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ABSTRACT

Aims. We analysed the 3D clustering of the Planck sample of Sunyaev–Zeldovich (SZ) selected galaxy clusters, focusing on the
redshift-space two-point correlation function (2PCF). We compared our measurements to theoretical predictions of the standard Λ
cold dark matter (ΛCDM) cosmological model, deriving an estimate of the Planck mass bias, bSZ, and cosmological parameters.
Methods. We measured the 2PCF of the sample in the cluster-centric radial range r ∈ [10, 150] h−1 Mpc, considering 920 galaxy
clusters with redshift z ≤ 0.8. A Markov chain Monte Carlo analysis was performed to constrain bSZ, assuming priors on cosmological
parameters from Planck cosmic microwave background (CMB) results. We also adopted priors on bSZ from external data sets to
constrain the cosmological parameters Ωm and σ8.
Results. We obtained (1 − bSZ) = 0.62+0.14

−0.11, which agrees with the value required to reconcile primary CMB and cluster count
observations. By adopting priors on (1− bSZ) from external data sets, we derived results on Ωm that fully agree and are competitive, in
terms of uncertainties, with those derived from cluster counts. This confirms the importance of including clustering in cosmological
studies in order to fully exploit the information from galaxy cluster statistics. On the other hand, we found that σ8 is not constrained.

Key words. cosmological parameters – cosmology: observations – large-scale structure of Universe – galaxies: clusters: general

1. Introduction

Galaxy clusters are excellent tracers of the large-scale matter
distribution of the Universe, probing its geometry and evolu-
tion through their abundance and clustering (Sereno et al. 2015;
Veropalumbo et al. 2016; Costanzi et al. 2019; Marulli et al.
2021; Moresco et al. 2021; To et al. 2021; Lesci et al. 2022a;
Euclid Collaboration 2022). In particular, the formation and evo-
lution of galaxy clusters can theoretically be described with
high accuracy through numerical simulations. This allows the
theoretical calibration of the cluster halo mass and bias func-
tions (Sheth & Tormen 1999; Sheth et al. 2001; Tinker et al.
2008, 2010; Despali et al. 2016; Euclid Collaboration 2023)
and the description of the cluster dark matter profiles
(Navarro et al. 1997; Baltz et al. 2009), providing the link
between cluster local and statistical properties. In addition,
cluster masses can be measured with high precision through
weak gravitational lensing (Sereno et al. 2017; Bellagamba et al.
2019; Stern et al. 2019) and X-ray observations (Arnaud et al.
2010; Planck Collaboration XX 2014; Sereno & Ettori 2017).
Moreover, cluster abundance and clustering are suitable probes
for mass calibration if a cosmological model is assumed
(Murata et al. 2019; Chiu et al. 2020; Lesci et al. 2022b).

As cosmological parameters are inferred with high preci-
sion in current cluster statistical analyses, accurate cluster mass
calibrations are of critical importance. An incomplete assess-
ment of systematic uncertainties affecting the derived masses
may lead to significant biases in the cosmological constraints

(Planck Collaboration XXIV 2016; Abbott et al. 2020). Simula-
tions show that X-ray masses are typically 10–15% underes-
timated due to the assumption of hydrostatic equilibrium, for
which bulk motions and turbulence in the intra-cluster medium
are neglected (Nagai et al. 2007; Meneghetti et al. 2010;
Rasia et al. 2012; Le Brun et al. 2014). Weak-lensing mass esti-
mates can also be biased by the inaccuracy of density profile
models (Oguri & Hamana 2011), baryonic effects influenc-
ing the halo concentration (Henson et al. 2017; Shirasaki et al.
2018; Beltz-Mohrmann & Berlind 2021), halo orientation
(Becker & Kravtsov 2011; Dietrich et al. 2014; Zhang et al.
2022), and projections (Simet et al. 2017; Melchior et al. 2017).
As the biases in the weak-lensing mass estimates are theoreti-
cally better understood, weak-lensing observations are exploited
for calibrating the main bias affecting X-ray masses, called
hydrostatic bias, bh (von der Linden et al. 2014; Hoekstra et al.
2015; Planck Collaboration XXIV 2016; Smith et al. 2016;
Sereno & Ettori 2017). In particular, the relation between the
X-ray mass, MX, and the true mass, Mtr, is usually expressed
as MX = (1 − bh)Mtr.

