.
Cham : Springer [10.1007/978-3-031-35260-7_6].

Published Version:

Runtime Load-Shifting of Distributed Controllers Across Networked Devices

Published:
DOI: http://doi.org/10.1007/978-3-031-35260-7_6

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/950534 since: 2023-12-13

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1007/978-3-031-35260-7_6
https://hdl.handle.net/11585/950534

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Filaseta, A., Pianini, D. (2023). Runtime Load-Shifting of Distributed Controllers Across Networked

Devices. In: Patiño-Martínez, M., Paulo, J. (eds) Distributed Applications and Interoperable Systems.

DAIS 2023. Lecture Notes in Computer Science, vol 13909. Springer, Cham.

The final published version is available online at: https://doi.org/10.1007/978-3-031-35260-

7_6

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's
website.

https://cris.unibo.it/
https://doi.org/10.1007/978-3-031-35260-7_6
https://doi.org/10.1007/978-3-031-35260-7_6

Runtime load-shifting of distributed controllers
across networked devices⋆

Angelo Filaseta1[0009−0004−6797−6814] and Danilo Pianini1[0000−0002−8392−5409]

Alma Mater Studiorum—Università di Bologna, 47522 Cesena (FC), Italy
angelo.filaseta@studio.unibo.it, danilo.pianini@unibo.it

Abstract. The ability to monitor and steer the behaviour of complex
distributed systems is an increasingly hot research topic, fostered by the
growing adoption of hybrid cloud-edge technologies that constitute a
computational continuum. One key feature of these systems is the abil-
ity to scale in size, embracing a wide number of heterogeneous devices
and applications. This complexity, in turn, impacts the monitoring and
control systems that need, at the same time, to be able to deal with high
complexity and computational load and be available on all kinds of de-
vices. In this paper, we introduce an architecture that allows for shifting
the computational load of monitor systems at runtime across different
devices in the cloud-edge continuum. We show the feasibility of the pro-
posed approach by providing a reference implementation integrated with
an existing simulation platform, leveraging Kotlin multiplatform to allow
interoperability among different runtimes.

Keywords: Runtime load-shift · Distributed Monitoring · Distributed
control · Interoperability.

1 Introduction

Recent trends in the development of distributed systems are pushing towards
constructing a cloud-edge continuum, where services can migrate opportunisti-
cally across very diverse devices [19]. Monitoring and controlling the behaviour of
such systems is paramount [7], and although initial studies on distributed mon-
itoring exist [3], it is often achieved by aggregating the information provided by
the devices in a sub-portion of the system (often, a single monitoring service) [28].
One problem in this context is the computational load of the monitoring ser-
vice: if the system is large and complex, it may need to perform heavy-duty
computations, such as rendering the relations among the monitored system’s
components. The problem is exacerbated by the fact that the monitoring/con-
trol service must be available on any device an administrator may have access to,
hereby including low-power and battery-equipped devices such as smartphones,
which may not be able to perform the required computations (or may do so
an unacceptable cost in battery life). In general, the monitoring/control service
⋆ Artifacts available in https://zenodo.org/record/7817433

https://zenodo.org/record/7817433

2 A. Filaseta and D. Pianini

must be able to use the available resources efficiently: if the monitoring device
is powerful enough, it can host the computation, freeing the shared resource
from the duty; otherwise, it should delegate the computation to a more suitable
device. Crucially, the monitoring service must be able to do so at runtime, as
the availability of devices may change over time, as well as the actual resource
availability; for example, a smartphone kept under charge may well take care
of the whole computation, but as soon as it gets disconnected from the power
grid, battery consumption concerns apply. Similar considerations can be made
for other performance metrics, such as networking issues: mobile devices may be
located where the network connectivity is poor, and thus switch at runtime into
an operation mode that optimises for low data rate.

Contribution In this paper, we propose an architecture that allows for shifting
the computational load of monitoring and control systems at runtime. It requires
the capability to identify in advance the components that may be moved across
devices, and a shared technology or runtime that can execute on all the devices
that might need to host the heavy-duty part of the monitoring: consequently,
technologies capable of targeting multiple runtimes through multi-target compi-
lation are particularly well-suited to implement the proposed system.

The remainder of this manuscript is as follows: Section 2 introduces the
problem we are addressing and shows examples from the industry; Section 3
describes the architecture we propose to tackle the problem; Section 4 describes a
proof-of-concept implementation of the proposed architecture; Section 5 exercises
the proof-of-concept and draws lessons on the architecture; Section 6 concludes
the paper and outlines future work.

2 Problem statement

Consider a (possibly large) distributed system composed of multiple devices and
processes that needs to be monitored (namely, information on the system’s state
needs to be collected, aggregated, and displayed on a monitoring device, gener-
ating a directional information flow) and controlled (which, in addition to mon-
itoring the system, can act on it, generating a bidirectional information flow).
Assume that the system is monitored and controlled by a single service, which
can equivalently be a single process hosted on a single device or a distributed
system, as far as it exposes a single entry point. Note that this definition is loose
enough to include atypical monitoring and control systems such as simulators,
which are often used as development and debugging support when the system
is being built. Assume the monitoring/control service to have a hefty compu-
tational load in some of its parts; although no specific kind of computation is
assumed, a typical example can be the rendering of the relations among the
monitored system’s components, which may involve the computation of and or-
ganisation in space of large graphs whose edges are frequently reshaped (e.g.,
if the system includes mesh-networked parts and/or mobile devices) and whose
node set evolves in time (e.g., if the system is open and new nodes join or leave).

