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Design and Structure Dependent Priors for
Scale Parameters in Latent Gaussian Models

Aldo Gardini∗ , Fedele Greco† , and Carlo Trivisano‡

Abstract. Bayesian inference in latent Gaussian models necessitates the speci-
fication of prior distributions for scale parameters, which govern the behavior of
model components. This task is particularly delicate and many contributions in
the literature are devoted to the topic. We show that the scale parameter plays a
crucial role in determining the prior variability of the model components, which
is influenced by factors such as correlation structure, design matrices, and po-
tential linear constraints. This intricate relationship adds complexity, making it
difficult to interpret and compare priors across diverse applications. To tackle this
challenge, we propose a novel approach for prior specification based on the the-
ory of distribution of quadratic forms. Our strategy involves the use of design and
structure-dependent (DSD) priors, which ensure a consistent interpretation across
diverse applications. By introducing a single parameter that governs the prior vari-
ability of the linear predictor, we simplify the process of prior specification, making
it more manageable and interpretable. We derive analytical expressions for DSD
priors on scale parameters and establish conditions that guarantee their existence.
To demonstrate the efficacy of our proposed prior elicitation strategy, we conduct
a simulation study, examining the sampling properties of the estimators. Addi-
tionally, we explore several real data applications to investigate prior sensitivity
and the allocation of explained variance among model components.

Keywords: Gaussian Markov random fields, hypergeometric functions, integral
equations, prior elicitation, quadratic forms.
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1 Introduction
Latent Gaussian Models (LGMs) are a subclass of Generalized Linear Mixed Models
where the expected value of a response variable y is connected to a linear predictor η
via a link function g(η). The linear predictor

η = 1β0 + Xβ +
Q∑

j=1
Zjγj (1)

is constituted by a priori independent additive components distributed as Gaussian ran-
dom variables conditionally on model hyperparameters. The design matrix X ∈ R

n×P is
associated to fixed effects β = (β1, . . . , βP )� and β0 is an overall intercept. Random com-
ponents are expressed as the product of a random effect design matrix Zj ∈ R

n×mj , with
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2 Design and Structure Dependent Priors for Scale Parameters

Intercept Fixed effects Random effects
Coefficients β0 βi, i = 1, . . . , P γj , j = 1, . . . , Q
Design 1 xi Zj

Structure 1 1 Kγj

Scaler 106 σ2
βi

σ2
γj

Table 1: Adopted notation for components of an LGM.

mj ≤ n and a random vector γj ∈ R
mj , j = 1, . . . , Q, which in LGMs follows a Gaussian

distribution. This setting allows us to encompass models for grouped data, where Zj is
built as a selection matrix, as well as low-rank models and non-parametric regression,
where Zj is built as a basis matrix. When the random effect is observation-specific, Zj

corresponds to the identity matrix In. In what follows, we denote observation-specific
random effects as the n-dimensional vector ψj = Zjγj , j = 1, . . . , Q. Without loss of
generality, we consider both covariates and random effects ψj to be centered: this is
strongly advised when implementing MCMC algorithms (Gelfand et al., 1995) and con-
stitutes a natural choice for the development of the prior specification strategy proposed
in this paper.

We consider priors on γj with a fixed structure matrix Kγj reflecting the modeler’s
prior beliefs on the dependence relationships characterizing the j-th random effect.
Table 1 summarises the whole model architecture of the LGMs covered in this paper.
All model parameters follow a Gaussian distribution:

βp|σ2
βp

∼ N1
(
0, σ2

βp

)
, p = 1, . . . , P, γj |σ2

γj
∼ Nmj

(
0, σ2

γj
K−1

γj

)
, j = 1, . . . , Q,

where Kγj denotes the precision matrix, as we adopt the mean-covariance parameter-
ization of the multivariate Gaussian distribution. The choice of prior distributions for
σ2 = (σ2

β1
, . . . , σ2

βP
, σ2

γ1
, . . . , σ2

γQ
) completes model specification. Such hyperparameters

act as mere scalers, governing the contribution of each model component to the total
prior variability of the linear predictor. As a measure of such variability, we adopt the
sampling variance

Vη = 1
n− 1

n∑
i=1

(ηi − η̄)2 = η�Mη

n− 1 , (2)

where η̄ = n−1 ∑n
i ηi and M = [In − n−11n1T

n ] is the centering matrix. We deem this
choice sensible, recognizing that it is just one among several choices that can be adopted
to relate the prior on σ2 to model components. Among the others, Klein and Kneib
(2016) adopt the absolute value of smooth functions in the context of additive distribu-
tional regression, while Wakefield (2007) focus on the range of the relative risks in disease
mapping. The merit of sampling variance lies in its ease of interpretation and its ability
to establish connections with well-known quantities in the realm of statistical modeling.
For instance, in the case of a linear regression model, it corresponds to the regression
deviance (divided by n− 1). Additionally, we believe that considering this quantity for
specifying priors on scale parameters allows connections with the insights presented in
Gelman et al. (2017), which advocate that the complexities of modern statistical appli-
cations require “that we think generatively by considering the measurements consistent
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with a given prior”. In this spirit, we specify prior on scalers σ2 by controlling that the
induced sampling variance of the linear predictor is appropriate for the phenomenon
under study. In other words, priors are defined to ensure that the variability of data
generated by the model remains plausible within the context of the phenomenon be-
ing studied. In the framework of linear regression with Gaussian likelihood, this can
be accomplished by controlling that the prior distribution of Vη is coherent with prior
knowledge/expectation about the variability of the phenomenon. As a default strategy
that can be customary for practitioners, we suggest using the observed sample variance
of the response variable as a reference value in the specification of the prior: more pre-
cisely, the user has the ability to specify the prior on scalers so that the data variance
matches a chosen quantile of the prior distribution on Vη. We extend this procedure to
other GLMs by using the idea of pseudo-variance (Gelman et al., 2013).