In this paper, we focus on the mass bias of the
Sunyaev–Zeldovich (SZ) selected Planck clusters
(Planck Collaboration XXIV 2016; Planck Collaboration XXVII
2016), which is referred to as the Planck mass bias, bSZ. Planck
cluster masses are expected to be biased low as they are derived
from a scaling relation based on X-ray observations of 20 relaxed
clusters at z < 0.2 (Arnaud et al. 2010; Planck Collaboration XX
2014). We obtained an estimate of bSZ that is independent of
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Fig. 1. Redshift distribution n(z) of the galaxy clusters considered in the
analysis. The blue histogram shows the observed binned n(z), and the
black curve represents n(z) smoothed with a Gaussian kernel (with an
rms equal to 0.02) that was used to build up the random catalogue.

lensing observations by exploiting the monopole of the 3D
two-point correlation function (2PCF) of the galaxy clusters in
the sample provided by Planck Collaboration XXVII (2016).
In particular, we assumed a standard Λ cold dark matter
(ΛCDM) cosmological model, adopting the cosmic microwave
background (CMB) constraints on cosmological parameters
from Planck Collaboration VI (2020) as priors. In addition, we
adopted the same priors on (1 − bSZ) as were used in the Planck
cluster count analysis carried out by Planck Collaboration XXIV
(2016) in order to constrain the matter density parameter, Ωm,
and the amplitude of the matter power spectrum, σ8.

The statistical analyses presented in this paper were per-
formed with the CosmoBolognaLib1 (CBL; Marulli et al. 2016),
a set of free software C++/Python numerical libraries for cos-
mological calculations. Specifically, the measurements and the
statistical Bayesian analyses were both performed with the CBL
v6.1.

The paper is organised as follows. In Sect. 2 we describe
the data set and the methods we used to estimate the 2PCF of
the sample. In Sect. 3 we describe the 2PCF model, focusing
on the dependence of the effective bias on the mass-observable
scaling relation. In Sect. 4 we show our constraints on bSZ and
detail the cosmological analysis, and in Sect. 5 we draw our
conclusions.

2. Data set and 2PCF measurement

2.1. The Planck cluster sample

Following Planck Collaboration XXIV (2016), we based our
analysis on the cosmological sample consisting of detections
by the MMF3 matched filter (Melin et al. 2006, 2012) derived
from the general Planck full-mission Sunyaev–Zeldovich cat-
alogue (PSZ2; Planck Collaboration XXVII 2016). We con-
sidered clusters with a confirmed counterpart in external
data sets and an assigned redshift estimate (see Table 9 in
Planck Collaboration XXVII 2016), with a redshift limit z ≤ 0.8,
for a total of 920 clusters. We applied this redshift cut to exclude

1 https://gitlab.com/federicomarulli/CosmoBolognaLib/

5 clusters that are isolated with respect to the bulk of the red-
shift distribution because they hindered the derivation of a reli-
able smoothed redshift distribution, which is necessary for the
construction of the random sample (see Sect. 2.2). In addition,
differently from Planck Collaboration XXIV (2016), we did not
apply any cut in the signal-to-noise ratio (S/N). This does not
imply any potential problems due to the reliability of the selec-
tion function at low S/N because our model does not rely on
assumptions on the sample completeness (see Sect. 3.2).

2.2. Random catalogue

The random catalogue used for the 2PCF measurement is
100 times larger than the Planck cluster sample. We smoothed
the observed redshift distribution, n(z), with a Gaussian ker-
nel with an rms equal to 0.02 (see Fig. 1). Then we extracted
random redshifts from this distribution. Random RA–Dec pairs
were extracted by following the sample angular selection func-
tion. It consists of the combination of the MMF3 survey mask2,
namelyMs, the hole mask excluding contaminated regions (e.g.,
by stars or large galaxies),Mh, and the error function complete-
ness. Both Ms and Mh are equal to 0 if the region is masked,
otherwise, they are equal to 1. The error function completeness
is defined as (Planck Collaboration XXIX 2014)

P(d|Y500, σYi(θ500), q) =
1
2

[
1 + erf

(
Y500 − qσYi(θ500)
√

2σYi(θ500)

)]
, (1)

where d is the Boolean detection state, erf(x) is the Gauss error
function, and Y500 and θ500 are the observed SZ signal and the
detection angular scale within a critical radius R500, respectively.
The latter is defined as the distance from the cluster centre inside
which the mean density is 500 times the critical density of the
Universe at the given redshift, z. M500 is defined as the mass
enclosed within R500. In Eq. (1), σYi is the standard deviation of
pixels for a given patch i, computed by following Melin et al.
(2006), and q is the S/N threshold. As we did not apply any
S/N cut to the sample, q corresponds to the minimum threshold
adopted by Planck Collaboration XXVII (2016) in the detection
process, namely q = 4.5. In Eq. (1), we assumed the sample
mean values of Y500 and θ500. We verified that using the median
values of these quantities does not introduce significant varia-
tions in the final results. Then we extracted random angular posi-
tions, for each of which we sampled a number in the range [0, 1].
When this number was higher than the product ofMs,Mh and
P(d|Y500, σYi, q), the random angular position was rejected. As
an alternative to the error function completeness in Eq. (1), we
weighted the pairs in the 2PCF estimator (described in Sect. 2.3)
by 1/σnorm

Yi , where σnorm
Yi is equal to σYi divided by its min-

imum value, namely σnorm
Yi = σYi/min(σYi). We verified that

this approach provides results that fully agreed with what was
derived from the application of the error function completeness.

