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ABSTRACT: 

 

As valuable and vulnerable blue carbon ecosystems, salt marshes require adaptable and robust monitoring methods that span a range 

of spatiotemporal scales. The application of unmanned aerial vehicle (UAV) based remote sensing is a key tool in achieving this goal. 

Due to the particular characteristics of tidal wetlands, however, there are challenges in obtaining research and management relevant 

data with the requisite level of accuracy. In this study, the spatial patterns in uncertainty stemming from scan angle, binning method, 

vegetation structure and platform surface morphology are examined in the context of UAV light detection and ranging (LiDAR) derived 

digital elevation models (DEM). The results demonstrate that overlapping the UAV flight paths sufficiently to avoid sole reliance on 

LIDAR data with scan angles exceeding 15 degrees is advisable. Furthermore, the spatial arrangement of halophyte species and marsh 

morphology has a clear influence on DEM accuracy. The largest errors were associated with sudden structural transitions at the marsh 

channel boundaries. The DEMmean was found to be the most accurate for bare ground, while the DEMmin was the most accurate for 

channels and the middle to high marsh vegetation (MAEs = -0.01m). For the low to middle vegetation, all the trialled DEMs returned 

a similar magnitude of mean error (MAE = -/+0.03m). The accuracy difference between the two vegetation associations examined 

appears to be connected to variations in coverage, height and biomass. Overall, these findings reinforce the link between salt marsh 

biogeomorphic complexity and the spatial distribution and magnitude of LiDAR DEM error. 

 

 

 

1. INTRODUCTION 

Tidal wetlands are an acknowledged source of many crucial 

ecosystem services (Barbier et al., 2011; D’Alpaos and 

D’Alpaos, 2021). For instance, as a blue carbon ecosystem 

(BCE), they have an accentuated ability to produce, trap and 

ultimately form influential long-term reservoirs of organic 

carbon (Duarte et al., 2005; McLeod et al., 2011; Trettin and 

Jurgensen, 2003). Globally the integrity and size of salt marsh 

ecosystems have been much depleted and remain under threat 

from human and environmental generated pressures (Rogers and 

Woodroffe, 2015; Valiela et al., 2009). Since the loss of salt 

marshes reduces carbon reservoirs and releases existing stocks as 

greenhouse gases (Pendleton et al., 2012), salt marsh sustainable 

restoration and conservation is of high priority in climate 

mitigation and adaptation (Lovelock and Duarte, 2019). There is 

a need for the development of methods and frameworks that are 

able to efficiently monitor key salt marsh parameters of interest. 

Furthermore, it is necessary to improve the understanding of 

intricate salt marsh processes and responses that remain, as yet, 

ill defined. 

 

Salt marshes are difficult to characterise in a detailed spatially 

explicit manner using field sampling techniques alone. This is 

due to the expansive isolated areas which these ecosystems 

occupy; the platform’s low topographic and vegetative reliefs; 

the difficulties inherent to traversing quagmires and; the high 

ecogeomorphic complexity of this landscape, rife with 

inseparable biotic and abiotic processes. Given these challenges, 
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remote sensing is a key aspect of the integrated multidisciplinary 

approach required to effectively and affordably study salt 

marshes across a range of spatiotemporal scales.  

 

The derivation of accurate digital elevation and vegetation 

models are of particular importance to salt marsh research as they 

can support many applications such as ecosystem scale modelling 

and carbon sequestration assessments. Unmanned aerial vehicle 

(UAV) based remote sensing techniques are well suited to the salt 

marsh context and thus far UAV light detection and ranging 

(LiDAR) has proven adept for deriving such models (e.g., Curcio 

et al., 2022; Hladik and Alber, 2012; Pinton et al., 2021). There 

are however still substantial uncertainties associated with salt 

marsh terrain and vegetation models whose origins remain 

insufficiently defined. This research aimed to (1) qualitatively 

and quantitatively elucidate the accuracy associated with UAV 

LiDAR derived salt marsh elevation models and; (2) examine the 

origins of any spatial patterns of uncertainty encountered. The 

second part of the analysis focused on the effect which specific 

LiDAR acquisition parameters, product generation methodology, 

vegetation characteristics and geomorphology have on the 

accuracy. 