Due to the a priori independence between model components, (2) arises as the sum
of the prior variability associated with fixed and random effects. The prior specification
strategy developed in this paper begins by studying the effect of design matrices, struc-
ture matrices, and possible linear constraints in propagating the variability induced by
the prior on σ2 through the linear predictor. We demonstrate that dependence of design
and structure on the application at hand hampers the interpretability of prior speci-
fication and that the same prior on a scaler has different implications on (2) because
of differences in the model architecture. Our effort is aimed at taking account of such
dependence in order to obtain a class of priors that have the same interpretation across
different applications. For this reason, we dub the proposed priors as Design and Struc-
ture Dependent (DSD) priors: the prior distribution on the sampling variance of each
model component, when marginalized with respect to the scaler, will not depend on
structure and design. More in detail, resorting on integral equations, we retrieve prior
distributions for the scales that always imply the same marginal variance, namely the
one of the simple i.i.d. model, regardless of the structure and design associated with
the effect. Note that β0 does not contribute to Vη, and is largely informed by the data.
Therefore, as reported in Table 1, we assume for it a non-informative Gaussian prior.

The theoretical developments rely on the theory of Quadratic Forms (QFs) in Gaus-
sian variables, requiring specific computational tools (Gardini et al., 2022). Starting
from a Beta distribution of the 2nd kind as a base prior, we reduce the prior elicita-
tion problem to the specification of one parameter that governs the a priori sampling
variance of the model components, which is strictly tied to the degree of smoothness in
several models. One of the merits of such a parameter is to allow for intuitive sensitivity
analysis, following the same rationale across models that differ with respect to structure
and design.

The rest of the paper is organized as follows. Section 2 offers a brief review of the
approaches suggested in the literature on priors for scale parameters in LGMs that are
relevant to the theory developed in subsequent sections. In Section 3, we introduce our
novel prior specification strategy on scalers of the random effects distributions; the prior
specification for the fixed effects can be tackled as a special case. A simulation study
and real data applications are shown in Sections 4 and 5 respectively, while concluding
remarks are offered in Section 6.
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2 Hyperpriors on Scale Parameters
As pointed out by Gelman (2006) and Polson and Scott (2012), selecting priors for
scale parameters of hierarchical models requires particular care. Furthermore, if the
scale parameter is set to 0, the model reduces to the one without the random effect
(labeled as base model in the literature): Gelman (2006) advises priors with non-null
density function at 0. The idea of base model is also a cornerstone of the research
line on Penalizing-Complexity (PC) priors opened by Simpson et al. (2017). PC priors
necessitate the specification of an appropriate base model that represents a simplified
version of the (more complex) posited model. The prior is then defined based on the
distance between the base and the posited model and it is characterized by a non-null
density at zero, favoring shrinkage towards the base model.

Besides the distributional assumption presented in Section 2.1, hyperpriors also need
care in calibration and, possibly, elicitation of prior knowledge in the model. For these
tasks, assumptions on the model components and the available auxiliary information
play a crucial role that must be taken into account, as will be discussed in Section 2.2.
Section 2.3 completes the literature review on the topic, listing alternative approaches
to the one pursued in the paper.

2.1 Prior Distribution: the Beta Distribution of the 2nd Kind

This section introduces the probability distribution that plays a central role in the prior
specification strategy proposed in the paper. As noted by Perez et al. (2017), most of
the priors proposed for scale parameters are embedded within the Beta distribution of
the 2nd kind, henceforth σ2 ∼ B2(b, p, q), which is a special case of the Generalized Beta
Prime distribution. The B2 distribution is ruled by a scale parameter b and two shape
parameters p and q, the density function is:

fB2
σ2 (s) = KB2 s−q−1

(
1 + b

s

)−p−q

, (3)

where KB2 = bq

B(p,q) is the normalizing constant and B(·, ·) is the beta function. Param-
eters p and q control the behavior of the distribution tails: p determines the behavior of
the density at 0 (divergent for p < 1, finite for p = 1 and 0 for p > 1), and q regulates
the degree of the polynomial decay of the right tail (the higher q, the lighter the tail).
In addition, a B2 prior on σ2 with p = 0.5 implies a finite non-null density at 0 for σ.

The interpretability of the parameters and the flexibility they deliver to the dis-
tribution represent arguments in favor of the choice of a B2 prior on σ2. In addition,
the distribution includes several popular priors as special cases. The widely used Half-t
prior on σ with d degrees of freedom and scale c coincides with a B2(c2d, 1/2, d/2) prior
for σ2. Gamma and Inverse Gamma distributions are obtained as limiting
cases: σ2 ∼ Gamma(p, c) = limq→+∞ B2(q/c, p, q) and σ2 ∼ Inv-Gamma(q, c) =
limp→+∞ B2(p/c, p, q).
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2.2 The Impact of Structure and Design

The strategy for prior specification that we propose is designed to acknowledge the
influence that both the design matrix and the structure of a model component can
exert on its prior variability. In what follows, we provide an overview of significant
contributions that focus on the impact of model architecture on prior configuration.

A first element of criticism emerges whenever a non-diagonal precision matrix is
assumed for the random effects distribution, as in this case interpretation of the prior
can hardly be disentangled by the structure matrix (Section 3.1 is devoted to the for-
malization of such dependence). As an example, in the framework of disease mapping,
Bernardinelli et al. (1995) noted that the interpretation of a scale parameter of a spatial
random effect is conditional with respect to the neighborhood structure and, therefore,
different priors should be assigned to the structured and unstructured components.
More generally, this consideration can be extended to each case in which an intrinsic
Gaussian Markov random field (IGMRF, Rue and Held, 2005) prior is assumed for a
random effect, leading to a rank deficient structure matrix Kγj . Indeed, IGMRFs are
in general heteroscedastic, being the variance dependent on the structure. For this rea-
son, Sørbye and Rue (2014) suggest to specify a scaled hyperprior for σ2

γj
, accounting

for the structure. In particular, they specify a prior on σ2
γj
s2
ref,j , where sref,j is the

reference standard deviation for the considered IGMRF. Such scaling value is set equal
to the geometric mean of the non-null eigenvalues of the generalized inverse K−

γj
. The

procedure is implemented in the popular R-INLA software (Rue et al., 2009) and has
been exploited by Riebler et al. (2016) in the context of the popular BYM model (Besag
et al., 1991).