2.3. Clustering measurement

We estimated the redshift-space 2PCF monopole using the
Landy & Szalay (1993, LS) estimator,

ξ(s) =
NRR

NDD

DD(s)
RR(s)

− 2
NRR

NDR

DR(s)
RR(s)

+ 1, (2)

where DD(s), RR(s), and DR(s) are the number of
data–data, random–random, and data–random pairs with
2 https://irsa.ipac.caltech.edu/data/Planck/release_2/
ancillary-data/HFI_Products.html
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Fig. 2. Redshift-space 2PCF monopole (black dots) of the Planck clusters in the spatial range s ∈ [10, 150] h−1 Mpc for z < 0.2 (left plot), and
s ∈ [15, 150] h−1 Mpc for z ∈ [0.2, 0.8] (right plot). The blue bands represent the model 68% confidence level derived from the posterior of the free
parameters considered in the analysis described in Sect. 4.1.

separation s±∆s, respectively, while NDD, NRR, and NDR are the
total number of data–data, random–random, and data–random
pairs, respectively. To convert the observed coordinates into
the comoving ones, we assumed the cosmological parameters
by Planck Collaboration VI (2020), TT, TE, EE+lowE+lensing
(referred to as Planck18 hereafter). The LS estimator is exten-
sively used in clustering analyses as it is unbiased with minimum
variance for an infinitely large random sample and when |ξ| � 1
(Hamilton 1992; Kerscher et al. 2000; Labatie et al. 2012;
Keihänen et al. 2019).

Specifically, we measured the 2PCF considering two redshift
bins, namely z < 0.2 and z ∈ [0.2, 0.8], containing 407 and
513 galaxy clusters, respectively. We considered the cluster-
centric radial range s ∈ [10, 150] h−1 Mpc, excluding from the
analysis the 2PCF measure at s < 15 h−1 Mpc in the second
redshift bin due to the lack of data-data pairs. Moreover, we
integrated the 2PCF measurements over larger s bins in z ∈
[0.2, 0.8], compared to those adopted for the lower redshift bin.
In this way, we compensated for the reduction of cluster pairs
with small s distances, caused by the lower cluster density at
high redshifts. We estimated the covariance matrix, including
the cross-covariance between radial and redshift bins, through
a bootstrap procedure. In particular, we considered 200 angu-
lar regions and two redshift regions, corresponding to the red-
shift bins, and resampled the observed and random catalogues
2000 times. We corrected the inverted covariance matrix follow-
ing Hartlap et al. (2007). In Fig. 2 we show the measured 2PCF
monopole, ξ0. We did not include the other non-zero multipoles
in the analysis, as we verified that their contribution is negligible.

3. Modelling

We modelled the 2PCF of Planck clusters by account-
ing for geometric and redshift-space distortions. In addi-
tion, different to what was done in the Planck cluster count
analysis by Planck Collaboration XXIV (2016), our model
does not rely on assumptions on the sample complete-
ness. We show in Sect. 4 that this approach leads to con-
straints on bSZ and cosmological parameters that fully agree
with those derived by Planck Collaboration XXIV (2016) and
Planck Collaboration VI (2020).

3.1. Two-point correlation function model

The lth order 2PCF multipole, ξl(s), can be expressed as
follows:

ξl(s) = il
∫ ∞

−∞

dk
2π2 k2Pl(k) jl(ks), (3)

where jl is the spherical Bessel function of order l, and Pl is the
redshift-space matter power spectrum multipole of order l,

Pl(k) =
2l + 1
2α2
⊥α‖

∫ 1

−1
dµ P(k′, µ′)Ll(µ). (4)

In Eq. (4), Ll is the Legendre polynomial of order l, and µ is
the line of sight cosine. Moreover, in Eq. (4), we accounted
for the Alcock & Paczynski (1979, AP) geometric distortions
caused by the assumption of a fiducial cosmology used to con-
vert the cluster observed coordinates into comoving ones in
Eq. (2). Specifically, k′ and µ′ have the following functional
forms (Beutler et al. 2014):

k′ =
k
α⊥

1 + µ2

α2
⊥

α2
‖

− 1

1/2

, (5)