 

2. MAIN BODY 

2.1 Study Area 

The study site covers approximately 0.47 km2 of the San Felice 

salt marshes, which are situated in the north eastern section of the 

Venice Lagoon, Italy (Figure 1).  The lagoon has an area of 550 
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km2, an average depth of 1.0-1.5 m, a semidiurnal microtidal 

regime and a tidal range of around 1 m (D’Alpaos et al., 2013; 

Ghinassi et al., 2018). The lagoon is a barrier island system with 

three inlets connecting to the northern Adriatic Sea. Extensive 

and long-term human occupation has altered the lagoon system 

regime, resulting in a negative sediment budget and significant 

geomorphologic and hydraulic changes (Carniello et al., 2009). 

These anthropogenic effects are also coupled with environmental 

pressures intensified by climate change. The extent of the 

lagoon’s salt marsh areas has reduced over the last two centuries 

by 137 km2, a 76% decrease which leaves a remaining area of 

about 43 km2 (Carniello et al., 2009; D’Alpaos, 2010). The salt 

marsh area loss rate is not uniform across the lagoon. The San 

Felice salt marshes are located in the northern zone, which has 

relatively less intense lateral erosion rates recorded in 

comparison to the central and southern sections of the lagoon 

(Bendoni et al., 2016; Day et al., 1998; Tommasini et al., 2019). 

 

 

 

Figure 1. San Felice study area extent (Venice Lagoon, Italy) 

with the GNSS ground control point (GCP) distribution. 

 

The halophytic species most notably present on the San Felice 

salt marshes are: Limonium narbonense, Sarcocornia fruticose, 

Juncus maritimus, Salicornia veneta, Pucinellia palustris, Inula 

crithmoides, Spartina maritima, and of late, Spartina anglica. It 

has been well established that these halophyte species form 

vegetation associations which are closely linked to elevation and 

as such local geomorphologic characteristics (Belluco et al., 

2006; Marani et al., 2006; Silvestri et al., 2003; Wang et al., 2007; 

Yang et al., 2020). 

 

2.2 Materials 

The datasets used in this study were acquired on 5 to 11 of 

September 2021. The UAV flights were undertaken alongside in 

situ measurements of above ground biomass (53 in total) and 

topographic GNSS points. These samples were distributed across 

the study area and cover a range of biogeomorphological 

associations. In total, 591 topographic points were collected 

using a Real-Time Kinematic Differential Global Positioning 

System (Leica Viva GNSS GS15 RTK GPS). Out of these, 28 

were ground control points (GCP) taken at the centre of 0.5 metre 

square targets (locations shown in Figure 1C). An orthophoto was 

also derived from the dataset acquired by the deployed UAV. The 

orthophoto was generated using the Agisoft Metashape software 

and it has a spatial resolution of 2.5 cm and three spectral bands 

(RGB). The UAV survey and in situ datasets have geodetic 

vertical units in metres relative to mean sea level (m.s.l.) and the 

coordinate system used was WGS84 UTM Zone 33N. The 

LiDAR UAV flight and point cloud details are summarised in 

Table 1 below. The LiDAR point cloud used in this analysis was 

pre-processed using the following software: DJI Terra-Pro 

(alignment and scan optimisation), Terrascan (overlap 

elimination) and Terra Match (georeferencing). 

 

 

 

 

LiDAR Survey 

UAV model DJI Matrice 300 RTK 

Sensor L1 & 20 MP RGB 

Scan angle range 35 to -35 degrees 

Scan mode Non-repetitive 

Frequency 180 Hz 

Number of echoes 3 

Lateral overlap 30% 

Flight velocity 5 m/s 

Flight altitude 100 m 

Area covered 473,676 m2 

Number of points 82.6 million 

Average point density 174.3 points/m2 

Average distance between points 0.07 m 

Table 1. UAV survey and processed dataset details. 