Furthermore, if ψj = Zjγj , with Zj �= In, the design matrix also contributes to
the prior variability. For this reason, Klein and Kneib (2016) remark that it is not
possible to elicit the prior information only considering Kγj since the sampling variance
of the whole vector of random effects ψj would be ignored. The authors focused on
the P-splines regression framework and their strategy to elicit a prior on σ2

γj
relies on a

probabilistic statement about the range of variation of ψj , as a measure of its dispersion.
The scale parameter of the prior is obtained after marginalizing the distribution of the
range over σ2

γj
. We remark that the chosen measure accounts both for the structure

of the random effect Kγj and the covariate patterns involved in Zj . This represents
an interesting contribution with some strict connections with the strategy we propose.
Indeed, Klein and Kneib (2016) suggest to set the prior variability of model effects by
relying on the whole vector ψj , instead of the sole coefficients γj .

2.3 Other Approaches: Splitting the Total Variability

An alternative approach to the problem of specifying the priors and hyperpriors in
hierarchical models is based on the idea of splitting the overall model variance among the
different components. This can be thought as an extension of the prior on the coefficient
of determination R2 for linear models proposed by Gelman and Hill (2006). While our
approach is not directly focused on splitting the total variability, we found these ideas
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relevant to our developments as they relate scale parameters to the contribution of each
model component at the linear predictor level.

We mention two recent interesting proposals within this framework. Narrowing the
field to the linear model case, Zhang et al. (2020) derived a shrinkage prior for the
regression coefficient, specifying a marginal prior on the R2 coefficient. An interesting
feature of such a strategy is that the design is automatically integrated out, deducing the
induced priors on the vector of coefficients that are in practice dependent on the design.
This framework has been extended in several directions: Yanchenko et al. (2021) face
the problem of generalizing this procedure to Generalized Linear Mixed Models, Aguilar
and Bürkner (2023) focus on Linear Multilevel Models, and Yanchenko et al. (2023) deal
with the case of spatial regression. With a similar spirit, the work by Fuglstad et al.
(2020) proposes to specify a prior distribution for the total variability and then split
it among the distinct model components, accounting for their structure, putting a PC
prior on the splitting nodes.

3 Design and Structure Dependent Priors
Design and structure dependent priors are introduced by focusing on the random effect
ψj = Zjγj . The specification of the prior on the scale parameter is based on its effect
on the sampling variance of ψj that, conditionally on σ2

γj
, is defined as the random

variable:

Vψj |σ2
γj

=
σ2
γj

n− 1

n∑
i=1

(ψij − ψ̄j)2 = σ2
γj

ψ�
j Mψj

n− 1 = σ2
γj

γ�
j Z�

j MZjγj

n− 1 . (4)

This is a QF in Gaussian variables, whose distribution depends on both the design
matrix Zj and the structure matrix Kγj (for further details, see Section S2 in the
online Supplementary Material, Gardini et al., 2024a). Note that the structure matrix
induced on ψj is the generalised inverse of ZjK−1

γj
Z�

j , i.e. Kψj = (ZjK−1
γj

Z�
j )−.

The prior distribution on σ2
γj

is specified in order to control the marginal distribution
of Vψj . In this way, we make the prior on σ2

γj
dependent on the design and the structure,

with the aim of making the marginal prior on Vψj independent on both of them. The
conditional and marginal distributions of Vψj are investigated in the following section.

3.1 Conditional and Marginal Priors on Vψj

The distribution of Vψj conditional on σ2
γj

can be expressed as a linear combination of
independent chi-square random variables (Box, 1954; Ruben, 1962),

Vψj |σ2
γj

∼
σ2
γj

n− 1

n∑
k=1

λkjXk; Xk
ind∼ χ2

1, k = 1, . . . , n, (5)
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where λj = (λ1j , . . . , λnj)� = eig(MK−1
ψj

). Expectation and variance are:

E
[
Vψj |σ2

γj

]
=

σ2
γj

n− 1

n∑
k=1

λkj and V
[
Vψj |σ2

γj

]
=

(
σ2
γj

n− 1

)2 n∑
k=1

2λ2
kj .

We remark that at least one of the eigenvalues is null because of the multiplication by the
rank-deficient matrix M. Equation (5) reveals that the dependence of the distribution
of Vψj |σ2

γj
on the structure matrix Kψj = (ZjK−1

γj
Z�

j )− is captured by the eigenvalues
λj : different structure and design matrices lead to different conditional moments of Vψj .
For this reason, a naive prior specification that chooses the same prior distribution for
each σ2

γj
would imply different marginal distributions of the sampling variances Vψj , i.e.

different contributions of each random component to the a priori sampling variance of
the linear predictor.

Following analogous arguments, Sørbye and Rue (2014) proposed to scale the struc-
ture matrices by the geometric mean of their eigenvalues: a similar approach would
consist in dividing Kψj by

∑n
k=1 λkj

n−1 . This removes dependence of E[Vψj |σ2
γj

] on Kψj ,
obtaining that E[Vψj |σ2

γj
] = σ2

γj
, ∀j. Nonetheless, scaling Kψj by any constant does

not completely remove the dependence of the marginal density fVψj
on Kψj . In other

words, if the same prior density fσ2 is selected for each σ2
γj

, the marginal distributions

fVψj
(v) =

∫ +∞

0
fVψj

|σ2
γj

(v|s)fσ2(s)ds, j = 1, . . . , Q, (6)

are all different because fVψj
|σ2

γj
(·) �= fVψl

|σ2
γl

(·) for each j �= l. In summary:

fσ2
γj

≡ fσ2 , ∀j =⇒ fVψj
�≡ fVψl

, ∀l �= j;

confirming that equal priors on scale parameters lead to different priors on random
effects sampling variances, even after scaling by a constant.

We stress that assigning different prior importance to each random component is
perfectly sensible if it reflects the modeler’s prior beliefs: this can be beneficial and
even desirable in Bayesian applications. Several efforts have been made in the literature
to build intuitive and flexible prior specification strategies that allow managing the
contributions of each random component to the total variability, a recent prominent
example being Fuglstad et al. (2020). The approach proposed in what follows can be
generalized to settings where prior unbalance between component-wise contribution is
desired: this will be the object of future extensions of the present paper.