Runtime load-shifting of distributed controllers across networked devices 3

Finally, the monitoring service must efficiently use the available resources on
any device an administrator may have access to, ranging from well-equipped
workstations to low-power devices such as smartphones (or even more resource-
constrained devices, including wearables such as smartwatches). Consequently,
the monitoring service must be able to dynamically shift its computational load
across different devices, balancing the load considering the available resources
and the current needs of the system, and supporting scenarios such as moving
the computationally expensive part on or off a handheld device when the device
is connected to the power grid or disconnected from it. To achieve the result,
the system needs a state transfer protocol to be in place for the reconfiguration
to happen at runtime; different algorithms come with their own properties and
guarantees, which the system will inherit. In this work, we focus on the software
architecture of the overall load-shifting service, leaving the specific state transfer
protocol out of the scope of this contribution.

2.1 Analogies with systems in the literature and in the industry

The idea of moving the computational load of a distributed system across nodes
is not new. In particular, load balancing is a hot theme [2] in cloud systems,
where tasks must be allocated to the available resources in a way that optimises
for the system’s performance [20]. However, in most cases, tasks running in the
cloud are not designed to be portable to the network leaves: load balancing in
this context happens at the level of the cloud provider, with certain guarantees
of homogeneity (often obtained through virtualisation) [18]. An interesting take
on the subject has been proposed by the community working on agent-based
programming. Mobile agents are indeed designed to be portable across devices,
however, the proposed solutions typically rely on a shared runtime or middleware
capable of executing the agents’ specifications [9,5,6]. In this work, we try instead
to provide an architecture that allows for shifting the computational load across
diverse runtimes.

The problem at hand is akin to systems existing in industry, except that, to
the best of our knowledge, none supports dynamic relocation of the heavy-duty
part across the edge-cloud continuum. The problem of load-shifting is already
relevant and visible by non-expert observers in the videogame industry: from the
right abstraction level, a videogame is a controller/monitor of a virtual world
whose evolution requires complex logic and audio-video elaboration.

As per many load-intensive applications, the traditional way to play high-end
videogames is to use (powerful) personal computers or consoles; however, recent
trends have seen the rise of cloud gaming services, which allow users to play
games with essential devices and low-performance computers [15]. Several major
players proposed their platforms (including, but not limited to, Google Stadia,
Microsoft xCloud, Amazon Luna, and Nvidia GeForce Now), which are based
on the same principle: at the core, the idea is to transmit the game’s inputs
to a dedicated cloud server rendering the game and sending back the resulting
video and audio streams. This type of architecture works similarly to a streaming
service, except that data is bidirectional, with inputs flowing from the player and

4 A. Filaseta and D. Pianini

the provider streaming AV data, which directly results from these inputs. As a
result, the server is the only component that actively processes game data.

On the opposite side of the spectrum, in the same industry, we have in-
browser games [30]. In these games, typically, client browsers receive the game
data from the server and the client machine executes the received game logic
and related audio-video rendering. Although this option looks similar to the
classic setup, as the client machine is responsible for the heavy-duty computation
in both cases, the case of in-browser games adds an important technological
constraint: the game code must be portable, as the browser can access a set of
technologies much stricter than those available on a general-purpose operating
system. In fact, most of the games available as native executables for consoles
or PC are not available for browsers: the problem here is more related to the
technology stack than to the device capabilities.

Framing the problem definition of Section 2 into the videogame industry,
we would like our game to be able to be played on a portable console, then be
moved to a cloud or edge server when the battery gets low, and finally move into
a desktop PC web browser—everything without the need for a restart of the
application. Although such flexibility could be overkill for a gaming application
(which would also have to find strategies to mitigate the impact of the latency
introduced by the load shifting to the user, for instance by presenting a load
screen), we believe it is not for the monitoring and correction of the behaviour
of a large-scale distributed system—where similar issues apply.

3 Proposed architecture

Heavy-duty
Executor

Far Endpoint Near Endpoint

Common
Data Model

Heavy-duty
Executor

Heavy-duty
Executor

Fig. 1: Abstract architecture of the proposed system. Dashed lines indicate that
the actual component (drawn with solid lines) can be in any of the potential
states. In short, the proposal is to isolate the data model in order to have a
common shared language, and have a mobile component that can be moved
across devices (either because it is pre-installed and enabled on demand, or
implemented with actual mobile code) capable of performing the heavy-duty
computation.

The proposed architecture, summarised in Figure 1 would be composed of
four modules:

– Far Endpoint (F)—software component, usually non-local, that provides
means to perform the primary operations required on the target system
through a well-defined API;

Runtime load-shifting of distributed controllers across networked devices 5

– Near Endpoint (N)—software component the user interacts directly with,
hence, running on a device the user has direct access to, whose goal is to
interact with the Far Endpoint;

– Common Data Model (M)—a formal (and serialisable) description of
the data exchanged among all the components of the system;

– Heavy-duty Executor (H)—software module responsible for performing
resource-intensive computational tasks; this is the component that can be
executed on either a Far or Near Endpoint instance, and, crucially, it can be
moved from and to these endpoints at runtime, according to the model and
assumptions presented in Section 2.

At the core of the idea is the isolation of the H component from the rest of
the system and the definition of a common data model M that allows the H
component to hop from one endpoint to another. Communication that would
have happened in the form N −⇀↽− F is actually translated into N M−−⇀↽−− H M−−⇀↽−− F .
Notice that F and N can, in principle, be as many as needed, as far as they
can communicate and a single H is operational at a time for each N instance.
Multiple F instances require more care, as H would need to be moved F-to-F
(possibly mediated by N instances): although possible in principle, we do not
explicitly cover the case of multiple F in the architecture.