µ′ = µ
α⊥
α‖

1 + µ2

α2
⊥

α2
‖

− 1

−1/2

, (6)

where α⊥ and α‖ are expressed as

α‖ =
Hfid(z)rfid

s (zd)
H(z)rs(zd)

, (7)

α⊥ =
DA(z)rfid

s (zd)
Dfid

A (z)rs(zd)
. (8)

Here, Hfid(z) and Dfid
A (z) are the fiducial values for the Hubble

constant and angular diameter distance, respectively, and rfid
s (zd)

is the fiducial sound horizon at the drag redshift, zd. We stress
that the AP correction takes place only in the cosmological anal-
ysis described in Sect. 4.3. To derive bSZ, as detailed in Sect. 4.1,
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we fixed the cosmological parameters to the fiducial ones. In
Eq. (4), P(k′, µ′) is the redshift-space dark matter power spec-
trum expressed as (Taruya et al. 2010)

P(k′, µ′) = DFoG(k′, µ′, f , σv)
[
b2

effPδδ(k′) + 2 f beffµ
′2Pδθ(k′)

+ f 2µ′4Pθθ(k′) + b3
effA(k′, µ′, f ) + b4

eff B(k′, µ′, f )
]
,

(9)

where Pδδ, Pθθ, and Pδθ are the real-space auto power spectra of
the density and velocity divergence and their cross power spec-
trum, respectively. These spectra are estimated in the standard
perturbation theory (SPT), consisting of expanding the statistics
as a sum of infinite terms, corresponding to the n-loop correc-
tions (see e.g., Gil-Marín et al. 2012). Considering corrections
up to the first-loop order, the power spectrum can be modelled
as follows:

PSPT(k) = PL(k) + P(1)(k) = PL(k) + 2P13(k) + P22(k), (10)

where the leading-order term, PL(k), is the linear matter
power spectrum, computed with CAMB3 (Lewis & Challinor
2011), while the one-loop correction terms are computed with
the CPT Library4 (Taruya & Hiramatsu 2008). In Eq. (9),
DFoG(k′, µ′, f , σv) is a Gaussian damping function representing
the fingers-of-God effect, having the following functional form:

DFoG(k′, µ′, f , σv) = e−k′2µ′2 f 2σ2
v , (11)

where f is the linear growth rate, and σ2
v is the linear velocity

dispersion, computed as (Taruya et al. 2010)

σ2
v =

1
3

∫
d3 k

(2π)3

PL(k)
k2 . (12)

In Eqs. (9) and (12), PL(k) is computed at the mean redshift
of the cluster sub-sample in the given redshift bin. In addition,
in Eq. (9), beff is the effective bias, defined in Sect. 3.2, and
the functions A(k′, µ′, f ) and B(k′, µ′, f ) are correction terms
derived from SPT (Taruya et al. 2010; de la Torre & Guzzo
2012; García-Farieta et al. 2020).

3.2. Effective bias

The effective bias, beff , has the following functional form:

beff =
1

Ncl

N∑
j=1

b(Yob
500, j, z

ob
j ), (13)

where Ncl is the number of clusters in the sample, Yob
500, j and zob

j
are the observed SZ signal and redshift, respectively, of the jth
cluster, and b(Yob

500, j, z
ob
j ) is expressed as

b(Yob
500, j, z

ob
j ) =

1
n(Yob

500, j, z
ob
j )

×

∫ ∞

0
dM500

dn(M500, zob
j )

dM500
b(M500, zob

j )

×

∫ ∞

0
dY500 P(Y500|M500, zob

j ) P(Y500|Yob
500, j),

(14)

3 https://camb.info/
4 http://www2.yukawa.kyoto-u.ac.jp/~atsushi.taruya/
cpt_pack.html

where b(M500, z) is the halo bias, for which the model
by Tinker et al. (2010) was assumed, and P(Y500|Yob

500, j) is a
Gaussian whose mean is Yob

500, j and its root mean square
(rms) deviation is given by the error on Yob

500, j. In addition,
P(Y500|M500, z) is a log-normal whose mean is given by the mass-
observable scaling relation, and its rms is given by the intrinsic
scatter, σln Y ,

P(ln Y500|M500, z) =
1

√
2πσln Y

e− ln2(Y500/Ȳ500)/(2σ2
ln Y ). (15)

Specifically, following Planck Collaboration XXIV (2016), we
assumed σln Y to be independent of Y500 and redshift, and the
expected value of SZ signal, Ȳ500, can be expressed as

E−β(z)
 D2

A(z)Ȳ500

10−4 Mpc2

 = Y∗

[
h

0.7

]−2+α [
(1 − bSZ) M500

6 × 1014 M�

]α
, (16)

where E(z) ≡ H(z)/H0, with H(z) being the Hubble function and
H0 the Hubble constant, DA(z) is the angular diameter distance,
h ≡ H0/100, bSZ is the Planck mass bias, and Y∗, α, and β are the
scaling relation parameters. In addition, n(Yob

500, j, z
ob
j ) in Eq. (14)

is expressed as

n(Yob
500, j, z

ob
j ) =

∫ ∞

0
dM500

dn(M500, zob
j )

dM500

×

∫ ∞

0
dY500 P(Y500|M500, zob

j ) P(Y500|Yob
500, j),

(17)

where dn(M500, z)/dM500 is the halo mass function, for which
the model by Tinker et al. (2008) was assumed.

