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Abstract 

Suppliers of tourist services continuously generate big data on ask prices. We suggest using this information, 

in the form of a price index, to forecast the occupation rates for virtually any time-space frame, provided that 

there are a sufficient number of decision makers “sharing” their pricing strategies on the web. Our approach 

guarantees great transparency and replicability, as big data from OTAs do not depend on search interfaces 

and can facilitate intelligent interactions between the territory and its inhabitants, thus providing a starting 

point for a smart decision-making process. We show that it is possible to obtain a noticeable increase in the 

forecasting performance by including the proposed leading indicator (price index) into the set of explanatory 

variables, even with very simple model specifications. Our findings offer a new research direction in the field 

of tourism demand forecasting leveraging on big data from the supply side. 
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1. Introduction 

 

The task of demand forecasting is often based on dynamic statistical models – mainly involving time series 

analysis – or model-free machine learning techniques. Such models present one main drawback that limit their 

application in long term forecasting: the need to identify informative variables at very large lags or to accept 

increasingly wider confidence intervals in the case of dynamic forecasting. Predicting the sectoral demand is 

not simple even in the short term, when small area or high frequency details are requested. In fact, official 

statistics are not usually published with high time-space detail or – when available – they are neither complete 

nor timely.  

In this paper, we explore the possibility to exploit public big data to partially overcome these problems in all 

those industries where online dynamic pricing is spreading as a marketing-management practice. In particular, 

we focus on the accommodation sector, as it is important for the economies of many locations worldwide and, 

above all, characterized by a huge number of decision makers interested in making daily forecasts about 

arrivals for circumscribed periods like summer, weekends, or days when fairs or other relevant events are held.  

Buono et. al. (2017) highlight the potential of online price data in nowcasting and forecasting inflation, though 

this kind of big data has not been extensively studied in macroeconomics. In the field of tourism, according to 

Li et. al. (2018), big data are drawn from three primary sources: social media, devices and operations. They 

originate mainly from the behaviour of customers (even potential), while online sales prices are among the few 

operations generated by the supply side. Surprisingly, big data analytics have not yet considered hotels’ pricing 

strategies – i.e. the whole set of prices that an hotel publish on an Online Travel Agency (OTA) at different 

advance bookings. As we further argue, these data represent one of the most effective examples of shared 

knowledge regarding businesses’ expectations about future demand, allowing for high-frequency prediction, 

even in a small geographic area. 

In fact, given the strong connection between accurate forecasting of guest arrivals (occupancy rates) and 

successful pricing (Weatherford and Kimes, 2003), we argue that hoteliers calibrate and apply a subjective 

inverse demand function when they price rooms across the advance booking period. The shape of this inverse 

demand function is quite complex, as prices in the booking window (for a given target date) depend on both 

the observable (i.e. hotel’s past and actual occupancy rates or seasonality/special events) and the unobservable 

(i.e. hotelier’s expectations about future demand). Monitoring price dynamics is therefore akin to conduct a 

continuous survey on corporate sentiment; like thousands of virtual questionnaires revealing managers' 

forecasts for occupancy rates in the advance booking window, conditioned by their observations on their own 

past and present reservations.  

We suggest to employ a synthesis of these supply-side big data to estimate an aggregate demand function. As 

our focus is on forecasting, we constrain the function to employ only a set of predetermined information, e.g. 

deterministic variables, in addition to prices. This approach allows to make static forecasts of the daily 

occupancy rates, even in small areas (municipalities or neighbourhoods), at – virtually – any horizon, provided 

that the number of decision makers who share their pricing strategies on the web is sufficient.  

We believe that our approach has great potential in research on tourism demand forecasting. It can be easily 

generalized to all the empirical settings covered by at least one OTA; it is operable (and effective) with linear 

statistical models, even though we show that a more general parametrization which admits non-linearity yields 

better results. In addition, it guarantees transparency and replicability, as big data from OTAs are raw data less 

dependent on changes in user behaviour and search interfaces when compared to the big data from search 

engines (Lazer et al. 2014). Finally, even if we focus only on the hotel segment, a similar methodology could 

be employed using prices scraped from platforms promoting private accommodations. 

Our findings highlight the value of on-line prices as publicly available and reliable data which can link the 

stakeholders of tourism services to the digital environment. The remainder of the paper is organized as follows: 

Section 2 provides a review of the existing literature on forecasting and big data; in Section 3, we describe the 

dataset and the modelling/evaluation framework; in Section 4, we present the estimation and model evaluation 



results. In Section 5, we discuss our findings, linking them to managerial implications that show how our 

approach can facilitate intelligent interactions between a geographic area and its inhabitants by providing a 

“smart” place to start the decision process.  

 

 

2. Literature review 

Predicting day-to-day tourist numbers is a very important task, as it enables public administrators to better 

manage both the issues of crowding/tourism sustainability (Cheung and Li, 2019) and the net economic 

contribution tourists provide local businesses (Voltes-Dorta et al. 2014).  These issues are increasingly 

important in mature destinations in light of growing anti-tourism movements (Seraphin et. al.  2018) and 

serious space problems between visitors and residents that are also on the rise in developing countries (Huang 

et al 2017a). The transient visitor population creates a surge in demand for assets that tourists share with 

residents, which also implies the non-sustainability of tourism on an economic level. Looking at the smallest 

and largest municipalities in Spain, Voltes-Dorta et al. (2014) show that revenue generated by tourism does 

not usually match the increased expenditures required to service the floating visitor population.  

In agreement with Sánchez-Galiano et. al. (2017), we believe that the lack of specific data on the transient 

population is one of the main factors preventing local administrators from efficiently managing public services 

and residents’ attitudes towards tourism. An accurate and timeliness prediction of seasonal (daily) peaks would 

improve the scenario for sustainable development, while also limiting the negative effects of overcrowding 

(Martinez-Garcia et. al. 2017).   

In European Countries, three main official investigations cover the monitoring system of tourist flows 

(UNWTO 2010). These show limits in terms of completeness, timeliness and accuracy (Guizzardi and Bernini, 

2012), as they do not provide data that are actually useful to the authorities in managing local tourism (i.e. 

prompt sub-monthly data at municipal level). This information gap led many researchers to look at indirect 

indicators of tourism demand, and/or search for the digital tracks left by tourists and tour operators in the form 

of big data (Liu et. al. 2018). Regarding indicators, Tang et al. (2016) demonstrate the value of using readily 

available OECD economic climate indicators to estimate hotel occupancy trends in Hong Kong, while 

Guizzardi and Stacchini (2015) show the value of business sentiment indicators to improve forecasting 

performance on tourism flows.  