The architecture does not mandate the protocol used to move the H compo-
nent between the F and N endpoints, but two abstract strategies are possible:
(i) copy and enable: both the F and N endpoints have a copy of the H com-
ponent, and only one of the two is active at a time; and (ii) mobile code: the
H component is mobile code that is actually moved along the network. In the
copy/enable strategy, the H component should be entirely separable from its
state, constituting (part of) M. Indeed, on a load shift, only the state is sent
from the component hosting it previously to the new one. This strategy is the
most straightforward to implement and the one that should have the better per-
formance in terms of reactivity, but it requires careful design of H component,
burdens both F and N with the duty to host a quiet copy of the software, and
does not allow for runtime updates of H. On the other hand, the mobile code
strategy is more flexible, allows in principle for the runtime injection of updated
versions of H (although this operation raises the question of how to ensure the
integrity of the ongoing computation), but it is more complex to implement
and is expected to impose more stress on the networking infrastructure when
load-shifting.

3.1 Load-shifting spectrum: an example

In this section, we briefly discuss how the proposed architecture may support
the scenario described at the end of Section 2.1. We assume three devices in our
system: (i) a battery-powered handheld console; (ii) a remote server located on
the cloud or the edge; and (iii) a desktop PC. For the scenario to work as we
expect, we need two instances of N located on the devices the user has direct
access to (the handheld console and the desktop PC), and an instance of F

6 A. Filaseta and D. Pianini

T0

T1

T2

Remote Cloud ServerBattery Powered Console Desktop PC

Fig. 2: Configuration and evolution of the example: the heavy-duty component
H, initially hosted on a handheld device, gets opportunistically shifted to the
cloud, and then to a desktop PC-hosted web browser. Rows represent subsequent
time steps, columns represent devices. Every column is split into two parts, on
the left is the device status (off, battery level if turned on but off the power
grid, on if on the power grid); on the right are the software components being
executed.

located on the remote server. The situation and the evolution of the system are
summarised in Figure 2.

At the beginning of the scenario, the user is playing the game on the handheld
console with a full battery, and the H component is located in the N component
running on the handheld console. When the battery lowers, the load gets shifted
to the remote server, and H is moved to the F component running remotely.
Finally, if the user turns on the desktop PC and prefers to play the game there
for higher responsiveness, they can start the local N component, then require a
load-shift moving the H component locally.

3.2 Limitations and technological constraints

The first constraint we need to consider concerns M: we notice that it must be
serialisable and deserialisable in a way independent of the underlying runtime.
Although cross-platform serialisation formats capable of representing most data
structures across languages exist both in textual/human-readable form (e.g.,
JSON [17], YAML1, etc.), and binary/efficiency-driven [25] form (e.g., Proto-
col Buffers [11], BSON2, etc.) the requirement of being able to interoperate
across possibly diverse runtimes imposes a clear and unambiguous specification.
In turn, this implies that although the proposed architecture can be adopted
for brand-new systems (in which the effort for a new design is due anyway),
a significant effort would be required to retrofit many existing systems to the
proposed architecture. Ultimately, for this architecture to be applicable, a pre-
identification of all mobile parts is essential to maintain a consistent set of avail-
able resources and optimise the allocation of computational load. The need for
such pre-identification stems from the fact that, in the general case, mobile parts
1 http://yaml.org/spec/1.2/spec.pdf
2 https://bsonspec.org/spec.html

http://yaml.org/spec/1.2/spec.pdf
https://bsonspec.org/spec.html

Runtime load-shifting of distributed controllers across networked devices 7

may join or leave the system at any time, resulting in a constantly changing net-
work topology. Consequently, a mechanism must be implemented to update the
available resources in response to such changes.

However, the most significant constraint imposed by the proposed architec-
ture is technological in nature and concerns the H component. By its very nature,
H must be able to run as a module of N and F for which, however, we did not
impose any constraint on the runtime or technology. This situation leads us to
three potential cases.

Shared technology/runtime By sheer luck or careful design, N and F share the
same technology stack and runtime, and thus H can be realised once with a
compatible technology and consumed by both N and F . (note: they do not
need to share the same programming language, as far as the executable form
is portable across devices). This is the least interesting case, as in most cases
modern runtimes provide means to move load between different network nodes.
In these cases, the proposed architecture may not be needed (unless trying to
anticipate changes).

Porting For a more interesting case, we assume that N and F are based on
entirely different and incompatible stacks and runtimes. For instance, F may
be a Java/JVM or a native application running on a server, while N is a web
application intended to run in-browser. One way to tackle this problem is to
port H to both runtimes. This solution is adopted in some cases, with entire
applications rewritten from their original runtime in JavaScript or TypeScript
to target the browser3. Having multiple copies (one per runtime) of the same core
application, however, is hardly ideal. Maintaining the code in sync is a tedious,
expensive, and error-prone task, and while maintaining a porting may be worth
it for a single application whose development is completed or slow-paced, the
approach cannot scale to applications such as the primary target of this study:
monitors for distributed systems, that are modern pieces of software running on
the bleeding edge of technology and have a very fast-paced development.

Multi-target technology For the same case of the previous paragraph, a second
option exists: selecting a technology for H capable of targeting both the runtimes
of N and F . This way, a single codebase exists for H, with a multiple-target
build process that produces two separate executables. Despite the simplicity of
the approach on paper, it does present its fair share of challenges. The first one
is, trivially, that the technology must be able to target both runtimes. This alone
restricts the pool of suitable technologies, and the more the possible runtimes
of N and F , the more difficult it is to find a technology that can target all
of them. A second relevant concern regards libraries and ancillary components,
as they must be compatible with both runtimes. The second concern is often
3 One notable example is the porting of the ioquake3 engine (https://ioquake3.org/)

in JavaScript (http://www.quakejs.com/) as a proof-of-concept of the feasibility of
running complex applications in the browser.

https://ioquake3.org/
http://www.quakejs.com/

8 A. Filaseta and D. Pianini

overlooked, but it is a significant one: if two different libraries are required for
the same task to be achieved on two different runtimes, the host language and
tooling must provide means to abstract over the differences and to select the
specific implementation at runtime.