3.3. Likelihood

For the Bayesian analysis performed in this work, a standard
Gaussian likelihood was considered,

L ∝ exp(−χ2/2) , (18)

with

χ2 =

N∑
i=1

N∑
j=1

(
ξd

i − ξ
m
i

)
C−1

i, j

(
ξd

j − ξ
m
j

)
, (19)

where N is the number of comoving separation bins in which
the 2PCF is computed, d and m indicate data and model,
respectively, and C−1

i, j is the inverse of the covariance matrix.
As detailed in Sect. 2.3, Ci, j was derived through a bootstrap
resampling.

4. Results

Based on the methods outlined in Sects. 2 and 3, we car-
ried out an analysis of the redshift-space 2PCF monopole of
the Planck cluster sample (Planck Collaboration XXVII 2016).
Specifically, we detail in Sect. 4.1 the derivation of the (1 − bSZ)
constraint, performed by assuming the Planck18 cosmological
results as priors. In Sect. 4.3 we present the constraints on cos-
mological parameters, obtained by assuming priors on bSZ from
external data sets.
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Table 1. Free parameters considered in the analysis detailed in Sect. 4.1.

Parameter Description Prior Posterior

bSZ Planck mass bias [−2, 0.9] 0.38+0.14
−0.11

log Y∗ Normalisation of the mass-observable relation N(−0.19, 0.02) –
α Slope of the mass-observable relation N(1.79, 0.08) –
β Redshift evolution of the mass-observable relation N(0.66, 0.50) –
σln Y Intrinsic scatter of the mass-observable relation N(0.173, 0.023) –

Notes. In the third column, the priors on the parameters are listed. In particular, a range between square brackets represents a uniform prior, and
N(µ, σ) stands for a Gaussian prior with mean µ and standard deviation σ. In the fourth column, we show the median values of the 1D marginalised
posteriors, along with the 16th and 84th percentiles. The posterior distributions of log Y∗, α, β, and σln Y are not shown since these parameters are
not constrained in our analysis.

4.1. Constraint on bSZ

In order to derive a constraint on the Planck mass bias, bSZ,
we fixed the cosmological parameters to the Planck18 median
values. We also assumed the priors on the mass-observable
scaling relation parameters in Eq. (16), namely Y∗, α, β, and
σln Y , adopted by Planck Collaboration XXIV (2016). In par-
ticular, this scaling relation was derived from X-ray observa-
tions of 20 relaxed clusters at z < 0.2 (Arnaud et al. 2010;
Planck Collaboration XX 2014). Finally, we assumed a large
flat prior on bSZ. In Table 1 we summarise the priors used
for this analysis, along with the result on the mass bias,
namely (1 − bSZ) = 0.62+0.14

−0.11. The corresponding effective
bias estimates are beff = 4.61+0.39

−0.36 and beff = 6.46+0.35
−0.37 for

z < 0.2 and z ∈ [0.2, 0.8], respectively. The constraint
on (1 − bSZ) is lower than what was predicted by numeri-
cal simulations (Nagai et al. 2007; Piffaretti & Valdarnini 2008;
Meneghetti et al. 2010; Rasia et al. 2012; Le Brun et al. 2017;
Henson et al. 2017; Gianfagna et al. 2023), but in line with what
was found by Planck Collaboration VI (2020). We remark that
even though the constraints on beff derived from the two redshift
bins have similar associated uncertainties, our result on (1−bSZ)
is dominated by the 2PCF signal measured at low redshift. We
obtained (1−bSZ) = 0.67+0.22

−0.13 for z < 0.2 and (1−bSZ) = 0.58+0.55
−0.31

for z ∈ [0.2, 0.8]. This is expected because beff is directly derived
from the mass-observable relation, and the number of clusters is
comparable in the considered redshift bins. On the other hand,
the constraints on (1 − bSZ) depend on the 2PCF measurements,
for which we obtained larger uncertainties in the high-redshift
bin. In both redshift bins, we found χ2

red ∼ 0.9, where χ2
red is

the reduced χ2. Specifically, we considered three effective free
model parameters because the change in the model within the
assumed priors on β and σln Y is not statistically significant.

