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Abstract: The fastidious nature of Brachyspira hyodysenteriae limits an accurate in vitro pre-screening
of conventionally used antibiotics and other candidate alternative antimicrobials. This results in a
non-judicious use of antibiotics, leading to an exponential increase of the antibiotic resistance issue
and a slowdown in the research for new molecules that might stop this serious phenomenon. In this
study we tested four antibiotics (tylosin, lincomycin, doxycycline, and tiamulin) and medium-chain
fatty acids (MCFA; hexanoic, octanoic, decanoic, and dodecanoic acid) against an Italian field strain
of B. hyodysenteriae and the ATCC 27164 strain as reference. We determined the minimal inhibitory
concentrations of these substances, underlining the multidrug resistance pattern of the field strain
and, on the contrary, a consistent and stable inhibitory effect of the tested MCFA against both
strains. Then, sub-inhibitory concentrations of antibiotics and MCFA were examined in modulating
a panel of B. hyodysenteriae virulence genes (tlyA, tlyB, bhlp16, bhlp29.7, and bhmp39f ). Results of
gene expression analysis were variable, with up- and downregulations not properly correlated with
particular substances or target genes. Decanoic and dodecanoic acid with their direct and indirect
antimicrobial property were the most effective among MCFA, suggesting them as good candidates
for subsequent in vivo trials.

Keywords: swine dysentery; Brachyspira hyodysenteriae; multidrug resistance; antibiotics; medium
chain fatty acids; antimicrobial activity; virulence genes; feed additives

1. Introduction

Swine dysentery is an economically important disease that affects fattening pigs,
causing low mortality rate but a decline in growth performance and feed conversion.
Animals can either show a mucohemorragic diarrhea with colitis, or no clinical signs. This
condition complicates the diagnosis of swine dysentery, which already difficult due to the
nature of the etiological agent: Brachyspira hyodysenteriae is a Gram-negative fastidious
anaerobic spirochaete, problematic to in vitro isolate and cultivated from feces or infected
colonic tissues of ill pigs [1]. Severe disease is caused by strongly beta-hemolytic strains,
whereas weakly-hemolytic ones are usually avirulent and thus associated to less acute
illness [2]. Since cultivation of B. hyodysenteriae is difficult, many research areas are still
lacking, although hemolysis has been recognized as one of the main virulence factors. The
expression of tly genes has been associated to the hemolytic phenotype of the strain [3].
In particular, tlyA, tlyB, and tlyC encode for hemolysin A, a caseinolytic protease (Clp),
and hemolysin C respectively [4–6]. Other Brachyspira virulence factors are identified as
the group of the outer membrane proteins that regulate the interactions with the host’s
epithelial intestinal cells as well as the immune evasion although in a not yet defined
mechanism [7].
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Other than growth performance decline, the main economic loss due to the onset
of swine dysentery is represented by the cost of prevention and treatment of the disease,
since no valid vaccines are currently available [1]. The most used antibiotics in treating
swine dysentery are macrolides, lincosamides, pleuromutilins, and tetracyclines [8]. In
Italy, recommended antibiotics are lincomycin, tiamulin, and valnemulin, avoiding the use
of macrolides for which resistance is raising exponentially [9]. Nowadays, multidrug resis-
tance strains are spreading all over the world, making antibiotics frequently ineffective [8].
Therefore, the research of alternative antimicrobial molecules is of great importance for
the control of B. hyodysenteriae. The main struggle is the lack of in vitro pre-screening of
commonly used antibiotics and alternative molecules due to the fastidious nature of this
microorganism. Medium-chain fatty acids (MCFA), particularly saturated fatty acids with
a chain length of 6–12 carbon atoms, are known to be good antimicrobials, as well as gut
health and growth promoters when used as feed additives in pig production [10–12]. For
this reason, their role in control Brachyspira hyodysenteriae could be promising and their
in vitro pre-screening is fundamental for further studies.

The aim of this study was to evaluate, in vitro, the antimicrobial power of conventional
antibiotics for B. hyodysenteriae and MCFA against a field strain isolated in northern Italy,
including the ATCC 27164 strain as reference. Moreover, a possible modulation of a panel of
Brachyspira virulence genes has been then investigated using sub-inhibitory concentrations
of these substances.