4 Proof of concept

JVM

Monitor Service

Renderer
Image

Image
Reques

tBrowser

Control UI

Model Request

Browser

Control UI

Renderer Updated M
odel

JVM

Monitor Service

M2

M1

Image

Updated
Model

1

3

2

2

3

1

Fig. 3: Idea of the proof of concept. The H component can be moved at runtime
to be hosted on the same host and platform of the F (in M1) or to the same
host and platform of the N (in M2).

To exercise the proposed architecture and demonstrate its feasibility, we show
a proof-of-concept implementation in the context of distributed monitoring. We
want to build a monitor system for a distributed system that is composed of a
set of nodes whose geographical distribution and logical relationships can change
with time, thus whose rendering and control require significant computational
effort. To stress the issues induced by incompatible runtimes, we choose a mon-
itor service F implemented as a JVM-running application, and we want the
monitoring and control access point N to be instead hosted in a web browser.
Thus, our renderer component H must be able to run on both the browser and
the JVM. In the former case, we want N to receive an instance of M and lever-
age H to render in-browser. In the latter case, instead, we want N to receive
a pre-rendered image of the system built by F by running H on the JVM and
displaying it in the browser. In this case M is already located on F and does not
need to be moved. Figure 3 summarises the architecture of the proof-of-concept
implementation.

4.1 Technology selection

The presence of incompatible runtimes (the browser and the JVM) makes the
trivial solution introduced in Section 3.2 infeasible. At the same time, given the
problem at hand, we deemed the second solution (porting H to both runtimes)

Runtime load-shifting of distributed controllers across networked devices 9

too expensive in terms of development resources and error-prone, as the same
process would have needed to be written twice. Consequently, we were left with
the third solution (multi-target technology).

An inspection of the mainstream technologies capable of targeting both the
JVM and the browser with the same codebase restricted the pool of candidates
to two languages and related frameworks: Scala [22] (with Scala.js [13,14]) and
Kotlin-Multiplatform [16]. Both frameworks are currently maintained and have
been used to develop interoperable tools that are found in the literature; two
examples of interest to the community of distributed systems are, for instance,
2p-kt [10], a Prolog engine inspired by tuProlog [12] and written in Kotlin-
multiplatform, and Scafi [8], a Scala implementation of the aggregate computing
semantics [4] that also features a web-based playground [1]. An analysis of the
two frameworks showed that they are similar from the point of view of the avail-
able features and documentation, and that the choice between them is mostly a
matter of personal preference. In our proof-of-concept, we chose to use Kotlin-
Multiplatform, mostly driven by the existence of a multiplatform library for se-
rialisation developed and maintained by the Kotlin team (kotlinx.serialization4).
We expected the serialisation to be critical in the development of the proof-of-
concept, as the initial analysis highlighted the serialisation as a relevant issue in
the implementation of the M component. In any case, we believe that the same
proof-of-concept could be implemented in Scala as well, relying on third-party
serialisation libraries.

Kotlin-multiplatform Kotlin features a mechanism for sharing pure Kotlin
code across multiple platforms, enabling the development of platform-agnostic
software modules, which are then compiled for a large variety of targets (includ-
ing the JVM, Javascript, Android, and native binaries for several architectures
and operating systems). The application or library code is split into multiple
source sets, the root of which is the common one, consisting of core libraries and
essential tools, enabling code to be platform-independent and functional on all
systems. The other source sets contain platform-specific code variants targeting
specific platforms. These variants (Kotlin/JVM, Kotlin/JS, and Kotlin/Native),
offer platform-specific language extensions, libraries, and tools.

Of course, all dependencies (libraries) used in the common code must be avail-
able for all the target platforms. However, some functions may not be available
for all targets, or may require a platform-specific implementation (for instance, a
graphical component may require to be implemented using different toolkits). In
these cases, Kotlin exposes a specific mechanism that allows declaring that some
types or functions will be implemented in a platform-specific way: the expect
keyword in the platform-agnostic code will mark the target as something not
implemented yet, but that will be once a platform is selected. In the platform-
specific code, the corresponding feature will be prefixed by the actual keyword
(and the compiler will check that every platform-specific implementation pro-
vides all the expected types and functions).
4 https://github.com/Kotlin/kotlinx.serialization

https://github.com/Kotlin/kotlinx.serialization

10 A. Filaseta and D. Pianini

4.2 System to be controlled: F

Building an entire cloud-edge continuum ecosystem was well beyond the scope
of this work, and we thus opted for controlling a system that could, in princi-
ple, abstract away the underlying system and expose the entities typical of the
problem we wanted to tackle: a simulator supporting the modelling of a situated
distributed system deployed on the cloud-edge continuum, and running within
an instance of the Java Virtual Machine (to comply with the requirements of
Section 4). Ideally, the target simulator must have a clean separation between
the renderer and the control components, so that the former can be easily re-
placed with a different implementation. Additionally, to ease the development
process, we wanted the simulator to be open source and covered by a permissive
license.

A natural choice was the Alchemist Simulator [24], which is well-known in the
DAIS community [23] and has been used in the past multiple times to simulate
systems akin to the ones we want to control. Alchemist comes with its own
Java-based rendering engine, but it also provides a clean separation between
the rendering and the control components, as witnessed by the existence of two
separate modules implementing two different graphical interfaces (one based on
Java Swing [21] and one based on JavaFX [26]).