However, big data analytics is certainly the approach offering greater opportunities to scholars (Buhalis and 

Law, 2008). Big data support the decision making process, allow for a better understanding of many tourism 

issues (Xiang et al., 2015), are inexpensive (compared to consultant inputs), very territorially detailed and 

without the limitations in terms of sample size and timeliness shown by official information. The tourism 

literature focuses on three primary big data sources (Li et al., 2018): user-generated content (social media), 

devices (GPS, mobile roaming, Bluetooth etc.), and operations (web searching and other transaction data). 

Data generated by social media provide details about individual experiences and expressions with time-

stamped, demographic and evidence-based insights (Yang et al., 2015). Social media activity largely relies on 

geo-tagged data sources, microblogging services and review platforms. Among others, Giglio et al. (2019) 

used photographs uploaded on Flickr to determine the attractiveness of various tourism sites, while Miah et al. 

(2017) apply the same data to decision support. Chua et al. (2016) and Brandt et al. (2017) used Twitter posts 

to assess users’ mobility patterns on a regional scale, while Xiang et al. (2017) focus on review platforms, 

showing discrepancies in the representation of hotel products.  

GPS, Wi-Fi Bluetooth and beacon functionalities have been employed to track tourist movements, providing 

considerable spatio-temporal big data (Hardy et al., 2019). Automatic weather station sensors have helped 

collecting a rich mine of meteorological data (Guo, 2016), which in turn can be exploited to gain knowledge 

https://www.sciencedirect.com/science/article/pii/S0261517718300591#bib43


about tourist arrivals in locations offering weather-sensitive activities. For example, Falk (2010) investigates 

the relationship between the number of overnight stays and the snow depth at 28 Austrian ski resorts. 

Web search data were mainly used as exogenous information to improve accuracy in the prediction of tourist 

flows and hotel demand (Li et. al. 2018). Choi and Varian (2012)’s seminal work improved the forecasting 

accuracy of ARIMA models using travel-related Google search data. Pan et al. (2012) obtain the same results 

with multivariate ARMA models, while Bangwayo-Skeete and Skeete (2015) implement an AR-MIDAS 

regression. Rivera (2016) use Google Trends data in a dynamic linear model to forecast arrivals to Puerto Rico, 

while Gunter and Onder (2016) are among the few authors focusing on a micro area (the city of Vienna). A 

more recent strand of literature focuses on the most effective ways to include web search data in an econometric 

model to limit overfitting and multicollinearity issues. We recognize three main statistical approaches the 

principal component analysis (Li et al., 2015), data shift and combination of different types of search query 

data, (Yang et al., 2015), and the generalized dynamic factor models (Li et al., 2017). 

Other transaction data have been introduced into tourism research in very few related articles, possibly because 

most transaction data are difficult to obtain due to privacy concerns (Li et al., 2018). Among them, Zervas et 

al. (2018) show the effect of Airbnb on the hotel market, while Saito et. al., (2016) analyse visitors’ choices 

by using online booking data from four major hotels near the Kyoto station. Sobolevsky et al. 

(2014) demonstrated the applicability of bank card transactions in analysing tourist mobility patterns, while 

Huang et al. (2017b) measure the carbon emissions of self-driving tourism and the spatial relationship with 

scenic spots, using an ArcGIS-Network analysis. Even though we only cite a few examples, it is important to 

emphasize that few papers consider a daily time dimension (e.g. Brant et. al., 2017). 

Analytics of the pricing behaviour of hotels, as it appears on the OTAs, are expected to be informative about 

daily tourism demand. In fact, these supply-side big data directly reflect expected occupancy rates as managers’ 

forecast of occupancy rates is one of the major inputs for most revenue management systems producing 

recommendations about pricing and availability (Tang et al., 2016). More complex approaches also consider 

customers’ price sensitivity, and cancellation probabilities (Talluri and Van Ryzin, 2004; Antonio et al., 2019) 

or variables reflecting subjective reactions to unexpected events by customers and hoteliers (Yang et. al., 

2014). Overall, scholars report a strong correlation between good forecasting of occupancy rates and 

(successful) pricing along the advance booking period (Tse and Poon, 2015; Koupriouchina et al., 2014). On 

the basis of these findings, it seems possible to employ the information provided by revenue managers through 

the OTAs to improve the forecasting accuracy of models for daily occupancy rates, even for small areas such 

as municipalities or neighbourhoods, provided that the number of decision makers sharing their pricing 

strategies on the network reaches a minimum level.  

To the best of our knowledge, only a very recent paper by Tsang and Benoit (2020) considers the pricing 

behaviour of hotels to forecast daily tourism demand at a city level with a time series approach. They exploit 

Gaussian processes and machine learning algorithms, with orthogonalized variables as regressors. We show 

that our leading indicator approach is worth as it doesn’t require multi-step dynamic forecast to predict, is more 

robust to missing data bias and allows to obtain good forecasting performances. 

 

 

3. Data and Methods 

In order to explain the variability observed in daily demand, we construct a dataset from the Best Available 

Rates (BARs) published on Expedia.com every day at 00:00 AM for a one night stay (one adult). We consider 

a panel of 107 hotels in Milan, over a time interval of 274 days, from January 1st to September 30th, 2016. In 

the following, arrival dates are denoted by an index t. For each arrival date t, 29 BARs were recorded, 

corresponding to the lowest offered price along a four-week advance booking period (i.e. from 28 to 0 days). 

The booking process was simulated from December 4th, 2015, collecting 893,664 BARs observations. The 

https://www.sciencedirect.com/science/article/pii/S0261517718300591#bib31


data source is Rate Tiger, a market intelligence service which monitored the pricing activity of the selected 

hotels (on demand and for a fee).  

As a proxy of the realized tourist demand in the hotel sector, we consider the time series of daily average 

occupancy rates for hotels in the city of Milan over the same period provided by the STR Share Center. Milan 

is a business destination in the North of Italy which, in 2017, registered 10.1 million overnight stays in the 

27,519 rooms offered by 467 hotel structures (Municipality of Milan, 2019). It represents an optimal empirical 

setting for our purposes, given both the high hotel market share (86%) and a noticeable daily seasonality. Thus, 

we include dummy variables to control for the arrival day of the week, bank holidays, and a selection of fairs 

and events between late winter and spring, (the periods in which Milan experiences the highest occupancy 

rates and price changes).  