2. Materials and Methods
2.1. Bacterial Strains and Culture Conditions

The ATCC strain Brachyspira hyodysenteriae 27164 and a strongly-hemolytic field strain
isolated in northern Italy in January 2020 from a symptomatic pig were used in this study.
The strains were stored at −80 ◦C and, when thawed, were maintained on Tryptone Soya
Agar with 5% Sheep Blood (Oxoid, Basingstoke, UK) for up to 4 days in anaerobic jars
(Oxoid, Basingstoke, UK) with AnaeroGen™ sachets (Oxoid, Basingstoke, UK) at 37 ◦C.

2.2. Chemicals and Test Solutions

Antibiotics and MCFA were purchased from Alfa Aesar (Thermo Fisher GmbH,
Kandel, Germany). Stock solutions of hexanoic acid, octanoic acid, decanoic acid, do-
decanoic acid, and doxycycline were prepared in 70% (v/v) ethanol at 800 mM (MCFA) and
2560 µg/mL (doxycycline), so that the final and maximum concentration of ethanol tested
in the agar and broth dilution method was 2.2% and 0.55% for MCFA, respectively, and
1.75% for doxycycline in both the tests. The remaining antibiotics (tylosin, lincomycin, and
tiamulin) were prepared at 256 µg/mL in Tryptone Soya Broth (TSB; Oxoid, Basingstoke,
UK) at pH 7 or in ATCC Medium 1827 (Brain Heart Infusion broth supplemented with heat
inactivated fetal bovine serum and glucose) at pH 6.5 for agar dilution and broth dilution
method, respectively. All solutions were filter-sterilized, then stored at +4 ◦C and brought
back to room temperature before each use.

2.3. Antimicrobial Susceptibility Testing

The antimicrobial activity of the tested compounds was determined using agar dilu-
tion method and broth dilution method in 48-well microtiter plates. Testing conditions
were performed following the guidelines of Clinical and Laboratory Standards Institute
(CLSI) [13].

2.3.1. Agar Dilution Method

Tryptone Soya Agar plates were prepared in triplicate by adding 5% (v/v) defibri-
nated horse blood (Oxoid, Basingstoke, UK) and 14% (v/v) of serial two-fold dilutions of
antibiotics or MCFA. Antibiotics were tested at final concentrations ranging from 64 to
0.008 µg/mL, whereas MCFA from 25 to 0.39 mM. Control plates with TSB or ethanol at
2.2% (depending on the stock solution used) were made to control the growth of the strains.
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All the plates were inoculated with one of the two B. hyodysenteriae strains as follows: 4-day
cultures of either the ATCC or the field strain on agar were harvested and resuspended in
TSB up to the turbidity corresponding to McFarland #1. The bacterial suspension was then
diluted in order to reach 106 CFU/mL. With this suspension, every plate was inoculated
with seven drops of 20 µL each.

After 4 days of anaerobic incubation at 37 ◦C, Minimal Inhibitory Concentrations
(MIC) was established. MIC was defined as the lowest concentration of antimicrobial
substance able to prevent the hemolysis of blood agar plates.

2.3.2. Broth Dilution Method

For the broth dilution test in 48-well microtiter plates, two-fold dilutions of the sub-
stances were prepared in ATCC Medium 1827. Antibiotics were tested at final concentra-
tions ranging from 64 to 0.008 µg/mL, whereas in a separate plate MCFA from 6.25 to
0.20 mM. Every concentration was tested in triplicate. Control wells with TSB or ethanol
at 1.75% (depending on the stock solution used) were made to control the growth of the
strains.

Again, the inoculum was prepared for the agar dilution method to reach a final
inoculum of 106 CFU/well in a final volume of 500 µL/well.

After 4 days of anaerobic incubation at 37 ◦C on a shaker (150 rpm), the MIC value was
defined as the lowest concentration that resulted in null absorbance (630 nm) registered with
Varioskan™ LUX Multimode Microplate Reader (Thermo fisher Scientific Inc., Waltham,
MA, USA). Sub-inhibitory doses were chosen for the following virulence gene expression
study. More precisely, the doses below the detected MIC (half MIC doses) or the highest
concentration tested (if no MIC was found) were selected.

2.4. Virulence Gene Expression Study

Gene expression analysis was performed on samples of B. hyodysenteriae strains cul-
tured with sub-inhibitory doses of antibiotics or MCFA from the broth dilution method.
In brief, the content of each selected well (500 µL) was harvested, centrifuged for 5 min at
5000× g, and the supernatants were discarded. The pellets were resuspended in 100 µL
of TE buffer supplemented with 1 mg/mL of lysozyme and incubated for 10 min at 37 ◦C.
The RNA extraction and its conversion in cDNA were performed according to Giovagnoni
et al. [14]. B. hyodysenteriae virulence gene expression was determined with a real-time PCR
according to Giovagnoni et al. [14], testing the genes listed in Table 1.