In Section 3.2, the DSD prior for the case of full-rank precision matrices Kγj 	 0
is derived, whereas the important case of semi-positive definite matrices Kγj , which
includes the class of IGMRF priors, is considered in Section 3.3. Section 3.4 is devoted
to prior elicitation.

3.2 Derivation of the DSD Prior
As a starting point, we focus on the effect of the structure matrix by considering a single
random effect ψ|σ2 ∼ Nn(0, σ2K−1

ψ ), with Z = In and Kψ = Kγ 	 0. The structure
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matrix Kψ encodes the conditional relationships between elements of ψ and it depends
on the application at hand.

A notable special case, that plays a prominent role in the proposed prior specification
strategy, is represented by i.i.d. random effects obtained by setting Kψ = In. This is
an ideal benchmark for managing prior specification on scale parameters because of its
simplicity and interpretability: in the i.i.d. model σ2 corresponds to both the expected
sampling variance of ψ and to the variance of each component ψi, independently on n.
The sampling variance of an i.i.d. random effect, denoted as V, is distributed as a scaled
chi-square with n− 1 degrees of freedom conditionally on σ2. Equivalently, posing α =
n−1

2 and β = n−1
2 , one obtains V|σ2 ∼ Gamma(α, β

σ2 ), with E[V|σ2] = V[ψi|σ2] = σ2.
Given the generality of the distribution, we opt for a B2 prior (introduced in Section 2.1)
on σ2 in the i.i.d. case. Consequently, the marginal distribution of V is a mixture of a
gamma and a B2 distributions whose density function is given in Proposition 3.1. Since
this marginal density can be expressed in terms of the 2F0 hypergeometric function
(Olver et al., 2010), we dub it 2F0-distribution.

Proposition 3.1 (2F0-distribution). Let X and Y be two random variables such that

X|y ∼ Gamma
(
α,

β

y

)
, Y ∼ B2(b, p, q).

Then, X ∼ 2F0(α, β/b, p, q) where α, p and q are shape parameters and the scale pa-
rameter β/b is the ratio of the scale parameters of the mixed distributions. The density
of X is:

fX(x) =
(
b

β

)q Γ(1 + α− p)
Γ(p)B(α, q) x−q−1

2F0

(
α + q, p + q;−;− b

xβ

)
. (7)

Proof. See Section S3 of the online Supplementary Material (Gardini et al., 2024a).

Thus, for the i.i.d. model, the marginal distribution of V is

V ∼ 2F0(α, β/b, p, q). (8)

However, if Kψ �= In, the sampling variance of the random effect conditioned on σ2

is a linear combination of chi-squared random variables (see (5)). Hence, a B2(b, p, q)
prior on σ2 would result in a different marginal distribution of Vψ, which depends on
the application at hand: we argue that this dependence is undesirable since it impedes
coherence of prior statements among different models. To remove such dependence, we
aim to obtain a DSD prior on σ2, denoted as fDSD

σ2 , that, when mixed with the dis-
tribution of Vψ|σ2, delivers the density of the benchmark 2F0(α, β/b, p, q) distribution.
Technically, we seek the prior density which solves the integral equation:

fV(v) =
∫ +∞

0
fV |σ2(v|s)fDSD

σ2 (s)ds.

The merit of such distribution would be to have the same interpretation, independently
on Kψ, in terms of marginal variance, which will always coincide with that of the i.i.d.
model.
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To obtain a mathematically and numerically tractable problem, we develop DSD
priors working on the following approximation of V |σ2:

V |σ2 a∼ Gamma
(
α̃,

β̃

σ2

)
, (9)

where a∼ indicates a random variable approximately distributed as. This approximation
has been proposed by Box (1954) in order to match the first two moments of V |σ2, and
parameters are

α̃ =
(
∑n

i=1 λi)2

2
∑n

i=1 λ
2
i

, β̃ = n− 1
2

∑n
i=1 λi∑n
i=1 λ

2
i

. (10)

Given that V |σ2 approximately follows a Gamma distribution, Proposition 3.1 implies
that, if σ2 ∼ B2(b, p, q), the approximate marginal distribution of V is

V
a∼ 2F0(α̃, β̃/b, p, q). (11)

Comparison between (8) and (11) clearly highlights that the difference between these
marginal distributions is due to the eigenvalues of MK−1

ψ . The following theorem con-
stitutes the main result of the paper, stating the density of the DSD prior, i.e. a prior
that delivers the marginal density (8) independently on Kψ. The prior density turns
out to be expressed in terms of the 2F1 hypergeometric function (Olver et al., 2010).

Theorem 3.1 (DSD prior). Let ψ|σ2 ∼ Nn(0, σ2K−1
ψ ). The DSD prior fDSD

σ2 , i.e. the
prior that solves the integral equation∫ +∞

0
fV |σ2(v|s)fDSD

σ2 (s)ds = fV(v), (12)

where V ∼ 2F0(α, β/b, p, q) and V |σ2 a∼ Gamma(α̃, β̃
σ2 ), has density

fDSD
σ2 (s) = KDSD s−q−1

2F1

(
q + α, q + p; q + α̃;− bβ̃

sβ

)
, (13)

with
KDSD =

(
bβ̃

β

)q 1
B(p, q)

Γ(α̃)
Γ(q + α̃)

Γ(q + α)
Γ(α) ,

provided that p ≤ α̃.

Proof. See Section S4 in the online Supplementary Material (Gardini et al., 2024a).

Firstly, it is worth noting that the existence of DSD priors is guaranteed by setting
p ≤ 1/2, regardless of the model structure and design. This can be observed from
(10), which implies that α̃ ≥ 1/2 since (

∑n
i=1 λi)2/

∑n
i=1 λ

2
i ≥ 1. On the other hand,

recalling from Section 2.1 that the popular Inverse Gamma prior on σ2 is obtained
letting p → +∞, DSD priors are not defined when an Inverse Gamma is specified as a
base prior.
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A second comment regards the impact of the approximation introduced in (9). Re-
calling that the true distribution of V |σ2 is a linear combination of chi-square variables
with positive weights, it can be shown that, by applying Proposition 3.1, the marginal
distribution of V is a weighted sum of 2F0-distributions. However, to get the results
stated in Theorem 3.1, namely the DSD prior density after proving that it represents
a valid probability distribution, the Mellin transform of V |σ2 is required. As shown in
Gardini et al. (2022), the Mellin transform of a positive definite quadratic form can
be expressed as an infinite sum of ratios of gamma functions: its use in solving the
integral equation (12) would lead to an integral without closed form solution, up to
our knowledge. The formal results behind these considerations are shown in Section
S5 of the Supplementary Material (Gardini et al., 2024a). Conversely, approximating
the quadratic form distributions through a single Gamma distribution with the first
two moments matched, as proposed by Box (1954), represents an appealing trade-off
between keeping the problem tractable and preserving key features of the approximated
distribution, as also shown in Figure S1 in the Supplementary Material (Gardini et al.,
2024a).