In Fig. 3 we show a comparison between our constraint
on (1 − bSZ) and the results obtained from the literature. In
presence of systematic uncertainties, we added them in quadra-
ture to the statistical ones. By combining primary CMB likeli-
hood and cluster counts, Planck Collaboration VI (2020) derived
(1− bSZ) = 0.62± 0.03 (orange dot in Fig. 3), which fully agrees
with our result. Regarding the Planck mass estimates derived
from galaxy weak lensing, we found a 1σ agreement with
Weighting the Giants (WtG; von der Linden et al. 2014), the
Canadian Cluster Comparison Project (CCCP; Hoekstra et al.
2015), the Literature Catalogs of weak Lensing Clus-
ters of galaxies (LC2; Sereno & Ettori 2017), the Clus-
ter Lensing And Supernova survey with Hubble (CLASH;
Penna-Lima et al. 2017), and the Subaru Hyper Suprime-Cam
(HSC; Medezinski et al. 2018). We found an agreement of only
2σ with the results from the Local Cluster Substructure Survey

(LoCuSS; Smith et al. 2016), the Multi Epoch Nearby Clus-
ter Survey (MENeaCS) combined with updated mass weak-
lensing estimates in CCCP (MENeaCS+CCCP; Herbonnet et al.
2020), and with the result obtained from CMB lensing by
Planck Collaboration XXIV (2016), however. When comparing
our results to other analyses based on cluster counts, we found
an agreement of 1σ with Zubeldia & Challinor (2019), and
Salvati et al. (2019, 2022). Concerning the results derived from
the power spectra of the Planck thermal Sunyaev–Zeldovich
effect, our constraint agrees within 1σ with Makiya et al. (2018)
and Ibitoye et al. (2022). We also found a good agreement with
the constraint by Wicker et al. (2022) based on measurements
of the cluster gas mass fraction. The hydrostatic bias esti-
mates from dynamical masses by Ferragamo et al. (2021) and
Aguado-Barahona et al. (2022) agree with our result within 1σ.
In Sect. 4.2 we discuss the impact of the adopted modelling
choices on our result, finding that the derived constraint on bSZ is
robust with respect to the investigated systematic uncertainties.

As many observational studies claimed a redshift depen-
dence of the hydrostatic bias (Smith et al. 2016; Sereno & Ettori
2017; Salvati et al. 2019, 2022; Wicker et al. 2022), we investi-
gated this possibility by expressing bSZ as follows:

bSZ = η

(
1 + z

1 + zpiv

)ζ
, (20)

where zpiv = 0.25 is the mean redshift of the sample, η is the
normalisation, and ζ parametrises the redshift dependence of
the mass bias. Our analysis does not constrain ζ, implying that
it is not necessary to explain our data. We stress that the red-
shift dependence of bSZ was derived from cluster statistics only
in the case of a strong prior on the total value of bSZ, with a
significant dependence on the sample (Salvati et al. 2019, 2022;
Wicker et al. 2022).

4.2. Assessment of systematics on bSZ

To assess the robustness of the constraint on bSZ derived in
Sect. 4.1, we included the power spectrum damping due to red-
shift uncertainties in the analysis. No redshift errors are quoted in
Planck data products, and therefore, we expressed this damping
by means of a free parameter. Specifically, we replaced Eq. (12)
by the following expression:

σv,tot =

√
σ2

v + σ2
v, z, (21)

where σv is defined in Eq. (12), while σv, z is the velocity disper-
sion caused by redshift errors, having the following functional
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Fig. 3. Comparison of the results on (1 − bSZ) with the literature.
The median, 16th and 84th percentiles are shown. The black dot
shows the constraint derived in this work. Then, in order from top
to bottom, the following results are shown: Planck Collaboration VI
(2020; orange), von der Linden et al. (2014; blue) Hoekstra et al. (2015;
red), Planck Collaboration XXIV (2016; dark green), Smith et al.
(2016; grey), Sereno & Ettori (2017; magenta), Penna-Lima et al.
(2017; brown), Medezinski et al. (2018; cyan), Herbonnet et al. (2020;
pink), Zubeldia & Challinor (2019; purple), Salvati et al. (2019;
turquoise), Salvati et al. (2022; green), Makiya et al. (2018; dark
blue), Wicker et al. (2022; violet), Ibitoye et al. (2022; indigo),
Ferragamo et al. (2021; orange), and Aguado-Barahona et al. (2022;
dark brown).

form:

σv, z ≡
cσz(1 + z̄)

H(z̄)
. (22)

In this equation, z̄ is the mean redshift of the sub-sample in a
given redshift bin, c is the speed of light, H(z) is the Hubble
function, and σz is the typical redshift uncertainty of the sample.
By assuming a flat prior on σz, namely σz ∈ [0, 0.1], we derived
σz = 0.003+0.002

−0.002, which is in line with the fact that most of the
cluster redshifts are spectroscopic, and (1 − bSZ) = 0.65+0.15

−0.12,
which fully agrees with our previous result.