Table 1. List of primers used for real-time PCR.

Gene Function Sequence (5′ → 3′) Product
Length (bp)

Accession
Number Reference

tlyA Hemolysin A F: AAAGGCGTTTGTAGAATTTGGAAT
R: TGTCCTACATCAAGAGCATAAACTTTTT 131 MT304819.1 [3]

tlyB Clp protease F: AAGGATTCGATAAGAAGTATGGTGCTA
R: TTCGGTACTCACATAATCCTCTATCTCT 79 MT304820.1 [3]

bhlp16
(smpA)

Outer membrane
protein

F: GCAGGTGTAGAAAAGGGATTTGG
R: TCTGAAGAACTTGCTCCACCTT 107 CP015910.2 This study

bhlp29.7
(bmpB)

Outer membrane
protein

F: TGGTTTTGCTGGAGAGTCTGA
R: TCTCCGTCATTCAAAGCCTGAT 132 AY706761.1 This study

bhmp39f Outer membrane
protein

F: AGCCTTTCGGTATTGGCGTA
R: ACAGCTATTTGAACAGGAACTGC 130 AY027775.1 This study

gyrB Housekeeping F: TGCAGGCGGTACTGCTAAAG
R: GCACCTACACCGCATCCTAA 159 CP015910.2 This study

rpoD Housekeeping F: AGCTTTTGCCTCTATCTGACGA
R: ACAGTTTGCCGGACAGAGAA 137 CP015910.2 This study

F = forward; R = reverse.
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mRNA expression was normalized using gyrB and rpoD as housekeeping genes. After
determining the threshold cycle (Ct) for each gene, the relative changes in mRNA expression
of B. hyodysenteriae strains grown with antibiotics or MCFA compared to controls were
calculated using the 2−∆∆Ct method [15].

2.5. Statistical Analysis

The data were analyzed with GraphPad Prism v. 9.2.0 (GraphPad Software, Inc.,
San Diego, CA, USA), and differences were considered significant at p ≤ 0.05. For gene
expression data, t test was performed in order to compare every substance with the control.

3. Results
3.1. Antimicrobial Susceptibility Testing

MIC values of antibiotics and MCFA obtained by agar and broth dilution methods are
summarized in Table 2 for both the ATCC and the field strain.

Table 2. Minimal inhibitory concentrations (MIC) of antibiotics and medium chain fatty acids (MCFA)
tested against the ATCC 27164 strain and the field strain using the agar and broth dilution method.

ATCC 27164 Strain Field Strain

Agar Dilution Broth Dilution Agar Dilution Broth Dilution

Antibiotics

Tylosin 16 µg/mL 8 µg/mL >64 µg/mL >64 µg/mL

Lincomycin 2 µg/mL 0.25 µg/mL >64 µg/mL >64 µg/mL

Doxycycline 2 µg/mL 0.12 µg/mL 4 µg/mL 1 µg/mL

Tiamulin 0.125 µg/mL 0.016 µg/mL 4 µg/mL 2 µg/mL

MCFA

Hexanoic acid 25 mM 3.13 mM 25 mM 1.56 mM

Octanoic acid >25 mM 6.25 mM 25 mM 3.13 mM

Decanoic acid 3.13 mM 0.78 mM 3.13 mM 0.78 mM

Dodecanoic acid 0.39 mM 0.39 mM 0.39 mM 0.39 mM

3.2. Gene Expression Study

The expression of Brachyspira virulence genes is represented in Figures 1 and 2 for
antibiotics and MCFA, respectively.

The sub-inhibitory doses of the tested substances have variously regulated the ex-
pression of hemolysin-associated genes and outer membrane proteins genes. Tylosin
significantly decreased the expression of bhlp16 for both the strains. Lincomycin downreg-
ulated bhlp16 in ATCC strain and both the hemolysin-associated genes (tlyA, tlyB) in the
field strain (p < 0.05), showing a trend for lower bhlp16 level (p = 0.10). For the field strain,
tlyA, tlyB, bhlp29.7, and bhmp39f were downregulated by doxycycline, which also reduced
bhlp16 mRNA level in the ATCC strain. Tiamulin significantly decreased the expression of
bhlp16 in ATCC strain and tlyA, tlyB, bhlp29.7, and bhmp39f in the field strain.