Comparison between (3) and (13) clearly shows how DSD priors modify the base
B2 distribution. Indeed, the kernels of these distributions differ with respect to the last
factor: they both lay in the interval (0, 1) and are increasing functions of s. The couples
(α, β) and (α̃, β̃) determine the growth rate of such factors leading to different shapes
of DSD prior with respect to the base B2 prior: an example of such modification is
reported in Figure 1. As a notable special case of Theorem 3.1, due to the properties of
the 2F1 function, if V = V, i.e. α̃ = α and β̃ = β, the prior reduces to σ2 ∼ B2(b, p, q).
Furthermore, if p = α̃ the DSD prior is σ2 ∼ B2( bβ̃β , α, q).

The dependence of the prior on Kψ is captured by α̃ and β̃ as defined in (10): all
the generalizations proposed in what follows are based on the fact that, to obtain the
DSD prior, one must consider the appropriate eigenvalues vector, i.e. those that express
the weights of the associated QF Vψ|σ2.

Thus, taking account of the effect of the design is quite a straightforward task.
Indeed, when ψ = Zγ with Z ∈ R

n×m and γ|σ2 ∼ Nm(0, σ2K−1
γ ), with Kγ 	 0, the

appropriate eigenvalues are those of the matrix MZK−1
γ Z� whose non-null elements

coincide with non-null eigenvalues of Z�MZK−1
γ .

The very special case of m = 1 is useful to shed light on the rationale behind DSD
priors. Indeed, this corresponds to managing a fixed effect, and, for this reason, we
switch the notation to ψ = xβ where x ∈ R

n×1 and β|σ2 ∼ N (0, σ2). The sampling
variance

Vψ = ψ�Mψ

n− 1 = x�Mx
n− 1 β2 =

∑n
i=1(xi − x̄)2

n− 1 β2 = β2s2
x,

has conditional distribution Vψ|σ2 ∼ Gamma(1
2 ,

1
2σ2s2x

), arising as the square of a zero-
mean Gaussian distribution with variance σ2 and multiplied by the only non-null weight
of the QF, i.e. s2

x. If p = 1
2 , as will be justified in Section 3.4, the DSD prior on σ2 turns

out to be σ2 ∼ B2( b
s2x
, α, q). As a consequence, in a model with P fixed effects, the same

prior distribution on all standardized coefficients arises.
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Lastly, focusing on computational aspects, we provide the DSDprior package in the
Supplementary Material (Gardini et al., 2024b). This R package enables the manage-
ment of DSD priors and implements standard MCMC algorithms for estimating LGM
models with fixed structure matrices. The package allows for block sampling from the
full conditional distributions of (γj , σ

2
γj

), j = 1, . . . , Q, using a Metropolis step, as
suggested in Knorr-Held and Rue (2002). Details on the implementation of the MCMC
algorithm are given in Section S6 of the Supplementary Material (Gardini et al., 2024a),
while Section S7.2 gives some details on convergence and efficiency. The computational
complexity associated with DSD priors arises from the evaluation of the 2F1 hypergeo-
metric function to obtain acceptance probabilities for the Metropolis steps. Some details
on computational times are given in Section 5.

3.3 The Case of Intrinsic Priors
IGMRF priors, which are commonly used in spatial and spatio-temporal modeling
of areal data as well as in low-rank models, are improper priors with sparse rank-
deficient precision matrices. Let Rank(Kψ) = n − κ: the rank-deficiency κ is defined
as the order of the IGMRF by Rue and Held (2005). Again, we start by assuming
Z = In. The developments in what follows are based on the spectral decomposition
Kψ = UΛU� = U+Λ+U�

+, where Λ+ ∈ R
(n−κ)×(n−κ) is a diagonal matrix with diag-

onal entries corresponding to the non-null eigenvalues of Kψ and U+ spans the column
space of Kψ; in addition, U0 spans the null space.

From a probabilistic viewpoint, an IGMRF of order κ embeds a proper distribu-
tion on the (n − κ)-dimensional column space of Kψ describing deviations from the
κ-dimensional null space, i.e. the implicit systematic part of the model. This important
feature of IGMRF priors is highlighted in Rue and Held (2005), Section 3.4.1, where ψ
is decomposed as:

ψ = trend(ψ) + residuals(ψ) = U0U�
0 ψ + U+U�

+ψ = U0ψ0 + U+ψ+, (14)

and ψ+|σ2 ∼ Nn−κ(0, σ2Λ−1
+ ). This decomposition has also been used in Goicoa et al.

(2018) to study the need for linear constraints in spatio-temporal disease mapping and
in Klein and Kneib (2016) for obtaining their scale dependent priors.

Identifiability of ψ can be ensured by adopting the linear constraint U�
0 ψ = 0, as

suggested in Schrödle and Held (2011). When implementing LGMs with IGMRF priors,
we include in the linear predictor the columns of U0 that are not linearly dependent on
other model components. The prior on ψ0 is specified as in Section 3.2. To give some
examples, if a random walk (RW) prior of order 1 is employed, the null space is spanned
by the unit vector and hence it is already included in the intercept term, while the null
space of a RW of order 2 is spanned by a first-order polynomial, requiring the inclusion
of a linear trend.

The sampling variance of a constrained IGMRF random effect is

Vψ|U�
0 ψ=0 =

ψ�
+U�

+MU+ψ+
n− 1 , (15)



12 Design and Structure Dependent Priors for Scale Parameters

with λ = eigen(U�
+MU+Λ−1

+ ) = eigen(MK−
ψ ) being the eigenvalues to be taken into

account for computing α̃ and β̃.