 

 

2.3 Method 

2.3.1 LiDAR cloud processing and DEM derivation 
 

During the analysis the LiDAR point cloud was processed and 

manipulated directly using RStudio (R Core Team, 2022). Prior 

to creating the DEMs, the point cloud was filtered for duplicate 

points, extreme angles (>=26 degrees) and outliers (‘noise’). The 

outlier removal method applied was the Median and Interquartile 

Deviation Method (IQD). Prior to selecting this method, testing 

was carried out to confirm that DEM accuracy improved after 

removing the ‘noise’ using IQD. The DEM grid resolution 

chosen for the analysis was 0.25 m, since this was found to be the 

resolution at which there was a balance between the need for 

accuracy from both a spatial resolution and a point density 

perspective. Three types of DEMs were generated by calculating: 

(1) ‘grid min’ which is the minimum LiDAR point elevation 

present within each grid cell; (2) ‘grid mean’ which is the mean 

of the LiDAR elevations present in each grid cell and; (3) ‘nearest 

point’ which is the elevation of the LiDAR point nearest to the 

GNSS point located within the grid. ArcGIS (ESRI Inc., 2023) 

and MATLAB (The MathWorks Inc., 2022) were used to 

visualise, query and cross-check the GNSS points and the 

orthophoto with the output from RStudio.  

 

2.3.2 Scan angle and biogeomorphic associations 
 

For each of the 591 GNSS points, key parameters of potential 

influence were assigned in order to allow the exploration of their 

effect on the spatial accuracy of the three DEMs. Firstly, the scan 

angle was defined as the mean scan angle for the mean DEM and 

the specific point scan angle for the minimum and nearest point 

DEMs. Next, points were assigned geomorphic classes according 

to whether they were GCPs or otherwise being located in 

channels, on bare ground or on vegetated salt marsh surfaces. The 

points from the vegetated salt marsh surfaces were then divided 

anew into broad dominant halophytic species associations as 

described in Table 2 below. The associations were ascertained 

based on in situ biomass samples and expert visual assessment of 

the high resolution orthophotograph.  

 

Dominant species association Vegetation class 

Inula cri. 

Juncus mar. 

Sarcocornia fru. 

High/Mid Marsh 

Limonium nar.  Mid/Low Marsh 

Spartina mar. 

Spartina ang. 
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Salicornia ven.  

Table 2. Halophytic species associations and overarching 

classes. 

The data was then analysed to derived the errors associated with 

each of these specific vegetation associations and they were 

regrouped into two overarching classes in accordance with their 

location on the marsh gradient, their biomass and their effect on 

the accuracy of the DEM. The first overarching class was 

‘High/Mid Marsh’ which consists of associations dominated by 

Inula cri., Juncus mar. and Sarcocornia fru. The second class 

was ‘Mid/Low marsh’ which includes Limonium nar., Spartina 

mar., Spartina ang. and Salicornia ven. dominated associations. 

The number of GNSS points assigned to each class were 254 and 

257 respectively.  

 

 

2.3.3 Accuracy analysis 
 

To analyse the LiDAR elevation error associated with the 

different classes and DEMs, two measures were applied. The 

mean absolute error (MAE) and the root mean square error 

(RMSE) were calculated as per Equations (1) and (2) below 

respectively. 

 

 𝑀𝐴𝐸 =  
∑ (𝑧0−𝑧1)𝑁

𝑖=1

𝑛
;      (1) 

 

  𝑅𝑀𝑆𝐸 = √
∑ (𝑧0−𝑧1)2𝑁

𝑖=1

𝑛
;     (2) 

 

where  i = ith sampling point 

 z0 = the GNSS elevation 

 z1 = the LiDAR elevation 

 n = the number of points in the dataset 

 

These values were calculated for the mean, minimum and nearest 

point LiDAR DEMs for all biogeomorphic classes and the GCPs. 