As we aim to assess whether the inclusion of advanced booking prices for a set of hotels in a destination 

improves the prediction of the occupation rate for the same destination, the choice of the advance booking lag 

is a core aspect. A priori, we expect a trade-off between different benefits provided by large and small advance 

booking horizons. The former provides policy makers with a larger degree of freedom, for example, more time 

to manage resources to avoid a surplus or deficit of the assets that tourists share with residents. On the contrary, 

predictions leveraging the last-minute pricing behaviour should be more accurate in light of both the 

progressive reduction of uncertainty for new bookings/cancellations and the increasing importance of pricing 

tactics over strategies (Guizzardi et. al., 2017). In order to operationalize the choice, we should also consider 

that, for our purpose, any single advance booking is sub-optimal respect to a price index. In fact, particularly 

with events inducing peaks of demand, we observed that many hotels decide to temporarily avoid offering 

rooms on the OTA distribution channels: in this case, the data scraping process provides many failures 

producing inconsistent sample sizes at certain advance bookings. Moreover, online dynamic pricing is 

associated with irregular price variability over the booking horizon (Guizzardi et al., 2017). For this reason, 

we suggest considering a price index obtained as a moving average of the BARs posted over a week. In 

particular, we consider four weekly non-overlapping windows along the advance booking as we aim to 

measure the extent that forecasting performance changes using price indices calculated on different advance 

booking windows.  

 

More formally, we denote weeks along the observed advance booking with an index 𝑖 = 1,2,3,4 starting from 

the day before the arrival date and counting backwards. The advance booking price index Pi,t is a moving 

average of all the prices, for a stay on day t, posted on-line by the 𝑁𝑎 = 107 hotels from day  (𝑡 − 7𝑖) to day 

[𝑡 − 7(𝑖 − 1) − 1].  Then each advance booking price index Pi,t  is computed as follows: 

𝑃𝑖,𝑡 =
1

7𝑁𝑎
∑ ∑ 𝑝𝑗,𝑡,𝑎

𝑁𝑎
𝑎=1

7𝑖
𝑗=7(𝑖−1)+1      (1) 

where pj,t,a is the BAR posted on Expedia by the hotel a,  for the arrival date t on the day t-j. We highlight that, 

chosen a week i, it is possible to calculate the index 𝑃𝑖,𝑡 at time [𝑡 − 7(𝑖 − 1) − 1]. Moving the time reference 

forward to the present (t), we can use the price index in equation (1) as a leading indicator to forecast the 

occupancy rate at time [𝑡 + 7(𝑖 − 1) + 1]. Note that, when more than the 33% of the expected pj,t,a are missing 

- at least in one of the four weeks - we do not calculate the index and the days corresponding to these values 

are excluded from the sample which, consequently,  reduces from 274 to 262 observations. 

The statistics in Table 1 show that both mean level and price variability increase with the approaching the 

arrival date. This reflects a typical pricing behaviour (Mauri, 2013) aimed at hindering cancel-and-rebook 

strategies, while allowing for increasing discounts/surcharges of the offered BAR as the target date approaches. 

BARs variability is in fact being increasingly used as a tool to control customers’ Internal Reference Price 

(Choi and Mattila, 2018) and booking propensity or, ultimately, to help managers meeting their goals in terms 

of occupancy rate. 



The sampled hotels are primarily 4-star establishments. The 54% are independent, while the remaining 46% 

are affiliated with a chain or franchise. They are mainly located in the city centre (75% are less than 3 km from 

the city centre) and they are mostly business hotels specialized in hosting MICE events. The hotels have an 

average of 110 rooms, much higher than both the Milan and the Italian national average. The fairs dummy 

variable has a value of 1 for the most visited fairs/events (detail available upon request). 

 

Table 1: Descriptive statistics. 

Continuous/discrete variables median mean st. dev. interq. range 

Occupation Rate (%) 65.3 65.2 16.0 (51.4-77.9) 

Average BARs 1week adv. book. (𝑷𝟏,𝒕) 115.0 139.0 114.1 (89.0,153.2) 

Average BARs 2week adv. book. (𝑷𝟐,𝒕) 113.4 137.4 106.5 (89.0,153.0) 

Average BARs 3week adv. book. (𝑷𝟑,𝒕) 110.5 131.8 95.1 (85.3,149.0) 

Average BARs 4week adv. book. (𝑷𝟒,𝒕) 110.0 129.7 88.0 (86.5,145.1) 

# rooms                           (nrooms) 89 110 65.2 (65, 143) 

# meeting rooms             (nmr) 2 3.3 4.3 (0, 5) 

# restaurant seats             (nrs) 0 56.2 72.2 (0, 100) 

Km from city centre        (dist) 1 2.6 4.9 (0, 3) 

Km from airport             (dista) 6 8.9 11.1 (0, 10) 

Dummy var. (time related) frequency Other descriptive Statistics 

If Bank holiday          (hol)=1 5% # hotel 107 3stars 13% 

If Main Fairs/Events  (fairs)=1   16% Chain or franchise hotel 46% 4stars 86% 

  Independent 54% 5stars 1% 
 

 

 

 

3.1 Modelling and evaluating framework 

In this section we discuss how to employ the price index 𝑃𝑖,𝑡   𝑖 = 1,2,3,4  to estimate an aggregate demand 

function for day t. In order to keep the approach relatively inexpensive and easy to use for policy makers, we 

limit exogenous variables – other than prices - to deterministic variables that can be constructed with a simple 

information retrieval (such as noting bank holidays and choosing a set of possibly relevant events in the chosen 

location, such as the fairs in our case).  We also avoid using month dummies to model seasonality, since our 

sample is shorter than one year, making monthly statistics inconsistent.  

Our main goal is to provide an effective forecasting of the daily occupancy rate over a relatively long (i.e. a 

few weeks) time horizon, without the need to collect every day the actual occupancy rate, as it would be 

required in a dynamic forecasting framework. However, for the sake of completeness, we also investigate the 

performance of dynamic time series models, with and without exogeneous regressors. In the following two 

sub-sections, we first describe leading indicator regression models – not relying on lags of neigher the 

dependent or independent variable – and then we consider a dynamic forecasting experiment using linear time 

series models. 