In addition, we analysed the 2PCF monopole of the Planck
union catalogue, containing the clusters detected with the three
detection algorithms adopted by Planck Collaboration XXVII
(2016). By assuming the same sample selections and bins of
redshift and radius described in Sect. 2, we found (1 − bSZ) =
0.59+0.12

−0.09, which is in line with the constraint derived in Sect. 4.1.

This implies that our result is independent of the adopted clus-
ter detection algorithm. We also performed the analysis by con-
sidering the clusters in the MMF3 sample with S/N > 6, and
for which the COSMO entry in the union catalogue is set to ‘T’,
meaning that these clusters are part of the cosmological sam-
ple, following Planck Collaboration XXIV (2016). Because the
statistics are poorer in this case, we analysed the 2PCF in a sin-
gle redshift bin including clusters with z ≤ 0.8 for a total of
430 objects. As the modelling provides reduced χ2 estimates that
are not close to 1, we conclude that in this case, the 2PCF signal
does not allow a reliable constraint on bSZ.

In order to further assess the robustness of our results on
(1 − bSZ), we computed the 2PCF model at the sample median
redshifts for each redshift bin, instead of adopting the mean red-
shift, as discussed in Sect. 3. In this way, we derived a shift
of the median (1 − bSZ) of ∼ 0.006σ. In addition, the reduc-
tion of the 2PCF radial range to s ∈ [15, 150] h−1 Mpc or to
s ∈ [10, 90] h−1 Mpc implies comparable results, namely shifts
of the median (1 − bSZ) lower than ∼0.6σ, and variations in the
1σ interval extension lower than ∼50%. We also checked the
impact of a change in the definition of the effective bias, beff ,
assuming the median of the halo bias distribution instead of con-
sidering its mean, as done in Eq. (13). In this case, we obtained a
shift of the median (1−bSZ) corresponding to ∼0.5σ. As the tests
described above showed shifts in the median bSZ that are within
1σ of the constraint presented in Sect. 4.1, we can conclude that
our results are robust with respect to the investigated modelling
choices. Lastly, Salvati et al. (2020) showed that the impact of
the halo mass function calibration has a subdominant impact on
current cluster count analyses. It will become a relevant source
of systematic errors in upcoming surveys, for instance those
from Euclid (Laureijs et al. 2011) and the Large Synoptic Survey
Telescope (LSST Science Collaboration 2009), because of the
larger cluster statistics they will provide. As cluster clustering
has a lower constraining power compared to counts, we expect
the mass function calibration to provide a negligible impact on
the bSZ constraints derived in this work. The same is expected
for the halo bias calibration.

4.3. Constraints on cosmological parameters

To further investigate the consistency of our modelling choices
with those adopted by Planck Collaboration XXIV (2016), we
performed a cosmological analysis aiming at constrainingσ8 and
Ωm simultaneously by assuming the same Gaussian priors on
bSZ as were considered by Planck Collaboration XXIV (2016).
Specifically, we assumed large flat priors for σ8 and Ωm, while
for the other cosmological parameters, we assumed the same val-
ues from Planck18 that were used in the previous section. We
also assumed the same Gaussian priors as adopted in Sect. 4.1
on the scaling relation parameters, namely Y∗, α, β, and σln Y .
We found that σ8 is not constrained through this analysis, while
we found Ωm = 0.28+0.05

−0.04 with the WtG bSZ prior, Ωm =

0.28+0.04
−0.03 with the CCCP prior, and Ωm = 0.27+0.04

−0.03 with the
CMB lensing prior (see Fig. 4). These results are fully consistent
and competitive, in terms of uncertainties, with those derived by
Planck Collaboration XXIV (2016). Similar uncertainties on Ωm
were obtained by Marulli et al. (2018) and Lindholm et al. (2021),
who modelled the 2PCF of 182 and 1892 X-ray selected galaxy
clusters, respectively. In addition, Marulli et al. (2018) found that
σ8 could not be accurately constrained, in agreement with our
results. In general, recent analyses of cluster clustering showed
that the constraints on Ωm are significantly more robust than
those derived on σ8 (Lindholm et al. 2021; Lesci et al. 2022b).
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Fig. 4. Comparison of the results on Ωm obtained by assuming flat
priors on Ωm and σ8, along with external priors on bSZ, namely WtG
(blue; von der Linden et al. 2014), CCCP (red; Hoekstra et al. 2015)
and CMB lensing (green; Planck Collaboration XXIV 2016). For each
bSZ prior, the result at the top was derived from the cluster clustering
measurements presented in this paper, the middle result refers to the
cluster counts analysis by Planck Collaboration XXIV (2016), and the
bottom result represents the combination of Planck cluster clustering
and counts. The constraint from Planck18 is shown in orange.