This can be directly extended to the case ψ = Zγ, Z ∈ R
n×m, γ|σ2 ∼ Nm(0, σ2K−

γ ).
Given the decomposition γ = Uγ0γ0 +Uγ+γ+ obtained by applying (14) to γ, one gets
ψ = ZUγ0γ0 +ZUγ+γ+. Introducing the linear constraint U�

γ0Z�ψ = U�
γ0Z�Zγ = 0,

the sampling variance is

Vψ|U�
γ0Z�ψ=0 =

γ�
+U�

γ+Z�MZUγ+γ+

n− 1 , (16)

i.e. a QF whose weights are the non-null eigenvalues of the semi-positive definite matrix
U�

γ+Z�MZUγ+Λ−1
γ+ that coincide with the non-null eigenvalues of Z�MZK−

γ . The
computation of the eigenvalues of such a matrix allows us to completely determine the
DSD priors by retrieving α̃ and β̃.

It is worth noting that linear constraints on random effects envisioned in this sec-
tion guarantee property of the posterior distribution: indeed, linear constraints address
partial improperty of IGMRF priors, by removing the improper prior on the implicit
systematic part of the model. For a comprehensive discussion on this topic in the context
of structured additive distributional regression, see Klein and Kneib (2016).

3.4 Prior Elicitation

The aim of this section is to deliver a simple and intuitive prior elicitation strategy that
can be adopted for every LGM whose architecture falls within Table 1. This is facilitated
by DSD priors due to their ability to trace back the prior interpretation within the
framework of the i.i.d. model, regardless of the specific LGM being considered. The B2
distribution serves as a base prior to be adapted to the considered model by solving
integral equation (12): this guarantees the same marginal distribution of the sampling
variances fVψj

≡ fV , ∀j. As a starting point, we suggest default values of the shape
parameters p and q. As regards the scale parameter b, we find it convenient to set it by
considering observed data variability.

To guarantee a finite non-null density at 0, we set p = 1/2, leading to the specification
of an Half-t distribution on σ, as suggested in Perez et al. (2017). Moreover, this choice
preserves the conditions for the existence of DSD priors stated in Theorem 3.1, given
that α̃ > 1/2 holds for every LGM. We suggest q = 1.5 as a default choice: this delivers
an Half-t with 3 degrees of freedom on σ. However, we show in subsequent simulations
and applications that posterior inference shows small sensitivity to q.

The scale parameter b is the crucial quantity to be specified, because of its impact on
the amount of shrinkage/smoothness of the posterior estimates. Linking this parameter
to the variability of the linear predictor allows automatic scaling of the prior to the
considered application. Such scaling is achieved by means of a probability statement
on the variability of the j-th model component, in the same spirit of Wakefield (2007);
Klein and Kneib (2016) and Simpson et al. (2017), among others. In particular, we
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control the probability π0 that the marginal sampling variance of a model component
ψj is lower than a value c:

P[Vψj ≤ c] = π0, ∀j. (17)

There are various strategies and philosophies for determining the value of c. As a
practical and readily implementable choice for practitioners, we find it appropriate to
calibrate the prior variability of the linear predictor with the variability observed in
the sample. Despite the double use of the data, this strategy is currently widespread
and forms the foundation of the default prior setting in Gaussian models fitted using
the popular rstanarm package. (Goodrich et al., 2022). For example, when the likeli-
hood is Gaussian, we suggest to set c = s2

y, where s2
y denotes the sample variance of

the response. Hence, the data variance is the π0-th quantile of the marginal distribu-
tion of Vψj , ∀j: the higher π0 the lower the prior variability, with consequent heavier
shrinkage. In the case of non-Gaussian likelihood, we find it appealing to resort to the
concept of pseudo-variance (Gelman et al., 2013). Such quantity can be exploited to
specify meaningful values of c resorting to the observed sample or available prior knowl-
edge on the variability of the phenomenon. This is not an easy task when the model
is not Gaussian and the link is not the identity. For an overview of GLMs pseudo-
variances under canonical link functions, see Table 1 in Piironen and Vehtari (2017).
Once c and π0 are fixed, b is retrieved by solving the equation P[bV ∗

ψj
≤ c] = π0, where

V ∗
ψj

= Vψj/b ∼ 2F0(α, β, p, q), via Monte Carlo simulation. Exploiting the mixture rep-
resentation of the 2F0-distribution, M replicates from V ∗

ψj
are generated for computing

the quantile corresponding to probability π0, denoted with c∗π0
. Consequently, the value

of b is retrieved as c/c∗π0
.

Summarizing, the base prior B2(b = f(y, π0), 0.5, 1.5) is suggested as a default choice,
so that prior specification of a given LGM reduces to set the parameter π0, while DSD
priors filter out the effect of design and structure matrices as well as possible linear
constraints that hamper comparability of priors in different models. In Sections 4 and 5
we show that π0 is a decisive quantity in terms of impact on posterior inference: the
study of the variation of posterior inference with respect to π0 is able to give insights
on sensitivity to prior specification.

3.5 Decomposition of the Linear Predictor Sampling Variance

To provide a further illustration of the rationale behind DSD priors, we discuss the a
priori decomposition of the linear predictor sampling variance marginally with respect
to scalers σ2. Given the equivalence between specifying priors on scalers for fixed and
random effects noticed at the end of Section 3.2, the linear predictor (1) can be expressed
as

η = 1β0 +
P+Q∑
j=1

ψj ,

where model components refer to fixed effects for j ≤ P and to random effects for
P < j ≤ P + Q. The sampling variance of the linear predictor, known as regression
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variance in the context of linear regression models, is the random variable:

Vη =
P+Q∑
j=1

Vψj + 2
P+Q∑
j=1

∑
k<j

Cψj ,ψk
,

where terms Cψj ,ψk
refer to the bilinear form Cψj ,ψk

= ψj
�Mψk/(n − 1). Since vari-

ance components are a priori independent, E[Cψj ,ψk
] = 0, ∀j �= k, and DSD priors

guarantee that, E[Vη] = (P + Q)E[V]. Concerning the posterior distributions of Vψj |y
and Cψj ,ψk

|y, in general, E[Cψj ,ψk
|y] �= 0 since the likelihood function induces depen-

dence among model components: from an applied point of view, posterior analysis of
variance/covariance decomposition can give insights about the explanatory power of
each model component without ignoring their underlying relationships.