 

3.1.1 Leading indicator models  

Let Occt denote the average occupancy rate in Milan at day t, trend a linear trend represented by a vector of 

indices for the days in the sample (taking value from 1 to 262), Dowt a set of 6 dummies assigning the day of 

week corresponding to date t (excluding Sundays), holt a dummy variable indexing which arrival dates are 



Bank holidays and fairt a dummy variable indicating whether an important fair is taking place on the arrival 

date t. We consider three model specifications, M1, M2, M3: 

 

         𝑀1:  𝑂𝑐𝑐𝑡 = 𝛼 + 𝛽1𝑡𝑟𝑒𝑛𝑑 + β2𝐷𝑜𝑤𝑡 + 𝛽3ℎ𝑜𝑙𝑡 + 𝛽4𝑓𝑎𝑖𝑟𝑡 + 𝜀𝑡 

𝑀2𝑖:  𝑂𝑐𝑐𝑡 = 𝛼 + γ 𝑙𝑜𝑔(𝑃𝑖,𝑡  ) + 𝛽1𝑡𝑟𝑒𝑛𝑑 + β2𝐷𝑜𝑤𝑡 + 𝛽3ℎ𝑜𝑙𝑡 + 𝛽4𝑓𝑎𝑖𝑟𝑡 + 𝜀𝑡               𝑖 = 1,2,3,4 

𝑀3𝑖: 𝑂𝑐𝑐𝑡 = 𝛼 + 𝑠(𝑃𝑖,𝑡  ) + 𝛽1𝑡𝑟𝑒𝑛𝑑 + β2𝐷𝑜𝑤𝑡 + 𝛽3ℎ𝑜𝑙𝑡 + 𝛽4𝑓𝑎𝑖𝑟𝑡 + 𝜀𝑡                       𝑖 = 1,2,3,4 

where 𝑃𝑖,𝑡, denotes the price index in eq. (1) calculated averaging the prices posted during the i-th week of 

advance booking for a stay in day t. Thus 𝑀2𝑖 and 𝑀3𝑖 exist in four versions each, which differ because they 

use as explicative variable a price index computed considering different advance booking. This way, we point 

to separately assess possible differential effects of longer/shorter horizons in the prediction of demand.  

M1 considers only seasonal and calendar effects (day of week, holidays, fairs), while M2 and M3 incorporate 

information about prices posted in the advance booking window i. In particular, M1 and M2 are standard linear 

regression models, and the parameters can then be estimated using ordinary least squares (OLS). The choice 

of a non-linear transformation follows the inspection of the scatterplots of Occt  against Pi,t shown in Fig 1. 

The logarithm is a common transformation applied to prices in economic and econometric modelling, but in 

this case it is not optimal as the residuals of models M2 are not normal and heteroskedastic, which underscores 

the idea that a more complex specification could provide better results.          

 

Figure 1: Non-linear relation between average occupancy rate in Milan at day t (y axis) and the price index, 

calculated considering short (i=1) and long (i=4) advance booking. 

 

Finally, we specify M3 as a Generalized Additive Model (GAM, see Hastie, 2017 for a comprehensive 

description of this class of models) including the same explanatory variables as in M2. Formally, the 

structure of a GAM is akin to an ordinary linear regression. However, the relationship between the response 

variable and the covariates can be more complex than linear, or linear in a simple transformation, such as the 

natural logarithm of the price index in M1 and M2. The term 𝑠(𝑃𝑖,𝑇) in the expression of M3 denotes a non-

linear smooth function of the regressor, represented by a penalized regression spline, whose estimation is 

carried out via restricted maximum likelihood (Wood and Wood, 2015). The spline transformation of the 

independent variable allows for a much more flexible modelling compared to traditional and even 

generalized linear models. As a result, GAMs allow us to take care of the effects of (possibly multiple) 

seasonality, non-Gaussianity and non-linearity between dependent and independent variables, in a setting 

characterized by a small number of parameters. In practice, we use the standard R function lm() to obtain 



estimates of the parameters of M1 and M2 via OLS , and the gam() function from the R package mcgv 

(Wood and Wood, 2015) for the smoothing parameter in M3.   

Once we have estimated the models M1, 𝑀2𝑖 and 𝑀3𝑖, a (static) forecast on the horizon h can be easily 

computed as follows: 

    𝑀1:  𝑂𝑐�̂�𝑡+ℎ = �̂� + 𝛽1̂𝑡𝑟𝑒𝑛𝑑 + β2̂𝐷𝑜𝑤𝑡+ℎ + 𝛽3̂ℎ𝑜𝑙𝑡+ℎ + 𝛽4̂𝑓𝑎𝑖𝑟𝑡+ℎ 

𝑀2𝑖:  𝑂𝑐�̂�𝑡+ℎ = �̂� + γ ̂𝑙𝑜𝑔(𝑃𝑖,𝑇+ℎ ) + 𝛽1̂𝑡𝑟𝑒𝑛𝑑 + β2̂𝐷𝑜𝑤𝑡+ℎ + 𝛽3̂ℎ𝑜𝑙𝑡+ℎ + 𝛽4̂𝑓𝑎𝑖𝑟𝑡+ℎ              𝑖 = 1,2,3,4 

𝑀3𝑖:  𝑂𝑐�̂�𝑡+ℎ = �̂� + �̂�(𝑃𝑖,𝑇+ℎ ) + 𝛽1̂𝑡𝑟𝑒𝑛𝑑 + β2̂𝐷𝑜𝑤𝑡+ℎ + 𝛽3̂𝑡 + 𝛽4̂𝑓𝑎𝑖𝑟𝑡+ℎ                                 𝑖 = 1,2,3,4 

We note that specification M1 allows to perform forecasts of occupancy rates without limits in the value of h, 

as it considers only calendar and deterministic variables (provided the dummy for fairs is known up to time 

t+h). The only limitation to the use 𝑀2𝑖 and 𝑀3𝑖 specification for forecasting purposes is that the horizon h 

has to be less or equal than [7(𝑖 − 1) + 1] with (𝑖 ≥ 1) the maximum number of advance booking weeks 

available. This horizon limitation do not apply to pure time series models, as showed in section 3.1.2. 

We assess and compare the predictive performance of each model using a Monte Carlo (or repeated random 

sub-sampling) cross-validation. We perform K = 3000 repetitions; each time, we randomly draw a test sample 

with size 𝑇1 estimating model parameters on the remaining T-T1 observations. We perform the cross validation 

twice, for 𝑇1 = 30 and 𝑇1 = 50. Then, we predict 𝑂𝑐𝑐𝑡,𝑀𝑗𝑖
̂   on the test sample and we compute the forecasting 

error of the j-th model 𝑒𝑡,𝑀𝑗𝑖
= 𝑂𝑐𝑐𝑡 − 𝑂𝑐𝑐𝑡,𝑀𝑗𝑖

̂ . Then we calculate the Mean Absolute Error: 𝑀𝐴𝐸𝑀𝑗𝑖
=

∑ |𝑒𝑡,𝑀𝑗𝑖
|

𝑇1
𝑡=1

𝑇1
 and the Mean Squared Error: 𝑀𝑆𝐸𝑀𝑗𝑖

=
∑ (𝑒𝑡,𝑀𝑗𝑖

)2𝑇1
𝑡=1

𝑇1
 which weights the largest forecasting errors, in 

absolute value, more than proportionally (Clark and McCracken, 2013). We finally take in to account the fact 

that occupation rate could display negatively skewed distributions through the Mean Absolute Percentage loss 

function: 𝑀𝐴𝑃𝐸𝑀𝑗𝑖
=

∑
|𝑒𝑡,𝑀𝑗𝑖

|
𝑂𝑐𝑐𝑡

⁄𝑇1
𝑡=1

𝑇1
100. MAPE weights the errors more in correspondence with low values 

for the observed occupancy rate, implying that correctly predicting the lower occupancy rate is equally 

important as predicting higher values.  