Hexanoic acid significantly upregulated the level of tlyB and bhmp39f in the ATCC
strain. In the field strain, octanoic acid downregulated tlyA and upregulated bhlp16, whereas
the same acid increased the expression of bhlp29.7 in the ATCC strain. Decanoic acid was
able to decrease the level of tlyB and bhmp39f in the ATCC strain (p < 0.01), and the level of
tlyA and tlyB in the field strain (p < 0.05). Finally, bhmp39f was downregulated in the ATCC
strain by dodecanoic acid (p < 0.01), which also decreased the expression of tlyA in the field
strain (p < 0.05).
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Figure 1. mRNA expression of tlyA, tlyB, bhlp16, bhlp29.7, and bhmp39f for B. hyodysenteriae ATCC
27164 and the field strain cultured alone (CTR), or with sub-inhibitory doses of antibiotics. Data are
presented as mean (n = 3) ± SEM. For each gene, significant differences between each substance and
its control are marked by asterisks (* for p < 0.05 and ** for p < 0.01). TYL = tylosin, LIN = lincomycin,
DOX = doxycycline, TIA = tiamulin.
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Figure 2. mRNA expression of tlyA, tlyB, bhlp16, bhlp29.7, and bhmp39f for B. hyodysenteriae ATCC
27164 and the field strain cultured alone (CTR), or with sub-inhibitory doses of medium-chain fatty
acids. Data are presented as mean (n = 3) ± SEM. For each gene, significant differences between each
substance and its control are marked by asterisks (* for p < 0.05 and ** for p < 0.01). HEX = hexanoic
acid, OCT = octanoic acid, DEC = decanoic acid, DOD = dodecanoic acid.

4. Discussion

B. hyodysenteriae is a fastidious bacterium, able to grow only in particular and enriched
conditions. For this reason, antimicrobial susceptibility tests are difficult to carry out and,
without a proper in vitro preliminary screening, a possible misuse of antibiotics and a
consequent spread of antibiotic resistant bacteria are likely to occur. Moreover, information
about in vitro antimicrobial activity of bioactive compounds as alternative to antibiotics is
still scarce. This can be considered a major problem dealing with non-antibiotic treatment
of swine dysentery, since the possibility of in vitro pre-screening these molecules could
considerably limit the large number of in vivo trials.

During the previous years, numerous studies worldwide assessed the antimicrobial
susceptibility of various B. hyodysenteriae strains, as recently reviewed by Hampson et al. [8].
These studies were carried out even using commercially available panels trying to establish
a standardized and unique protocol [16,17]. This effort stems from the need to obtain
antimicrobial susceptibility testing data before treating animals, since numerous cases of
antibiotic resistance have been recorded. In fact, only in 2017 the Clinical and Laboratory
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Standards Institute (CLSI) provided guidance for antimicrobial agent susceptibility testing
and breakpoints for fastidious bacteria for veterinary use, including B. hyodysenteriae [13].