Linear regression analysis was also performed to assess the fit of 

the LiDAR data to the GNSS data for the aforementioned 

combinations.  

 

2.4 Results 

For all the DEMs and classes analysed, including the GCPs, there 

was a constant trend that the DEM error behaviour was not 

consistent as the scan angle increased. Instead, once the scan 

angle began to increase above 10 degrees, a gradual downwards 

drift in the errors manifests. Furthermore, the spread and 

magnitude of the errors increases notably after 15 degrees was 

surpassed. This heterogenous error behaviour with increasing 

scan angle can be exemplified by Figure 2 which shows the 

results for the mean DEM. It was also found that in the LiDAR 

point cloud the scan angle is inversely correlated to point density. 

Between 10 and 25 degrees the point density drops on average in 

a linear manner from 75 to 50 points/m2. 

 

 

Figure 2. Plot showing the relationship between mean scan 

angle and the LiDAR mean DEM elevation error for all GNSS 

salt marsh platform points and the ground control points 

(GCPs). 

 

The linear regression results for the 28 GCPs are shown in Figure 

3. It is evident that the nearest point DEM has a similar 

performance to the mean grid DEM and that the minimum grid 

DEM leads to under estimation of the GCP surface and more 

outliers. The linear regression performed for the bare marsh 

surfaces showed a similar trend but with a slightly reduced level 

of correlation. The linear regression results for the vegetation 

species associations ranged from poor to fair, the High/Mid 

Marsh associations were amongst the latter. The linear regression 

for the channel points had practically zero signs of correlation on 

all of the DEMS. 

 

 
Figure 3. Linear regression of LiDAR elevation and GNSS 

GCP elevation for the minimum grid, mean grid and nearest 

point LiDAR DEMs. 

 

The evaluation of DEM error, using the MAE and RMSE 

measurements, found that when the marsh platform is assessed as 

a whole, the DEMs’ RMSEs were of a similar magnitude of 

around 8 to 9 cm. But the mean absolute errors were more 

diverse. As a negative MAE represents an elevation overestimate, 

the overall marsh MAEmin translates as a 1 cm underestimate and 
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the associated MAEmean and MAEnearest as 5 cm overestimates. 

When the whole marsh is broken into its overarching 

biogeomorphic classes, however, a more diverse picture appears 

as can be seen in Figure 4.  

 

  

Figure 4. The LiDAR mean absolute error (MAE) evaluated for 

the minimum, mean and nearest point DEMs for the following 

classes (1) ground control points (GCP); (2) middle to low 

marsh zone; (3) middle to high marsh zone and; (4) channels 

within the marsh. 

 

It is clear from this plot that the MAEmin results give 

underestimates of the elevation for the GCPs (5.6 cm) and the 

Mid/Low Marsh (3.3 cm), however, it is by far the best estimate 

of the High/Mid Marsh and the channels. MAEmin for the latter 

cases has only a small mean elevation overestimate in the order 

of 0.7-1.0 cm compared to the other DEMs which give an 

elevation overestimate in the 7.0-12.0 cm range. The DEMmin 

also gives a significantly lower RMSE for the channel and 

High/Mid Marsh classes (8.0-10.0 cm) compared to the nearest 

point and grid mean DEMs (10.0-18.0 cm).  

 

The DEMmean still overestimates but becomes the most accurate 

estimate in the case of the GCP and Mid/Low Marsh classes. In 

these cases the MAEmean is an overestimate of 1.0 cm and 2.8 cm 

and the RMSEmean is 4.0 cm and 6.0 cm respectively. Although 

for the GCP it is clear that the DEMmean is the most accurate by 

far, for the Mid/Low Marsh the results for DEMmin and DEMnearest 

are not so markedly worse. For this class, all the DEMs will give 

a MAE error in the order of 3.0 cm and a RMSE in the order of 

7.0 cm. The main difference between them is that the DEMmin is 

an elevation underestimate.  