As we simulate K=3000 random test samples, we are able to draw the distributions of the considered loss 

functions. We rank rival models using the expected value, identifying the “best predictor” with the one 

associated to the lowest. Looking at the whole distribution (shape and the size of the overlapping areas – if 

any), we are also able to assess the relative strength or weakness in forecasting extreme values. Finally, we 

more formally assess, the significance of differences in the expected performance between two specifications 

with a Kolmogorov-Smirnov test comparing the cumulative distributions of the loss functions associated to 

two rival models by means of the supremum function 𝑠𝑢𝑝 of their distance 𝐷1,2 = 𝑠𝑢𝑝𝑥 |𝐹1(𝑥) − 𝐹2(𝑥)|. 

 

3.1.2 Dynamic models 

Time series modelling has been popular in tourism demand forecasting for a long time. In a recent review, 

Song et al. (2019) summarize 211 key studies in the field of tourism economics, finding that Seasonal Auto-

Regressive Moving-Average (SARIMA) models have been employed since the 1970s (Geurts and Ibrahim, 

1975) until the present to forecast tourism expenditure, revenue and, particularly in the most recent decades, 

demand. It is worth mentioning than the majority of these studies rely on monthly or quarterly data, as opposed 

to the daily frequency in our case. 



Building on this literature, we test a set of different SARIMA specifications. Giving a comprehensive review 

of these models is beyond the scope of this article, particularly because they have been a classic forecasting 

tool for a long time; for technical details we refer to Chapter 6 in Brockwell and Davis (2016).  

In brief, we say that 𝑂𝑐𝑐𝑡 follows a SARIMA(p,d,q)(P,D,Q)s, if: 

(1 − 𝐵)𝑑(1 − 𝐵𝑠)𝐷𝑂𝑐𝑐𝑡 =  ∑ 𝜙𝑖𝑂𝑐𝑐𝑡−𝑖 + ∑ Φ𝑖𝑂𝑐𝑐𝑡−𝑗𝑠 + ∑ 𝜃ℎ𝜀𝑡−ℎ + ∑ Θ𝑘𝜀𝑡−𝑘𝑠

𝑄

𝑘=1

𝑞

ℎ=1

𝑃

𝑗=1

𝑝

𝑖=1

 

 

where B is the backshift operator, such that Bk𝑂𝑐𝑐t = 𝑂𝑐𝑐t-k, d is the level of integration, D the level of seasonal 

integration (respectively, the number of nonseasonal and seasonal differences to take to obtain stationarity), s 

the period of the seasonal cycle and εt a sequence of independent and identically distributed Gaussian random 

variables. In our case, d = 0, while we admit that D = 1 and s = 7 days. The two sums including ϕ and θ 

coefficients represent the autoregressive and moving average part of the process, respectively; the terms 

involving Φ and Θ introduce analogous terms for the seasonal component. 

 

 

4. Results 

 

4.1 Leading indicator models 

In Table 2 we display the results of the parameter estimation of all models, using the entire sample of 262 days. 

The price index is always significant (α = 0.05) and clearly increases the goodness of fit of models 𝑀2 and 

𝑀3, with values of the adjusted R2 all higher than ~ 0.7 as opposed to the value of 0.56 associated with M1. 

As expected, for both 𝑀2𝑖 and 𝑀3𝑖 the explanatory power of the index decreases for increasing i. However, 

the model fit is better than for M1 even with a price index computed at the fourth week of advance booking.  

The coefficients of the leading indicator 𝑃𝑖,𝑡 in models 𝑀2𝑖 are always positive, and the spline term s()  resulting 

from the estimation of 𝑀3𝑖 also assumes positive values. In both cases, price “elasticities” increase at 

decreasing i, pointing to a stronger association between pricing and realised occupancy rate close to the last-

minute. This result is expected and reflects an increasing capability of decision makers to correctly predict the 

occupancy rate at very short advance bookings, when the probability of unexpected cancellations or new 

reservations decreases. Symmetrically, the coefficients of the other explanatory variables tend to increase in 

absolute value at larger advance bookings, while the variable Fair is never significant when prices are 

considered.  

Overall, the above results imply that, over short time horizons (up to one month), prices posted by decision 

makers on the OTAs contains enough information to explain occupation rates even in cases of irregular 

fluctuation caused by fairs.  

However, the differences in the goodness of fit between specifications 𝑀2 and 𝑀3 stress the limits of the 

simple linear approach being able to represent the dynamics of the occupancy rate in regular patterns. In other 

words, the better result obtained with a GAM approach points to the existence of a marked non-linearity in the 



relationship between Occt and 𝑃𝑖,𝑡 that we believe it is worth considering, notwithstanding the increased 

complexity of the model.  

 

Table 2: Model estimates and goodness of fit 

Estimates (%) 

 𝑴𝟏     𝑴𝟐𝟏 𝑴𝟐𝟐 𝑴𝟐𝟑 𝑴𝟐𝟒 𝑴𝟑𝟏 𝑴𝟑𝟐 𝑴𝟑𝟑 𝑴𝟑𝟒 

𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕  49.16**   -112.71**   -104.51**   -100.51**   -96.65**  63.90**  61.15**   62.00**   57.72**  

trend  0.02**   0.014**   0.019**  0.020**  0.031**  0.011**  0.014**   0.010**   0.024**  

Monday  14.49**   6.75**   8.72**   9.4**   9.89**    3.56**   3.41**   7.1**  

Tuesday  18.88**   8.4**   11.76**   13.17**   13.54**  1.99*  6.89**   7.49**   10.91**  

Wednesday,   18.12**   8.13**   11.54**   12.78**   13.44**  1.89*  6.37**   7.22**   10.93**  

Thursday  13.68**   5.97**   7.98**   8.79**   9.29**    2.89**   3.13**   6.55**  