In this study, for both the ATCC and the field strain, agar and broth dilution methods
were found to be quite comparable, with MIC values being found with broth generally
lower than those of agar dilution method, as already documented [18–20]. A panel of
antibiotics including tylosin, lincomycin, doxycycline, and tiamulin was tested because of
their wide use in treatment of swine dysentery [21,22]. All of these antibiotics are protein
synthesis inhibitors by targeting the 50S (tylosin, lincomycin, and tiamulin) or 30S (doxycy-
cline) ribosomal unit. Universal breakpoints are suggested by the CLSI only for tylosin and
tiamulin [13]. Resistance breakpoints of tylosin and tiamulin for the broth microdilution
method are identified as ≥128 µg/mL and ≥1 µg/mL, respectively, indicating that in our
study the ATCC strain showed susceptibility (MICTYL = 8 µg/mL; MICTIA = 0.016 µg/mL)
and the field strain showed resistance (MICTYL ≥ 64 µg/mL; MICTIA = 2 µg/mL) to both
antibiotics. For tiamulin, the result was confirmed by the agar dilution method with an
outcome MIC of 0.125 µg/mL for the ATCC strain and 4 µg/mL for field strain, with the
CLSI resistance cutoff being at ≥2 µg/mL. No official breakpoints for lincomycin and
doxycycline are available. To fill the gap of lacking breakpoints and standardize the an-
timicrobial susceptibility tests of B. hyodysenteriae, cutoff values for six antibiotics were
proposed by Pringle et al. [23]: even based on these assumptions, in this study the MIC of
the ATCC strain always fell below these agreed values, while the MIC of the field strain fell
above. The B. hyodysenteriae ATCC 27164 was proposed by Pringle et al. [19] as a suitable
quality control strain for antimicrobial susceptibility tests, although its lower MIC for pleu-
romutilins pushed the research of new reference strains for tiamulin and valnemulin [17,18].
Accordingly with previous studies, our data showed reproducible results about the ATCC
27164 strain for both the broth and the agar dilution method [16,17,19,20,24–26]. Consid-
ering the MIC values of the field strain instead, we can assume that it can be considered
a multidrug-resistant strain of B. hyodysenteriae isolated in the North of Italy. Unfortu-
nately, there is limited data about antibiotic resistance in B. hyodysenteriae from Italy. Rugna
et al. [27] reported a reduction of susceptibility to tiamulin from 2003 to 2012, whereas De
Luca et al. [28] described the multidrug resistance of 10 Italian B. hyodysenteriae strains to
tylosin, lincomycin, tiamulin, and for some also to doxycycline. In particular, decreased
susceptibility of Italian strains to tylosin and lincomycin was confirmed by the presence of
A2058T mutation and the acquisition of the transposon associated-lnu(C) gene [28], already
correlated with resistance patterns to macrolides and lincosamides [29–32]. According to
the Italian situation, in the majority of European studies that investigated the resistance
to tylosin, lincomycin, doxycycline, and tiamulin in the last decade, it is evident that the
reduction in sensitivity to both tylosin and lincomycin is common and frequently con-
comitant. On the other hand, resistance to tiamulin and/or doxycycline is not always
observed among European strains, although, when present, it covers a high percentage of
the tested strains [23,31,33–36]. This can be explained by a selective environmental pressure
that results in an increasing multidrug resistance, as happens in our field strain. Clearly,
antibiotic resistance is less evident for the ATCC 27164 strain because of its sampling, dating
back to 1972. New effective antimicrobial alternatives can be sourced among molecules not
influenced by environmental pressure.

Organic acids are widely used as feed additives in swine farming due to their dual use
as antimicrobials and growth promoters in the dose range of 0.2–3% [10–12]. Depending
on their acid dissociation constant, undissociated organic acids can pass through the
bacterial membrane and, in response to the release of H+ and RCOO− ions, are able to
exert their antimicrobial action: on one hand, bacteria waste energy to restore intracellular
pH and, furthermore, the anion has a toxic effect by targeting replication and metabolic
functions [37]. In particular, antibacterial properties of MCFA are recognized as the most
effective ones against Gram-positive bacteria and, to a lesser extent, against Gram-negative
bacteria [38]. MCFA antibacterial activity against B. hyodysenteriae was investigated by
Vande Maele et al. using broth dilution method [39]. From their findings, the bacterial
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response to these acids varied depending on the pH conditions and the length of the
carbon chain [39]. The longer is the carbon chain and the lower is the pH, the stronger
is the antimicrobial activity, with dodecanoic acid being the most powerful antimicrobial
against three strains of B. hyodysenteriae, including the ATCC 27164 [39]. Consistently,
we did observe the same differences comparing the agar dilution method (pH 7) and
the broth dilution method (pH 6.5). This behavior for MCFA can be explained by the
anion model theory, according to which the inhibitory effect of organic acids is highly
related to their acid dissociation constant and undissociated form that in turn depends
on the environmental pH [37,40]. Decanoic and dodecanoic acid showed the lowest MIC,
also confirming the longer the chain, the more effective the antibacterial properties of
MCFA are, the only exception being hexanoic acid with a lower MIC compared to octanoic
acid, as already shown for other Gram-negative bacterial species, like Escherichia coli [41].
Despite the difference in relation to pH and the carbon chain length, in our study, MIC
values of MCFA were more consistent between the two strains compared to the tested
antibiotics. In fact, resistance development to organic acids is much less frequent and
problematic than for antibiotics [10], because the bacterial susceptibility to MCFA is an
intrinsic property, meaning that the bioactive power of these molecules meets a broad
spectrum of microorganisms with lower probability of failure.