4 Simulation Exercise
The simulation study presents a comparative analysis between DSD priors and standard
priors in terms of posterior sensitivity to the model’s design and structure. Furthermore,
we examine the influence of π0 and q on posterior inference. We consider the data
generating process

yi ∼ N
(
g(xi) = 5 + sin(πxi), σ2

y

)
, i = 1, . . . , 50;

where x is an equally spaced set of values in the interval [−1; 1]. A semi-parametric
regression model implementing Bayesian P-splines (Lang and Brezger, 2004) is specified:

η = 1μ + Zγ,

where the design matrix Z is a basis matrix of cubic B-splines over m equally spaced
knots. For the spline coefficients γ, a second-order RW prior is imposed by specifying
the joint prior density

f
(
γ|σ2

γ

)
∝

(
σ2
γ

)−(m−2) exp
(
− 1

2σ2
γj

m−2∑
i=1

(γi − 2γi+1 + γi+2)2
)
,

which leads to a precision matrix Kγ with rank m − 2, requiring the inclusion of a
linear trend. The performances of point and interval estimators of g(xi) are monitored
by computing posterior means and 95% credible intervals.

We consider three different values for σ2
y, to control the signal-to-noise ratio ρ =

Var[η]
Var[η]+σ2

y
, which is set equal to ρ ∈ {0.25, 0.5, 0.75}. Moreover, we set a grid of values

for m, ranging from 5 to 30 spaced by 5. The same LGM is fitted on B = 500 generated
datasets, with different hyperpriors for the scale parameter σ2

γ , distinguishing between
standard priors (Half-Cauchy, the Half-t on the standard deviation, Inv-Gamma(10−3,
10−3), labeled with IG-J, and Inv-Gamma(1, 5 × 10−5), labeled with IG-INLA, on
the variance) and DSD priors for which hyperparameter values q ∈ {0.5, 1.5, 15} and
π0 ∈ {0.1, 0.25, 0.5, 0.75} are explored.
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Figure 1: From top to bottom: CDFs of Vψ|σ2 = 1 (dashed line) and V|σ2 = 1 (solid
line). CDFs and PDFs of implied priors on σ with a B2 prior or a DSD prior for σ2.

Since a Gaussian model is assumed for the data, a prior for the residual variance must
be set. In line with the indications provided within the rstanarm package (Goodrich
et al., 2022), we specified an exponential distribution on the residual standard deviation,
with rate parameter 1/s2

y.

Once the prior elicitation step described in Section 3.4 is carried out, and the hyper-
parameters b, p, and q are set, the goal is to impose a 2F0(α, β/b, p, q) prior distribution
on Vψ. We recall that it coincides with the marginal prior of Vψ when an i.i.d effect is
considered, with a B2(b, p, q) hyperprior on the scale. However, different model specifica-
tions imply different effects structures, that deviate from the i.i.d. structure. Hence, the
DSD prior modifies the base B2 distribution to preserve the 2F0(α, β/b, p, q) marginal
prior on Vψ.

Figure 1 shows how the DSD prior changes with respect to the selected number
of bases m: the base B2 distribution is plotted up to quantile 0.999 determining the
range of the x axis. We report the implied prior distributions on the standard deviation
obtained by setting π0 = 0.5 and q = 1.5; the priors have a positive finite density at 0
since p = 0.5. As it can be noticed from the first row of Figure 1, when m = 5 the CDF
of Vψ|σ2 (dashed blue line) is steeper than the CDF of V|σ2 (black line). Consequently,
a prior distribution that is flatter than the B2 density (see third row) is required on σ
to obtain for Vψ a marginal prior that matches the prior on V. Increasing m reduces
the steepness of the CDF of Vψ|σ2: when m = 20 the DSD prior induced on σ appears
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Figure 2: ARMSE and frequentist coverage with respect to the number of bases m for
the estimates under the considered priors and ρ = 0.25.

to be peaked nearby 0, with the CDF that reaches the asymptote in 1 faster than the
base B2 prior.

The performances of posterior means η̂i = E[ηi|y] and 95% credible intervals are
studied. As summary measures, the root mean squared error averaged over the curve
(ARMSE) and the frequentist coverage are computed. They are defined as

AE(b) =

√√√√ 1
50

50∑
i=1

(
η̂
(b)
i − g(xi)

)2
, ARMSE = 1

B

B∑
b=1

AE(b),

Coverage = 1
B · 50

B∑
b=1

50∑
i=1

1
(
g(xi) ∈

[
η̂
(b)
i,0.025, η̂

(b)
i,0.975

])
,

where 1(A) is an indicator function assuming value 1 if event A occurs and 0 otherwise.
In addition, the superscript (b) indicates that the quantities refer to the generic iteration
b, and η̂

(b)
i,Q is the Q-th posterior quantile of ηi|y.

In Figure 2, the ARMSE and the frequentist coverage are reported. The main dif-
ferences among the priors involved in the study arise when m = 5. In this case, the cali-
bration carried out by DSD priors produces estimates characterized by a lower ARMSE
and credible intervals with frequentist coverages closer to the nominal level. When m
increases, models performances tend to converge quickly, with the exception of those
obtained with the IG-INLA prior. Figure 2 focuses on the case ρ = 0.25, results for
the remaining cases are reported in Figure S1 in the online Supplementary Material
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Figure 3: Monte Carlo distributions of AEs when m = 5. From left to right ρ is equal
to 0.25, 0.5, 0.75. The vertical dashed line separates results concerning DSD priors (on
the left) from those under standard priors (on the right).

(Gardini et al., 2024a), where similar patterns can be detected.

To provide an idea of the uncertainty of the sampling distribution, the distributions
of the average errors (AEs) of the curves are depicted in Figure 3 through boxplots.
When ρ ∈ {0.25, 0.5}, DSD priors deliver lower AEs than standard priors. Furthermore,
with the exception of π0 = 0.75 for which higher errors are observed, the AEs distri-
butions obtained with other values of π0 are fairly stable. Lastly, results obtained for
ρ = 0.75 show little variability, with the exception of the IG-INLA prior that produces
markedly higher AEs values.