Friday,  6.87**   2.92*   3.34*   3.88*   4.39**       3.77**  

Saturday   8.79**   4.14**   5.04*   5.71**   6.33**    2.96**   3.4**   6.09**  

holy  -16.06**   -11.74**   -13.37**   -14.07**   -15.4**  -8.06**   -10.48**  --11.11**  -13.73**  

fairs  19.19**          

Price Index  𝑃𝑖,𝑡    35.09** 33.22**  32.31** 31.26**     

EDF (smooth terms)      6.47**  5.88**   5.90*   4.56**  

Goodness of fit 
F-test 
[p-value] 

38.0 
[<2.2e-16] 

108.4 
[<2.2e-16] 

76.8 
[<2.2e-16] 

71.7 
[<2.2e-16] 

66.2 
 [<2.2e-16] 

    

𝒂𝒅𝒋 𝑹𝟐 0.560 0.787 0.723 0. 709 0.692 0.885 0.811 0.796 0.745 

# of. Obs. 262 262 262 262 262 262 262 262 262 

Res. 1Q -0.072 -0.041 -0.052 -0.054 -0.050 -0.030 -0.035 -0.043 -0.051 

Res. 3Q 0.072 -0.045 -0.052 0.055 0.053 0.031 0.040 0.040 0.047 

Notes: Asterisks ** and * denote statistical significance at 5% and 10% respectively. Estimates reads in %.  

 

Analogous conclusions follow the assessment of the forecasting performance for all rival models over the 

K=3000 Monte Carlo simulation – see Table 3 and Figure 2. Since results for T1 = 30 and T1 = 50 are very 

similar, we only report the case T1 = 30.  

M1 shows the lowest performance in terms of all the three considered loss functions, while model 𝑀31 displays 

both the smallest mean value and variability (see Table 3). The overlapping area between the distributions of 

each loss function for the two models is only 2% for MAE and MSE, and 7% for MAPE. This suggests that 

the forecasting performance is significantly different between the two models, and allows us to conclude that 

the inclusion of the price index significantly increases the ability to predict unobserved demand compared to 

a model that considers only seasonal and calendar effects. The fact that all the specifications including the 

price index perform better than M1, even with four weeks of advance booking, suggests that hotel managers 

set prices according to expected and desired demand well in advance. In other words, they have rational 

expectations on occupancy rates at the arrival date, meaning they could be wrong individually but they are not 

systematically biased over time. For the sake of readability, we have excluded the results related to the week 

3 from the graphs in figure 2; in fact the Kolmogorv-Smirnov test described in Section 3, shows that results 

related to the week 3 do not differ significantly from the one obtained considering week 4. It is worth noting 

that all the other distributions are statistically different. 

In terms of advance booking effect, the smaller the i – and then the booking horizon – the better the forecasting 

performance of the same specification. For increasing i, we observe both increasing mean value of the 

distribution of the loss functions (corresponding to decreasing predictive power of the models) and increasing 

variability and interquartile range. These results suggest that the managers’ forecasting process is efficient in 

the sense that the lower uncertainty - the closer to the arrival date they are - the more accurate the forecast will 

be. 

 



Table 3. Loss functions distribution statistics over K=3000 random test samples (T1 = 30).  

 𝑴𝟏     𝑴𝟐𝟏 𝑴𝟐𝟐 𝑴𝟐𝟑 𝑴𝟐𝟒 𝑴𝟑𝟏 𝑴𝟑𝟐 𝑴𝟑𝟑 𝑴𝟑𝟒 

MAE 

Percentile 10% 7.1% 4.9% 5.5% 5.6% 5.6% 3.4% 4.1% 4.6% 5.0% 

Median 8.6% 5.9% 6.7% 6.9% 6.9% 4.2% 5.2% 5.6% 6.2% 

Mean 8.6% 5.9% 6.7% 6.9% 7.0% 4.2% 5.2% 5.7% 6.2% 

Percentile 90% 10.1% 7.1% 8.1% 8.3% 8.3% 5.1% 6.4% 6.8% 7.5% 

% overlap with M1 100% 20% 40% 44% 47% 2% 11% 16% 28% 

MSE 

Percentile 10% 8.9% 6.1% 6.9% 7.1% 7.2% 4.4% 5.4% 5.7% 6.4% 

Median 10.7% 7.5% 8.6% 8.8% 9.0% 5.5% 7.0% 7.2% 8.1% 

Mean 10.7% 7.6% 8.6% 8.9% 9.0% 5.5% 7.0% 7.3% 8.1% 

Percentile 90% 12.5% 9.1% 10.4% 10.7% 10.8% 6.7% 8.8% 9.1% 10.0% 

% overlap with M1 100% 23% 45% 51% 55% 2% 18% 23% 36% 

MAPE 

Percentile 10% 11.7% 7.9% 8.9% 9.2% 9.1% 5.6% 6.8% 7.5% 8.3% 

Median 14.9% 10.2% 11.6% 11.9% 12.0% 7.4% 9.2% 9.7% 10.9% 

Mean 15.1% 10.4% 11.8% 12.1% 12.1% 7.5% 9.4% 9.9% 11.0% 

Percentile 90% 18.7% 13.1% 15.0% 15.2% 15.4% 9.5% 12.3% 12.4% 14.0% 

% overlap with M1 100% 33% 5.5% 56% 57% 7% 24% 26% 42% 

 

The complex relationship between prices and occupancy rates is better caught by the GAM smoothing term in 

M3, which allows for a better prediction of the values far from the mean level, a core aspect of forecasting 

practices (Zhang et al., 2017). In particular, the GAM model including the information farthest from the arrival 

date (M34) is associated to distributions of MAE and MSE with lower mean values (and lower variability for 

the MAPE) than M22, showing that accounting for non-linearity makes up for the loss of information 

experienced extending the forecasting horizon of two weeks. Consistently the difference is even more evident 

for M32 and M21, particularly in the tails.  

 

Figure 2: Estimated probability density functions of the error measures. Upper panels: increasing mean and 

variability of the MAE for the GAM model (left) and comparison of the MAE for considered models (right). 

Lower panels: comparison of the MSE (left) and MAPE (right) for considered models.             

 



4.2 Dynamic models 

The visual analysis of the time plot and of the global and partial autocorrelation functions, suggest that the 

time series  𝑂𝑐𝑐𝑡 is stationary and characterized by a cycle with a period of 7 days. Stationarity is corroborated 

by the Augmented Dickey-Fuller test, which rejects the null hypothesis of a unit root at the level α = 0.05. The 

test has been augmented including lags up to t-4, which is the autoregressive order suggested by the model 

selection described below. We also check for possible seasonal unit roots using the Hylleberg, Engle, Granger 

and Yoo test (Hylleberg et al., 1990), however this test did not provide a clear result due to numerical problems. 