In addition, we note that significant changes in the value of bSZ
do not imply significant variations in the Ωm posteriors, similar
to what was found by Planck Collaboration XXIV (2016).

We also derived an estimate of Ωm from the combination
of cluster clustering and counts by assuming them to be statis-
tically independent. Hurier & Lacasa (2017) showed that clus-
ter counts and thermal SZ power spectrum are not significantly
correlated. The thermal SZ power spectrum mainly depends on
massive haloes, while for the number counts, the main contri-
bution comes from lower-mass halos. The differences between
the two galaxy cluster populations imply a weak correlation of
these probes. As the clustering of SZ selected clusters encloses
the same information contained in the SZ power spectrum, we
expect a similar behavior for its correlation with counts. With
respect to the analysis based on counts only, we found that
the uncertainty on Ωm is reduced by a factor of ∼25%−30%
if clustering is included in the likelihood. This confirms the
importance of including cluster clustering in cosmological anal-
yses (see also Sartoris et al. 2016; Euclid Collaboration 2022;
Garrel et al. 2022) in order to fully exploit the cluster statistics
information.

5. Summary and discussion

We analysed the 3D 2PCF monopole of the galaxy clus-
ters detected by Planck Collaboration XXVII (2016), focusing
on the estimate of the Planck mass bias, bSZ. Follow-
ing Planck Collaboration XXIV (2016), we based our analy-
sis on the cosmological sample consisting of detections by
the MMF3 matched filter (Melin et al. 2006, 2012), consid-
ering clusters with a confirmed counterpart in external data
sets and having an assigned redshift estimate, with a redshift
limit z ≤ 0.8, for a total of 920 clusters. Differently from
Planck Collaboration XXIV (2016), we did not apply any cut
in S/N to the sample. This does not imply any potential prob-

lems due to the reliability of the selection function at low S/N
because our model does not rely on assumptions on the sample
completeness.

By analysing the 2PCF in the redshift bins z < 0.2 and
z ∈ [0.2, 0.8] within the cluster-centric radial range r ∈

[10, 150] h−1 Mpc, we derived (1 − bSZ) = 0.62+0.14
−0.11. This result

fully agrees with what was found by Planck Collaboration VI
(2020) by combining primary CMB likelihood and Planck clus-
ter counts. Thus, we confirmed that Planck cluster statistics pro-
vides values of bSZ that are lower than what was predicted by
numerical simulations (Nagai et al. 2007; Piffaretti & Valdarnini
2008; Meneghetti et al. 2010; Rasia et al. 2012; Le Brun et al.
2017; Henson et al. 2017; Gianfagna et al. 2023). As redshift
errors are not quoted in Planck data products, we also included
the power spectrum damping due to redshift uncertainties by
means of a free parameter representing the typical redshift error,
namely σz. Thus, we simultaneously calibrated σz and bSZ, find-
ing no significant changes in bSZ and σz = 0.003+0.002

−0.002, which is
in line with the fact that most of the cluster redshifts are spec-
troscopic. In addition, from the analysis of the Planck union cat-
alogue of clusters, we showed that our result does not depend
on the adopted cluster detection algorithm. We also found that a
redshift evolution of bSZ is not necessary to describe our cluster-
ing measurements.

By adopting priors on bSZ from external data sets, we found
results on Ωm that fully agree and are competitive, in terms
of uncertainties, with those derived from cluster counts by
Planck Collaboration XXIV (2016), while σ8 is not constrained.
By assuming cluster clustering and counts to be statistically
independent, we found that their combination provides a reduc-
tion of up to ∼30% in the Ωm uncertainty derived from counts.
Future stage-4 CMB experiments (Abazajian et al. 2016) will
detect about 105 galaxy clusters through the SZ effect, which will
significantly enhance the cluster statistical analyses. This will
improve the calibration of the hydrostatic mass bias from clus-
ter clustering, and might shed light on the degeneracy between
σ8 and mass bias. This degeneracy cannot be investigated with
current data because σ8 is not constrained, as we detailed in
Sect. 4.3. As a consequence, along with cluster abundance, clus-
ter clustering will play a crucial role in the understanding of the
current cosmological tensions between early and late Universe
observations.
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