In our proof-of-concept, the Alchemist simulator has been used as a Java
library, we created an additional module using Kotlin that translated the entities
exposed by the simulator in a multiplatform-friendly format. Such a component,
written in Kotlin-JVM, exposes the core simulator controls as a REST API to
allow for external control. The API also defines the protocol for load-shifting:
the N component is responsible to select whether it wants to run or offload H,
and selects the appropriate route on F .

4.3 Common Data Model: M

The choice of the system to be controlled mandated the construction of the com-
mon data model. We selected a subset of the Alchemist model that we deemed
relevant for the purpose of the proof-of-concept, and implemented it in pure
Kotlin, in a format friendly to the serialisation library. In particular, we had
to create pure-Kotlin surrogate classes for the entities exposed by the simulator
that we needed to serialise, such as nodes and their position in the environment.
We notice that it is vital for the data model to be as minimal as possible: it rep-
resents the abstractions that are allowed to circulate between the components,
the more they are, the more complex the overall API and the more demanding
the overall system becomes.

4.4 Monitor/Controller: N

Our monitor/controller, adhering to the requirements of Section 4, is a web-based
application with a simple UI displaying a rendering of the controlled the system.
The canvas is populated by the H component, which, depending on the position

Runtime load-shifting of distributed controllers across networked devices 11

Web Renderer

https://www.serveraddress.org

LOGO PLAY/PAUSECLIENT AUTO SERVER

Section for
Renderered

Environment

RenderMode
selection Buttons

Play and pause
Simulation Button

Alchemist
Rendered

Environment

Fig. 4: Sketch of the monitor/controller UI for the proof-of-concept.

of a switch, must migrate from the browser to the JVM-hosted F component.
To exemplify the work modes that we expect would be implemented on a real
system, we design the interface to support three modes:

1. H forcibly on N : H remains on N , or migrates to N if it was on F ;
2. H forcibly on F : H remains on F , or migrates to F if it was on N ;
3. Automatic: depending on the system status, H migrates dynamically on N

or F . In the current proof-of-concept, the implementation is a very simple
policy that migrates H depending on the available CPU cores. Real systems
could adopt much more refined policies.

Provided the simplicity of the UI at hand, we decided to implement the moni-
tor/controller from scratch based on the sketch depicted in Figure 4.

In our proof-of-concept, the web application was developed using Kotlin/JS,
and more specifically the React.js [29] framework port. The library provides a
way to create reusable and self-contained components, encapsulating both the
visual appearance and internal logic of a specific part of the application. To pro-
vide a responsive user experience, the application leverages components available
as Javascript libraries on public repositories, such as React-Bootstrap [27]. As
an implementation note, we add that we had to create custom adapter compo-
nents to allow the typed use of the aforementioned libraries, since JavaScript is
dynamically typed and Kotlin is statically typed.

4.5 Renderer: H

In this section and in the remainder of the manuscript, we abuse the term “ren-
derer” to refer to the component responsible for both rendering the system to
be controlled and for interpreting and sending the command. The reason is that
the most computationally-intensive operation is the rendering itself, and, in the
spirit of load-shifting the most computationally-intensive operation, we tend to
identify the heavy-load component with the most demanding operation it sup-
ports.

This component, which must be able to run both in the browser and the
JVM, must be written in Kotlin multiplatform and use solely libraries available

12 A. Filaseta and D. Pianini

for both platforms. Although the ecosystem of multiplatform libraries is still
in its infancy, we found a library suitable for rendering the system to be con-
trolled (KorLibs/KorIM5). In this proof of concept, H is a renderer producing a
graphical representation of a M representing the simulation environment.

4.6 Final design

Api Endpoints

Server SimulationClient

JVMJVMJS / TS

Renderer/JVM

JVM

Common
Renderer

Renderer/JS

JS / TS

Common Kotlin

Fig. 5: UML component diagram of the implemented proof-of-concept.

The final incarnation of the proposed architecture is depicted in the UML
Component Diagram of Figure 5. The Server component represents F in the
architecture, serving as a Web Server that provides API Endpoints. These end-
points are capable of executing commands on the Simulation components and
retrieving data, which are then converted into structures compatible with the
M. The Client component represents N , and is intended to communicate with
the Server component via the previously mentioned API Endpoints. Both the F
and N components rely on the platform-specific version of the Renderer compo-
nent, which is the implementation of H in the architecture. Both F and N also
need a platform-specific version of M to make the execution of H possible in ev-
ery scenario. As mentioned, the implementation of M in pure Kotlin allows the
serialization and deserialization operations to assure consistency when moving
data between nodes. The state transfer protocol of the proof of concept is as
follows: F always exposes two API endpoints, one for obtaining a representation
of the model as an image, and the other to obtain the model as a serialised
Kotlin object; when N decides to shift the load, it changes the API endpoint to
which commands are sent. The proof-of-concept has been integrated within the
main Alchemist repository6, and is available within the official distribution.
5 https://docs.korge.org/korim/
6 https://github.com/AlchemistSimulator/Alchemist

https://docs.korge.org/korim/
https://github.com/AlchemistSimulator/Alchemist

Runtime load-shifting of distributed controllers across networked devices 13

Fig. 6: Snapshots of the monitor/controller UI for the proof-of-concept, taken
subsequently during the same experiment. Initially (left) the render (i.e., H) is
running within the client’s browser (i.e., N), then (right), at runtime, it is mi-
grated to the server (i.e., F), with no interruption, and no perceivable difference
in the rendered image. In both snapshots, the warmer the color, the more the
corresponding node had resource availability for itself.

5 Evaluation

In this section, we perform an evaluation of the proof-of-concept, discussing
the viability of the proposed architecture to support interoperability and load-
shifting. We initially perform a qualitative assessment, verifying that the proof-
of-concept is able to render the system to be controlled and to shift the load
between the browser and the JVM. We then perform a performance evaluation
of the proof-of-concept, with the goal of comparing the operating conditions of
the system when H is running on N and F , and investigate how the system
scales with larger and larger systems to monitor.