 

The average dry biomass, vegetation height and marsh elevation 

for the two vegetation classes was investigated. It was seen that 

the High/Mid Marsh is characterised by almost three times the 

average dry biomass density and twice the vegetation height of 

the Mid/Low Marsh category. The surface elevation of the latter 

class is also on average 10 cm lower. 

 

 

2.5 Discussion 

The scan angle drift in the elevation error present across all the 

DEMs introduces an extra layer of inconsistency into the dataset. 

Given the direct inverse relationship between scan angle and 

point density in this dataset, the point density is also potentially 

having an effect on the level of accuracy. Thus, flight paths with 

significant overlaps in the order of 70% that reduce the reliance 

on points with larger scan angles and lower densities are 

recommended as a mitigation technique. 

 

The GCP points are bare of surface vegetation and for these the 

mean and the nearest DEMs provide better estimates than the 

minimum grid. Similarly, Curcio et al. (2022) found that due to 

the high level of scattering caused by salt marsh bare ground, 

taking the mean in these bare areas gave the higher accuracy as 

well. The influence of this ground scattering trend can also be 

seen in the behaviour of the Mid/Low Marsh class, which 

consists of shorter and more sparse vegetation associations. In 

this class it is less likely that the minimum point is the only point 

to reach the ground, as is often the case for the taller and denser 

high and middle marsh vegetation where the DEMmin is more 

accurate (e.g., Pinton et al., 2021).  

 

The elevations of the channels etched in the marsh are without 

doubt best represented by the DEMmin and this morphology’s 

high variation in error is likely due to the abrupt change in 

morphological structure that takes place on the transition between 

salt marsh platform and channel. This has been noted in other 

studies, in some cases resulting in an underestimation error 

instead (e.g., Pinton et al., 2020). Furthermore, another factor that 

may be influencing the accuracy in the low inner marsh (included 

in the Mid/Low Marsh class) and the channels, is the more 

predominant presence of wet soil surfaces which can also 

adversely affect the LiDAR DEM accuracy (e.g., Schmid, 2011). 

 

The results established that when the points are separated into 

classes, the errors exhibited can significantly vary from the 

overall average due to spatial variability in uncertainty. Hence, 

the biogeomorphic characteristics of the environment need to be 

accounted for when considering the necessary level of accuracy 

and the choice of DEM derivation method most suited for the 

area of interest. In addition, this analysis contributes to the on-

going need for accuracy studies focusing on a range of salt marsh 

environments and species assemblages in order to fully elucidate 

the drivers of salt marsh DEM inaccuracy. Accurate DEMs are 

important for many relevant applications, such as deriving above 

ground biomass maps. Furthermore, they are also crucial for 

modelling and predicting ecosystem responses to external 

pressures such as sea-level rise and anthropogenic activities.  

 

 

3. CONCLUSIONS 

This study endeavoured to qualitatively and quantitatively 

examine the spatial accuracy associated with UAV LiDAR 

derived salt marsh digital elevation models based on minimum, 

mean and nearest point binning. The spatial patterns of 

uncertainty encountered demonstrated linkages to the variables 

examined. Firstly, increasing scan angle and decreasing point 

density, results in a gradual but notable downwards elevation 
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error drift and an increase in error extremes once an angle of 

about 15 degrees is exceeded.  

 

Secondly, the accuracy is affected by the halophyte species 

association and overarching vegetation class which is in turn 

intrinsically linked to the geomorphologic structures present in 

the marsh. It was found that channels retained the highest 

overestimation inaccuracies which are likely due to sudden 

changes in elevation. The presence of water in channels and the 

inner marsh, however, may also be reducing the level of 

accuracy.  

 

Thirdly, it was found that DEM grids based on binning the 

minimum value are more accurate for middle to high marsh zones 

and channels while mean binning based DEM grids are more 

accurate for the middle to low marsh zone and bare surfaces. As 

the DEM accuracy is highly sensitive to the presence and 

structure of above ground biomass this aspect is particularly 

relevant in defining the uncertainties of salt marsh above ground 

biomass and hence carbon sequestration capacity maps derived 

from LiDAR.  
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