Thiocarbamoyl disulfides as inhibitors of urease and ammonia monooxygenase:

crystal engineering for novel materials

SUPPORTING INFORMATION (8 pages)

Lucia Casali,^{†,1} Luca Mazzei,^{‡,1} Renren Sun,[†] Michele R. Chierotti,[§] Roberto Gobetto,^{§*} Dario Braga,[†] Fabrizia Grepioni,^{†*} Stefano Ciurli^{‡*}

[†] Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy

[‡] Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale Giuseppe Fanin 40, 40127 Bologna, Italy

[§] Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125, Torino, Italy

¹ These two authors contributed equally to the work

INDEX

Single crystal data	page 2
Powder X-ray diffraction	page 3
Pawley Refinement	page 4
Thermogravimetric Analysis (TGA)	page 5
Differential Scanning Calorimetry (DSC)	page 7
Solubility Data	page 8

[Note: In the following β -CD, β -CD·TMTD, $(\beta$ -CD)₂·TETD, and $(\beta$ -CD)₂·TIPTD stay for β -CD·8H₂O, β -CD·TMTD·5H₂O, $(\beta$ -CD)₂·TETD·14H₂O and $(\beta$ -CD)₂·TIPTD·12H₂O, respectively.]

Single Crystal X-ray Diffraction

	TIPTD Form II
Chemical formula	C14 H28 N2 S4
M _r , g mol ⁻¹	352.62
Т / К	298
Morphology, colour	Block, colourless
Crystal system	Monoclinic
Space group	P 2 ₁ /c
a / Å	12.152(1)
b / Å	13.1870(6)
c / Å	14.0049(13)
α/°	90
β/°	114.146(11)
γ/°	90
V / Å ³	2047.9(3)
Ζ	4
d / mg cm ⁻³	1.144
μ / mm ⁻¹	0.458
Reflections collected/unique	9323/4701
R _{int}	0.0423
Threshold expression	$> 2\sigma(I)$
R ₁ (obs)	0.0698
wR_2 (all)	0.2461

 Table S1. Crystal data and details of measurement for TIPTD Form II.

Powder X-ray Diffraction

Figure S1: comparison between the reagents β -CD (red line) and TMTD (black line) with the product of the 1:1 (blue line) and the 2:1 (pink line) mechanochemical reactions. The presence of extra-peaks in $(\beta$ -CD)₂·TMTD is due to unreacted β -CD, thus confirming the 1:1 stoichiometry of the complex.

Figure S2: comparison between the reagents β -CD (red line) and TETD (black line) with the product of the 1:1 (blue line) and the 2:1 (pink line) mechanochemical reactions. The presence of extra-peaks in β -CD·TETD is due to unreacted TETD, thus confirming the 2:1 stoichiometry of the complex.

Figure S3: comparison between the reagents β -CD (black line) and TIPTD (red line line) with the product of the 1:1 (blue line) and the 2:1 (pink line) mechanochemical reactions. The presence of extra-peaks in β -CD·TIPTD is due to unreacted TIPTD, thus confirming the 2:1 stoichiometry of the complex.

Pawley Refinement

Figure S4: Pawley refinement on the experimental pattern of $(\beta$ -CD)₂·TETD.

S.G.	a (Å)	b (Å)	c (Å)	α (°)	β (°)	γ (°)	V (Å) ³	Rwp
P1	15.282492	15.531621	15.711671	87.68418	81.52082	77.38594	3599.427	3.164

Table S2: Pawley refinement data

TGA (Thermogravimetric Analysis)

Figure S5: TGA traces of the reagents (from top to bottom): β -CD, TMTD, TETD and TIPTD.

Temperature (°C)

Figure S6: TGA traces of the complexes. From top to bottom: β -CD·TMTD, $(\beta$ -CD)₂·TETD and $(\beta$ -CD)₂·TIPTD.

DSC trace for TIPTD

Figure S7: DSC trace for TIPTD, showing the phase transition to Form II at ca. 107 °C, before melting at ca. 117 °C.

Solubility data

First repeat

	Water (mL)	Solute (mg)	Solute (mol)	M_Thiuram (mg)	Solubility (mg/L)	Solubility (mol/L)
β-CD·TMTD	60	14.3	9.8797E-06	2.3754	39.5901	1.6466E-04
(β-CD) ₂ ·TETD	52	9.9	3.5125E-06	1.0416	20.0306	6.7548E-05
(β-CD) ₂ ·TIPTD	55	2.6	9.2178E-07	3.2507	5.9103	1.6760E-05

Second repeat

	Water (mL)	Solute (mg)	Solute (mol)	M_Thiuram (mg)	Solubility (mg/L)	Solubility (mol/L)
β-CD·TMTD	60	13	8.9815E-06	2.1594	35.9908	1.4969E-04
(β-CD) ₂ ·TETD	55	9	3.1932E-06	9.4691	17.2165	5.8058E-05
(β-CD) ₂ ·TIPTD	60	3	1.0636E-06	3.7508	6.2513	1.7727E-05

Third repeat

	Water (mL)	Solute (mg)	Solute(mol)	M(Thiuram/mg)	Solubility(mg/L)	Solubility(mol/L)
β-CD·TMTD	60	12.7	8.7743E-06	2.1096	35.1605	1.4624E-04
(β-CD) ₂ ·TETD	65	9.5	3.3706E-06	9.9951	15.3771	5.1855E-05
(β-CD) ₂ ·TIPTD	60	2.8	9.9269E-07	3.5007	5.8345	1.6545E-05

Solubility average values (RMS error in parenthesis)

	Solubility (mg/L)	Solubility (mol/L)
β-CD·TMTD	37(2)	1.537E-04
(β-CD) ₂ ·TETD	18(2)	5.917E-05
(β-CD) ₂ ·TIPTD	6.0(2)	1.700E-05

As specified in the introduction in main text, for sake of conciseness the formulae β -CD·TMTD, (β -CD)₂·TETD, and (β -CD)₂·TIPTD stay for β -CD·TMTD·5H₂O, (β -CD)₂·TETD·14H₂O, and (β -CD)₂·TIPTD·12H₂O, respectively.