5.1 Test environment and qualitative assessment

We perform our evaluation by observing the behaviour of the proof-of-concept
in a simulation of an existing reference system. We select an example from the
Alchemist tutorial [23] in which a network of nodes coordinates for the use of a
shared resource set. Resource usage tokens are generated and exchanged among
neighbouring nodes ensuring that every resource is used by at most one node at
a time. In the monitoring system, we investigate how many times every node had
access to the resource, as the algorithm is not designed to guarantee fairness.
For the sake of reproducibility, inspection, and to enable further research on the
prototype, we provide an open-source repository with code, instructions, and
support scripts for executing the experiment7.

Figure 6 depicts the current aspect of the monitor and the rendered monitored
system, and shows that H can be moved dynamically back and forth from N to
7 https://github.com/AngeloFilaseta/DAIS-2023-alchemist-web-renderer

https://github.com/AngeloFilaseta/DAIS-2023-alchemist-web-renderer

14 A. Filaseta and D. Pianini

F without any interruption in the rendering process, thus complying with the
requirements the architecture is designed to satisfy.

5.2 Performance evaluation

Free variables We consider two free variables: (i) the number of nodes partici-
pating in the system, N (N ∈ N+), a proxy for the size of the monitored system;
and (ii) the device hosting H, either the same hosting F or hosting N .

N has direct impact on the model size, and thus on the payload size when
H is hosted on N (otherwise, the actual network payload is a rendered image,
whose size is approximately constant). In our experiment, the serialized size of
the model was at its minimum 46827 bytes (N = 1600) and 46827 bytes at its
maximum (N = 14400).

Metrics We measure four metrics to evaluate the performance of the system:
(i) rendering time: the time required by H to complete its execution, this met-
ric is meant to compare the raw performance of H across the available platforms
and loads, we expect the execution on the JVM (i.e., H on F) to be faster than
on the browser (i.e., H on N).); (ii) serialisation time: the time required by F
to serialise M (if H is hosted on N) or the rendered image (if H is being hosted
on F); this is a proxy metric for the load on the device hosting F ; (iii) deseri-
alisation time: the time required by N to deserialise M (if H is hosted on N)
or the rendered image (if H is being hosted on F), this is a proxy metric for the
load on the device hosting N ; (iv) total time: the time required to complete an
entire iteration, which includes all the previous metrics plus the network delay.
We measure each metric five times, and we present the average result.

Results

We execute the experiment using two isolated containers on the same ma-
chine, an Intel® Core™ i5-2520M CPU and 8GiB RAM. The results are pre-
sented and summarised in Figure 7. As expected, allocating the load of H to F
results in more consistent system performance with the growth of the monitored
system. This is mainly driven by the higher efficiency of the JVM compared to
the browser: besides being consistently faster in rendering the system (i.e., H),
it is also interestingly quicker in serialising the model as an image than it is in
serialising it as plain JSON. We notice, however, that this last consideration is
strictly dependent on the specific serialisation formats and libraries used, and
may change with different implementations. We observe that hosting the H on
the same node of N is pretty efficient for small systems, but it scales worse
than hosting it on F with the monitored system size. This behaviour is evident
both in the graph showing the deserialisation time and in the chart showing the
overall system time.

Runtime load-shifting of distributed controllers across networked devices 15

1600 3200 6400 8600 14400
system size N (nodes)

0

20

40

60

80

tim
e

(m
s)

27.6

42.6
47.4

70

84.2

18.2 19.2 18 20.6 17

Serialization time: weight on (lower is better)
 hosted on hosted on

1600 3200 6400 8600 14400
system size N (nodes)

0

250

500

750

1000

1250

1500

1750

tim
e

(m
s)

348.6

639.6
826.4

1372.6

1668.2

1366.6 1328.8
1470.4

1363.4 1289

Deserialization time: weight on (lower is better)
 hosted on hosted on

1600 3200 6400 8600 14400
system size N (nodes)

0

200

400

600

800

1000

tim
e

(m
s)

355

530.6
600

918.2

1130.6

131.6 141.8 177.6

364.2 404.8

Rendering time: performance when executing (lower is better)
 hosted on hosted on

1600 3200 6400 8600 14400
system size N (nodes)

0

500

1000

1500

2000

2500

3000

tim
e

(m
s)

820.6

1343
1630.2

2622.4

3074.6

1733.6 1708.4 1858.4
2042.4 1982

Total time: overall resource consumption (lower is better)
 hosted on hosted on

Fig. 7: Performance evaluation of the proof-of-concept. We measured proxy met-
rics for the load on F (top left), the load on N (top right), the cost of running
H in either runtime (bottom left), and the overall cost of the system (bottom
right).

6 Conclusion and future work

This paper introduces a novel architecture for developing monitoring and control
systems for distributed systems deployed on a heterogeneous infrastructure in
which the heavy-load part of the process can be moved across the devices. The
architecture has been exercised by developing a proof-of-concept implementing
the proposed architecture as an in-browser monitoring and control system for a
simulator running on the JVM. The proof-of-concept shows that the proposed
architecture is viable and can dynamically shift the load across different target
runtimes, as far as the load that needs shifting can be executed on both plat-
forms (or, suboptimally, get rewritten in multiple languages). The performance
evaluation suggests that being able to shift the load dynamically across devices
can be beneficial on heterogeneous systems.