We then admit the possibility of seasonal unit root among the considered models, but not of a unit root in the 

non-seasonal part of the model.  

We use the auto.arima function from the R package ‘forecast’ (Hyndman, and Khandakar, 2007) to determine 

the optimal orders p, P, q, Q. This function estimates several combinations of these parameters and suggests 

the best fit based on the Akaike Information Criterion (AIC). The suggested model is a SARIMA(4,0,7)(0,0,0), 

that is stationary and non-seasonal. We consider a further ensemble of models for Occt including seasonality 

and exogenous variables: 

𝑀4:  𝑂𝑐𝑐𝑡 = 𝐴𝑅𝐼𝑀𝐴(4,0,7)(0,0,0) 

𝑀5:  𝑂𝑐𝑐𝑡 = 𝐴𝑅𝐼𝑀𝐴(4,0,7)(0,1,0) 

𝑀6:  𝑂𝑐𝑐𝑡 = 𝐴𝑅𝐼𝑀𝐴(4,0,7)(1,0,1) 

𝑀7:  𝑂𝑐𝑐𝑡 = 𝐴𝑅𝐼𝑀𝐴(4,0,7)(0,1,0) + 𝛽1𝑡𝑟𝑒𝑛𝑑 + 𝛽3ℎ𝑜𝑙𝑡 + 𝛽4𝑓𝑎𝑖𝑟𝑡  

𝑀84:  𝑂𝑐𝑐𝑡 = 𝐴𝑅𝐼𝑀𝐴(4,0,7)(0,0,0) + 𝛽1𝑡𝑟𝑒𝑛𝑑 + 𝛽3ℎ𝑜𝑙𝑡 + 𝛽4𝑓𝑎𝑖𝑟𝑡 + γ 𝑙𝑜𝑔(𝑃4,𝑡 ) 

Time series models allow to calculate dynamic forecasts for any horizon h. However, for reasons of 

comparison with our linear regression and generalized additive models, we only consider the maximum 

possible horizon (h=21) fixing i=4. Since in the case of time series modelling, the chronological order of the 

data must be respected, we split the available information in an estimation set made by the first 253 daily 

occupancy rates in our time series leaving the last 21 days for forecasting assessment (test set).  

We do not report and comment the estimated coefficients of these additional models, since these are of limited 

interest in the evaluation of the forecasting performance. Results are reported in Table 4. The best goodness of 

fit (AIC) is associated to 𝑀84, the seasonal time series model with exogenous covariates. However, when the 

forecasting is assessed, the augmented linear regression and the GAM model including the leading indicator 

turn to be the best choice. This result was expected, as with models 𝑀24 and 𝑀34 we are able to perform a 

static forecast that uses the actual values of the explanatory variable  𝑃𝑡,4 while time series models use the 

forecasted values of the dependent variable to perform the 21 step ahead dynamic forecast. Is worth to note 

that augmenting the specification M7 with 𝑃𝑡,4 (i.e. 𝑀84) produces a decrease in the value of all the three loss 

functions.  

Table 4. Loss functions comparison on the last 21 observations (regression and time series models). 

 𝑴𝟏 𝑴𝟐𝟒 𝑴𝟑𝟒 𝑴𝟒 𝑴𝟓 𝑴𝟔 𝑴𝟕 𝑴𝟖𝟒 

AIC 1926.1 1763.9 1725.3 1798.0 1664.9 1717.2 1651.2 1542.4 

MAE 8.78% 4.85% 2.88% 19.4% 17.5% 21.5% 15.0% 12.0% 

MSE 121.0 30.5 14.6 451.5 353.2 536.7 257.9 167.0 

MAPE 10.7% 5.9% 3.8% 22.7% 20.8% 25.4% 17.9% 14.3% 

 

In Figure 3, we show the observed occupancy rates (black line) compared to the predictions obtained with 𝑀1, 

𝑀24, 𝑀34, 𝑀4 and 𝑀84 specifications. For the sake of clarity, we only show the simplest and the most 



complex time series models, as the performances of the others fall in between. We can notice that models 𝑀1, 

𝑀24 and 𝑀34, provide the visually best forecasting, despite not being dynamical time series models.  

 

Figure 3: Out-of-sample actual and forecasted daily occupancy rates. 

 

 

While accuracy of M1 is line with Monte Carlo simulated results in table 3, the performances of the models 

𝑀24 e 𝑀34 are definitely better. Therefore, the hoteliers’ ability to forecast future occupancy rate - and to 

reflect their prediction in an on-line price - appears to be much higher than expected. Specifically, the 

forecasting starts from the second week of September, a very active period in Milan after a minimum in 

occupancy rate characterising the month of August. This temporary shifts from the long run equilibrium affect 

the accuracy of time series models that rely on dynamic forecasting to span a horizon of 21 days.  As it is clear 

from figure 3, after a few days, models M4 and M7 are no longer able to follow the trend. Moreover, they are 

unable to intercept the impact of occasional public events (Kamola, and Arabas 2020). This aspect highlights 

another potential problem in evaluating the forecasting results of approaches where the chronological order of 

the data has to be respected. In fact, the number of demand fluctuations in the chosen test set could condition 

the assessment, as reported in Tsang and Benoit, (2020).  

 

 

5. Conclusion 

Traditional forecasting methods use past or present information to forecast future occupancy rate, limiting the 

accuracy of forecasting when demand fluctuates as a consequence of changes in the economic environment or 

unexpected events occur (Pan et al., 2012 and Yang et al., 2014). To improve forecasting accuracy, Zhang et 

al. (2017) suggest to focus on irregular fluctuation, converting it into regular patterns - a task that is not 

particularly easy, especially in a high frequency setting. Moreover, such an approach requires the continued 

observation of demand up to the present, in order to produce a forecast for an established number of steps 

ahead.  

In this paper, we have proposed a completely different approach, presenting a method to forecast tourist 

demand by improving the set of available information, rather than complicating the modelling strategy. In 

particular, we show how it is possible to exploit the expectations of hotel managers on occupancy rates made 

public on OTAs through the prices asked at different advance bookings. In this sense, the diffusion of OTAs 

has made dynamic pricing strategies, if not transparent, at least understandable through the analysis of data 



that are public and can be easily collected. This way they become a source of shared knowledge that allows 

for significantly improved forecasting performance, in particular over small geographic areas and at high 

frequency (daily). This spatio-temporal scale is, at the same time, the least (realistically not at all) covered by 

official statistics, and the most important for the majority of tactical decisions about public resource allocation. 