To our knowledge, this is the first study investigating the role of antibiotics and
MCFA in modulating B. hyodysenteriae virulence gene expression. Targeting virulence
represents a novel and alternative approach to find new antimicrobials and diminish
the selective pressure of resistance issue: the target of interest is not the killing or the
inhibition of pathogens, but the reduction of virulence factors required to cause disease
thanks to sub-lethal or sub-inhibitory doses of antimicrobials [42]. We investigated the
regulation of two categories of virulence genes correlated with an increase of severity of
swine dysentery [43]: hemolysis-associated (tlyA and tlyB) and outer membrane proteins
genes (bhlp16, bhlp29.7, bhmp39f ). TlyA and TlyB are considered a pore-forming hemolysin
and a caseinolytic protease (Clp), respectively [4,5]: their role in modulating the hemolytic
phenotype and the virulence has been investigated, although the genetic background is not
yet fully understood. TlyA negative B. hyodysenteriae mutants showed reduced hemolysis
in vitro and less severe lesions in pigs and mice [44,45]. On the other side, the specific
functions of bhlp16, bhlp29.7, and bhmp39f are unknown, but they are presumably involved
in the interaction with epithelial cells. Indeed Gömmel et al. postulated that the in vitro
attachment of B. hyodysenteriae strain B204 to IPEC-J2 cells can be driven by the action of
these proteins [46].

In our multidrug resistant strain, the regulation of virulence genes appeared to be
different for tylosin and lincomycin. The strain was strongly resistant to both antibiotics,
consistently with the common genetic basis of the resistance to macrolides and lincosamides
already reported in literature [29]. However, when treated with high but not inhibitory
doses of the two antibiotics, the hemolysis-associated markers were significantly reduced
by lincomycin but not by tylosin, which instead reduced only one outer membrane protein.
The exact mode of action behind this dual effect is not clear and needs to be further
investigated, but is likely not merely related to the resistance traits. Our field strain has
been considered resistant also to doxycycline and tiamulin, although both antibiotics
showed an inhibitory action in the MIC tests. In this case, low doses of both drugs below
the MIC values were able to downregulate the expression of four out of five markers
of virulence analyzed. Therefore, it can be suggested that doxycycline and tiamulin are
more likely to positively modulate the bacterial virulence, even at sub-inhibitory doses
compared to drugs towards which a strong bacterial resistance is established (tylosin and
lincomycin). Similarly, it has been shown that the expression of E. coli K88 toxins and other
pathogenic factors can be reduced by the treatment with sub-inhibitory doses of colistin
and doxycycline, but not affected by high concentrations of amoxicillin against which the
strain is highly resistant [41].
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The ATCC strain used as reference resulted to be more sensitive to antibiotics, as
already discussed, and also more stable in terms of virulence modulation. Indeed, the
antibiotics used at sub-MIC doses did not affect the expression of the analyzed markers,
except for one outer membrane protein that was consistently reduced irrespective of the
antibiotic type. This different behavior for the ATCC strain compared to the field strain
could be related to the lower doses, but higher efficacy, of antibiotics against the reference
strain. However, the detailed mechanism still needs to be clarified.

The effect of MCFA on virulence gene expression was quite variable for both the field
strain and the ATCC strain. We did observe a general pattern of upregulation of most
virulence markers in the ATCC strain with hexanoic and octanoic acid, whereas longer
MCFA, such as decanoic and dodecanoic acid, did reduce hemolysin genes in the field
strain. We did not expect such difference between the two strains based on the equivalent
susceptibility to the antimicrobial action of MCFA found in our MIC tests. However, this
can be explained by the specific toxic effect of the anionic form that each different MCFA
acquires inside bacterial cells [47].

In a recent review by Jackman et al. [12] it has been reported how MCFA can be
included in feed additives as mixtures with other compounds, ranging from 0.2% to 3%,
with the aim to curb Salmonella and Escherichia coli infections. Comparing these inclusions
with our tested concentrations, the latter are clearly lower, but could have an interesting
potential to be investigated with in vivo studies, maybe with new technologies like mi-
croencapsulation that can help the delivering of small amounts of protected ingredients to
target sites of the intestine [48].

5. Conclusions

Although with some limitations, these data suggest that, even in a multidrug-resistant
strain, virulence genes can be modulated thanks to both antibiotics and MCFA in a vari-
able manner. Decanoic and dodecanoic acid had the lowest and most stable MIC against
B. hyodysenteriae, and their sub-inhibitory concentrations also decreased the expression of
some important virulence genes correlated to a worsening of swine dysentery. It will be
interesting to elucidate the mechanism of decanoic and dodecanoic acid in the in vitro mod-
ulation of hemolytic phenotype and attachment to epithelial intestinal cells, and eventually
verify their potential to control swine dysentery in in vivo.
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