Of course, although the proof-of-concept has been integrated with the Al-
chemist simulator, it is still very early in its development, which we plan to
continue in the future. Additionally, we plan to study how the architecture can
be adapted in case of multiple load sources, possibly impacting different metrics
and thus requiring a dynamic assessment of the best location for the specific job.
Finally, we believe that a lot of interesting research can be done in the area of
automation of the load-shifting process: the current architecture and the proto-
type are designed to be used by a human operator, and show a single very simple
strategy for the automated load-shift. However, much more complex mechanisms
can be devised, possibly learning-enabled; we notice, in fact, that having multiple
load sources scattered across a networked system at runtime may lead to pretty
complex scenarios which could benefit from sophisticated automated approach.

Acknowledgements The authors thank Gianluca Aguzzi for the fruitful dis-
cussions on languages, frameworks, and tools for multi-platform programming.

16 A. Filaseta and D. Pianini

References
1. Aguzzi, G., Casadei, R., Maltoni, N., Pianini, D., Viroli, M.: Scafi-web: A web-

based application for field-based coordination programming. In: COORDINATION
2021, Lecture Notes in Computer Science, vol. 12717, pp. 285–299. Springer (2021).
https://doi.org/10.1007/978-3-030-78142-2_18

2. Aslam, S., Shah, M.A.: Load balancing algorithms in cloud computing: A survey of
modern techniques. In: 2015 National Software Engineering Conference (NSEC).
IEEE (Dec 2015). https://doi.org/10.1109/nsec.2015.7396341

3. Audrito, G., Casadei, R., Damiani, F., Stolz, V., Viroli, M.: Adaptive distributed
monitors of spatial properties for cyber-physical systems. J. Syst. Softw. 175,
110908 (2021). https://doi.org/10.1016/j.jss.2021.110908

4. Audrito, G., Viroli, M., Damiani, F., Pianini, D., Beal, J.: A higher-order calculus
of computational fields. ACM Transactions on Computational Logic 20(1), 1–55
(jan 2019). https://doi.org/10.1145/3285956

5. Bak, S., Menon, H., White, S., Diener, M., Kalé, L.V.: Multi-level load balancing
with an integrated runtime approach. In: 18th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing, CCGRID 2018, Washington,
DC, USA, May 1-4, 2018. pp. 31–40. IEEE Computer Society (2018). https:
//doi.org/10.1109/CCGRID.2018.00018

6. Bellavista, P., Corradi, A., Stefanelli, C.: Mobile agent middleware for mobile com-
puting. Computer 34(3), 73–81 (2001). https://doi.org/10.1109/2.910896

7. Bennaceur, A., Ghezzi, C., Tei, K., Kehrer, T., Weyns, D., Calinescu, R., Dustdar,
S., Hu, Z., Honiden, S., Ishikawa, F., Jin, Z., Kramer, J., Litoiu, M., Loreti, M.,
Moreno, G.A., Müller, H.A., Nenzi, L., Nuseibeh, B., Pasquale, L., Reisig, W.,
Schmidt, H., Tsigkanos, C., Zhao, H.: Modelling and analysing resilient cyber-
physical systems. In: SEAMS@ICSE 2019. pp. 70–76. ACM (2019). https://doi.
org/10.1109/SEAMS.2019.00018

8. Casadei, R., Viroli, M., Aguzzi, G., Pianini, D.: ScaFi: A scala DSL and toolkit
for aggregate programming. SoftwareX 20, 101248 (Dec 2022). https://doi.org/
10.1016/j.softx.2022.101248

9. Chen, B., Cheng, H.H.: A runtime support environment for mobile agents. In:
Volume 4a: ASME/IEEE Conference on Mechatronic and Embedded Systems and
Applications. ASME (2005). https://doi.org/10.1115/detc2005-85389

10. Ciatto, G., Calegari, R., Omicini, A.: 2p-kt: A logic-based ecosystem for symbolic
AI. SoftwareX 16, 100817 (Dec 2021). https://doi.org/10.1016/j.softx.2021.
100817

11. Currier, C.: Protocol buffers. In: Mobile Forensics – The File Format Handbook, pp.
223–260. Springer International Publishing (2022). https://doi.org/10.1007/
978-3-030-98467-0_9

12. Denti, E., Omicini, A., Ricci, A.: tu prolog: A light-weight prolog for internet
applications and infrastructures. In: Practical Aspects of Declarative Languages,
Third International Symposium, PADL 2001, Proceedings. vol. 1990, pp. 184–198.
Springer (2001). https://doi.org/10.1007/3-540-45241-9_13

13. Doeraene, S.: Cross-platform language design in scala.js (keynote). In: Proceedings
of the 9th ACM SIGPLAN International Symposium on Scala. p. 1. Association
for Computing Machinery (2018). https://doi.org/10.1145/3241653.3266230

14. Doeraene, S., Schlatter, T., Stucki, N.: Semantics-driven interoperability between
scala.js and javascript. In: Proceedings of the 2016 7th ACM SIGPLAN Symposium
on Scala. p. 8594. Association for Computing Machinery (2016). https://doi.org/
10.1145/2998392.2998404

https://doi.org/10.1007/978-3-030-78142-2_18
https://doi.org/10.1109/nsec.2015.7396341
https://doi.org/10.1016/j.jss.2021.110908
https://doi.org/10.1145/3285956
https://doi.org/10.1109/CCGRID.2018.00018
https://doi.org/10.1109/CCGRID.2018.00018
https://doi.org/10.1109/2.910896
https://doi.org/10.1109/SEAMS.2019.00018
https://doi.org/10.1109/SEAMS.2019.00018
https://doi.org/10.1016/j.softx.2022.101248
https://doi.org/10.1016/j.softx.2022.101248
https://doi.org/10.1115/detc2005-85389
https://doi.org/10.1016/j.softx.2021.100817
https://doi.org/10.1016/j.softx.2021.100817
https://doi.org/10.1007/978-3-030-98467-0_9
https://doi.org/10.1007/978-3-030-98467-0_9
https://doi.org/10.1007/3-540-45241-9_13
https://doi.org/10.1145/3241653.3266230
https://doi.org/10.1145/2998392.2998404
https://doi.org/10.1145/2998392.2998404