Thus, it is imaginable that studies concerning other cities and areas - even with a strongly seasonal demand – 

can take advantage of our methodology by incorporating big data on dynamic pricing it into their forecasting 

practices. 

The core of the paper resides in the use of a leading indicator - constructed using best available rates published 

on OTAs at different advance bookings by a sample of hotel managers - to predict daily occupancy rates at a 

fine grain time-space setting. We consider these supply-side big data as originated from a virtual daily surveys 

regarding the sentiment of the manager about occupation rate at a certain arrival date. In other words, prices 

are treated as a measure of corporate expectations regarding future demand, given the information set and the 

pricing model. 

As a main conclusion, we find that it is possible to obtain a sensible increase in the forecasting performance 

by including such a price index into the set of explanatory variables, even with very simple model 

specifications. This implies that hoteliers have rational expectations on occupancy rates at the arrival date, or 

in other words they could be wrong individually but they are not systematically biased over time.  

Our results also confirm the existence of a trade-off between forecasting accuracy and time horizon. A large 

horizon (i.e. the forecasting relies on prices posted with large advance bookings) increases the time span over 

which stakeholders can take informed decisions. Unfortunately, it also results in larger forecasting errors than 

using data from the week closest to the arrival date, when uncertainty about new reservations and cancellations 

is lower. We then conclude that managers use information efficiently, in the sense that the more reliable 

information they have the closer prices offered on the OTA reflect their occupation rate. However, we show 

that the decrease in forecasting accuracy is limited considering forecasting horizons higher than a week, 

making it possible to inform stakeholders even on broad forecasting horizons. From a revenue management 

perspective, the above results provide (indirect) evidence that – in Milan - occupancy rate guessing is an 

important input to the dynamic pricing algorithms at the firm level. 

Moreover, we show that the information on managers’ expectations contained in advanced prices is more 

effective as a predictor of occupancy when we introduce some flexibility to the model specification. The best 

performance is obtained with a GAM model, indicating that the relationship between occupancy and the price 

index is complex and nonlinear. 

Finally, we compare our method to exploit hotel managers’ expectations on occupancy rates with a more 

standard SARIMA approach - assuming we have access to up-to-date sampling of occupancy rates. The 

forecasting performance of time series models over a horizon of 21 days is overall worse than the one obtained 

by static regressions augmented with the price index. We also test if the inclusion of the price index as an 

explicative variable in a SARIMAX frame may be convenient. While the forecasting performance generally 

improves compared to time series models not including the leading indicator, these models are still 

outperformed by the augmented linear and generalized additive models. This may be due to the local 

irregularities in the time series of occupancies between August and September, a problem that does not affect 

models that do not rely on lags of the dependent variable.  

The possibility of exploiting big data from the supply side to forecast daily tourism demand for limited areas, 

hints at some managerial implications. In fact, while almost all travel destinations seek to increase tourists, the 

potential hazards of a massive and uncoordinated influx of tourists to popular destinations worldwide has 

become a very general problem (Butler, 2017; D’Alisa, et al. 2014). An accurate forecasting of daily tourist 

demand peaks would facilitate short-term operational tactics able to avoid asset shortfalls that tourists share 



with residents (i.e. transportation, security, water, or urban space), minimizing the impact on the quality of 

life in the host area and reducing the likelihood of a permanent visitor-resident conflict (Andereck et. al. 2005). 

Symmetrically, the temporary reduction in volume of services offered can be planned in response to forecasted 

low daily demand, allowing for a more efficient management of budget and public resources such as water, 

spaces and utilities. This makes it possible to think about a sustainable territorial management, while improving 

residents’ attitudes towards tourists. 

However, we believe that the impact of our findings is not only a matter of forecasting. This paper suggests 

that public data from OTAs offer policy makers an alternative to acquiring expensive data and/or consultant 

inputs. As an example, local governments must frequently choose funding allocation for special events, 

conventions or initiatives. In these circumstances, a framework of economic and social assessment is rarely 

performed (Wood 2005) so there is no systematic and objective manner to determine the extent of support, if 

any, to be given to alternative events (Dwyer et. al. 2000). We demonstrate the merit of online prices as an 

input for assessing (ex-post) the impact of events and conventions. A system able to record and store BARs at 

small advance booking, for example, could be used to link a measure of tourist demand to any past event even 

if its impact is assumed to be constrained in time and space. This indirect measure can also be used to integrate 

official information (when available), as it suffers less from the under-report bias, sometimes generated by the 

opportunity of obtaining a tax advantage (Guizzardi and Bernini 2012). 

 

In summary, we demonstrate that the predictive and descriptive power of big data from the supply side may 

become a powerful vehicle to link the stakeholders of tourism services with the digital environment. Our 

methodology could be employed to facilitate intelligent interactions between the city and its inhabitants which 

is a critical component of the smart city (Harrison et al., 2010). We transform data from the digital environment 

into business value-propositions with a clear focus on efficiency, sustainability and experience enrichment. 

This would enable the delivery of intelligent tourist services, characterized by intensive information sharing 

and value co-creation: in other words, we provide an asset for a smart tourism ecosystem Gretzel et al. (2015).  

 

A limitation of these findings lies in the choice of a single destination (a business destination). Other 

destinations may have a smaller number of high category hotels, and public data from OTAs might not be able 

to realistically predict expected occupancy. Smaller hotels with no revenue management department may rely 

on fixed prices, or have little experience in dynamic pricing, which would limit the effectiveness of our 

approach or recommend a non-random sampling of the structures active on the OTAs. Furthermore, even 

though the proposed models are simple and can be estimated in just a few seconds with any desktop or laptop 

computer, acquiring the price dataset requires setting up an algorithm of scraping, which is not immediate and 

may involve privacy issues or content licencing that is not yet resolved. Moreover, although we believe the 

choice of log-linear and GAM regression is sufficient to show the efficacy of our price index in forecasting 

occupancy rates, a future line of research consists of exploring the potential of more complex model 

specifications, or even machine learning techniques, to better represent the relation between posted prices and 

tourist demand. Finally, we did not dig deeper into the possible use of different big data sources in increase 

forecasting accuracy: for example, search engine queries and website traffic data, social media mentions or 

mobile phone data, could show synergies with our index that could lead to a further increase in forecasting 

accuracy.  

We agree with Brandt et. al. (2017) that a holistic and integrative perspective on how digitization affects all 

stakeholders in tourism activities is still in its infancy. However, what we suggest in this paper, adds a new 

direction of research to the use of big data in the field of tourism demand forecasting.  
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