Runtime load-shifting of distributed controllers across networked devices 17

15. Domenico, A.D., Perna, G., Trevisan, M., Vassio, L., Giordano, D.: A network
analysis on cloud gaming: Stadia, GeForce now and PSNow. Network 1(3), 247–
260 (Oct 2021). https://doi.org/10.3390/network1030015

16. Hagos, T.: Introduction to kotlin. In: Beginning Kotlin, pp. 1–20. Apress (Nov
2022). https://doi.org/10.1007/978-1-4842-8698-2_1

17. Ihrig, C.J.: JavaScript object notation. In: Pro Node.js for Developers, pp. 263–270.
Apress (2013). https://doi.org/10.1007/978-1-4302-5861-2_17

18. Kanbar, A.B., Faraj, K.: Region aware dynamic task scheduling and resource virtu-
alization for load balancing in iot-fog multi-cloud environment. Future Gener. Com-
put. Syst. 137, 70–86 (2022). https://doi.org/10.1016/j.future.2022.06.005

19. Milojicic, D.S.: The edge-to-cloud continuum. Computer 53(11), 16–25 (2020).
https://doi.org/10.1109/MC.2020.3007297

20. Mishra, S.K., Sahoo, B., Parida, P.P.: Load balancing in cloud computing: A big
picture. J. King Saud Univ. Comput. Inf. Sci. 32(2), 149–158 (2020). https://
doi.org/10.1016/j.jksuci.2018.01.003

21. Newmarch, J.: Testing java swing-based applications. In: TOOLS 1999: 31st Inter-
national Conference on Technology of Object-Oriented Languages and Systems, 22-
25 September 1999, Nanjing, China. pp. 156–165. IEEE Computer Society (1999).
https://doi.org/10.1109/TOOLS.1999.796479

22. Odersky, M.: Essentials of scala. In: Langages et Modèles à Objets, LMO 2009,
Nancy, France, 25-27 mars 2009. vol. L-3, p. 2. Cépaduès-Éditions (2009)

23. Pianini, D.: Simulation of large scale computational ecosystems with alchemist:
A tutorial. In: DAIS 2021, Lecture Notes in Computer Science, vol. 12718, pp.
145–161. Springer (2021). https://doi.org/10.1007/978-3-030-78198-9_10,
https://doi.org/10.1007/978-3-030-78198-9_10

24. Pianini, D., Montagna, S., Viroli, M.: Chemical-oriented simulation of computa-
tional systems with ALCHEMIST. J. Simulation 7(3), 202–215 (2013). https:
//doi.org/10.1057/jos.2012.27

25. Popic, S., Pezer, D., Mrazovac, B., Teslic, N.: Performance evaluation of using
protocol buffers in the internet of things communication. In: 2016 International
Conference on Smart Systems and Technologies (SST). IEEE (Oct 2016). https:
//doi.org/10.1109/sst.2016.7765670

26. Robillard, M.P., Kutschera, K.: Lessons learned while migrating from swing to
javafx. IEEE Softw. 37(3), 78–85 (2020). https://doi.org/10.1109/MS.2019.
2919840

27. Subramanian, V.: React-bootstrap. In: Pro MERN Stack, pp. 315–376. Apress
(2019). https://doi.org/10.1007/978-1-4842-4391-6_11

28. Taherizadeh, S., Jones, A., Taylor, I.J., Zhao, Z., Stankovski, V.: Monitoring self-
adaptive applications within edge computing frameworks: A state-of-the-art re-
view. J. Syst. Softw. 136, 19–38 (2018). https://doi.org/10.1016/j.jss.2017.
10.033

29. Thakkar, M.: Introducing react.js. In: Building React Apps with Server-
Side Rendering, pp. 41–91. Apress (2020). https://doi.org/10.1007/
978-1-4842-5869-9_2

30. Vanhatupa, J.M.: Browser games for online communities. International Journal of
Wireless & Mobile Networks 2(3), 39–47 (Aug 2010). https://doi.org/10.5121/
ijwmn.2010.2303

https://doi.org/10.3390/network1030015
https://doi.org/10.1007/978-1-4842-8698-2_1
https://doi.org/10.1007/978-1-4302-5861-2_17
https://doi.org/10.1016/j.future.2022.06.005
https://doi.org/10.1109/MC.2020.3007297
https://doi.org/10.1016/j.jksuci.2018.01.003
https://doi.org/10.1016/j.jksuci.2018.01.003
https://doi.org/10.1109/TOOLS.1999.796479
https://doi.org/10.1007/978-3-030-78198-9_10
https://doi.org/10.1007/978-3-030-78198-9_10
https://doi.org/10.1057/jos.2012.27
https://doi.org/10.1057/jos.2012.27
https://doi.org/10.1109/sst.2016.7765670
https://doi.org/10.1109/sst.2016.7765670
https://doi.org/10.1109/MS.2019.2919840
https://doi.org/10.1109/MS.2019.2919840
https://doi.org/10.1007/978-1-4842-4391-6_11
https://doi.org/10.1016/j.jss.2017.10.033
https://doi.org/10.1016/j.jss.2017.10.033
https://doi.org/10.1007/978-1-4842-5869-9_2
https://doi.org/10.1007/978-1-4842-5869-9_2
https://doi.org/10.5121/ijwmn.2010.2303
https://doi.org/10.5121/ijwmn.2010.2303

	Copertina_postprint_IRIS_UNIBO
	paper_5455
	Runtime load-shifting of distributed controllers across networked devices