Lastly, the three panels of Figure 3 highlight that, when using DSD priors, changes
in posterior inference are mainly due to π0, while results are less reactive to changes of
the q values.

5 Applications
In this section, we show two applications based on datasets available in the R-INLA
package and analyzed in Rue and Held (2005) among others: the Munich rental guide
and the Tokyo rainfall datasets.

5.1 Munich Rental Data
The dataset comprises n = 2035 observations from the 2003 Munich rental guide. The
response variable is the rent price (per square meter in Euros); covariates comprise
spatial location, floor space, year of construction, and a set of dichotomous variables
describing house features such as presence/absence of central heating, bathroom, etc.
To study prior sensitivity, we also consider a reduced dataset obtained by randomly
sampling n = 300 observations. Following previous analyses, a Gaussian likelihood is
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mj α̃ β̃ E[Vψj |σ2
ψj

= 1] V[Vψj |σ2
ψj

= 1]
size 134 0.735 1.4 × 10−4 5001.1 3.4 × 107

year 84 0.602 2.7 × 10−4 2190.9 7.9 × 106

location 380 9.375 11.581 0.809 0.0698
Table 2: Characteristics of the model components sampling variances.

adopted and the linear predictor is specified as

η = 1β0 + Xβ + ψyear + ψsize + ψloc,

where

ψj = Zjγj ; γj |σ2
γj

∼ N
(
0, σ2

γj
Kγj

)
, j ∈ {year, size, location}.

Both Kγyear and Kγsize are precision matrices of a continuous time second-order RW,
hence their rank-deficiency is κ = 2. Since their null spaces are spanned by a first-
order polynomial, corresponding linear terms are added to the linear predictor. This
prior specification parallels the one proposed in Rue and Held (2005), being a sensible
choice for estimating smooth covariate effects that we use to illustrate our approach.
Kγloc is built as D−W where W is the adjacency matrix of Munich districts and D is
diagonal with i-th diagonal entry corresponding to the number of neighbors to the i-th
district: being the graph connected, κ = 1 and no terms need to be added to the linear
predictor. All random effects are constrained as described in Section 3.3. Concerning
computational time, 25000 MCMC iterations require 32 seconds when adopting the
Inverse Gamma prior and 39 seconds when adopting the DSD prior on a PC equipped
with processor Intel Core i7-9750H (2.60 GHz).

Table 2 shows parameters of the conditional distributions Vψj |σ2
γj

, where the last two
columns report expectation and variance for σ2

γj
= 1. The same prior on scale parameters

would result in sensibly different marginal distributions of Vψj , with random effects built
on RW structures being largely more variable a priori than the spatial random effect.
The CDFs of DSD priors as a function of π0 are shown in Figure S3 of the online
Appendix: probability mass is distributed on far larger values for the spatial effect with
respect to other components, in order to compensate for the aforementioned features of
the conditional sampling variances.

In Figure 4, the posterior means of effects of size, year and location are reported
for π0 ranging from 0.05 to 0.95 and q = 1.5. In the complete dataset, prior sensi-
tivity is limited, particularly in comparison with the reduced dataset, where year and
location effects show marked sensitivity to π0, due to reduced information. To high-
light the changes due to π0, sensitivity curves are reported in Figure 5, where relative
V[E[f(xj)|y]] are shown for the three predictor effects f(xj). All variances are divided
by the component-wise smallest variance in order to emphasize relative changes. As
expected, increasing π0 encourages smoothing: location effect is the least sensitive to
prior specification in the complete dataset, while the year effect shows some sensitivity
in both cases.
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Figure 4: E[f(xj)|y] of model components for complete and reduced datasets (q=1.5).

Figure 5: V[E[f(xj)|y]] divided by the component-wise maximum as a function of π0.

Lastly, we study the decomposition of the linear predictor posterior variance Vη|y,
joining fixed effects. Draws from the posterior distribution of the variance explained
by each model component Vψj |y are obtained by summarising the MCMC chains. As
an example, given a G-dimensional MCMC sample, posterior draws from Vψsize|y are
obtained by computing the G variances of the sampled effects ψ

(g)
size, i.e. V

(g)
ψsize|y =

var(ψ(g)
size), for g = 1, . . . , G. Posterior covariances Cψj ,ψk

= ψj
�Mψk

n−1 |y are negligible,
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Figure 6: Proportion of explained variance by each model component captured by poste-
rior distributions Vψj |y divided by the data variance s2

y = 6.08. DSD priors with q = 1.5
and π0 = 0.9.

hence posterior variances Vψj |y, whose distributions are shown in Figure 6, give clear-cut
information on the contribution of each model component to the explained variability
which receives the same prior weight by means of DSD priors. The size variable turns
out to be the most important covariate for explaining rental prices, followed by fixed
effects, year of construction and location.

5.2 Tokyo Rainfall Data
The dataset comprises n = 731 daily dichotomous observations which equal 1 if more
than 1 mm of rainfall was recorded in Tokyo during 1983 and 1984, and 0 otherwise.
The aim of the application is to estimate the rainfall probability pt on a calendar day
t = 1, . . . , 366. The Binomial likelihood is

yt|pt ∼ Bin(pt, nt), t = 1, . . . , 366,

where nt = 2 for t �= 60 and n60 = 1. The linear predictor is g(p) = 1β0 + ψday where

ψday = Zγday; γday|σ2
γday

∼ N
(
0, σ2

γday
Kγday

)
.

In this case, the random effect design matrix is Z = I366 and the structure Kγ cor-
responds to a circular RW of order two, to introduce conditional dependence between
the first and last day of the year (Rue and Held, 2005). Note that the IGMRF order is
κ = 1, so the model needs only one linear constraint and no term needs to be added to
the linear predictor.

We estimate the model adopting both the logit and probit link. In the former case,
we set c in (17) as the pseudo-variance c = ȳ−1(1− ȳ)−1 = 5.16 (see Table 1 in Piironen
and Vehtari, 2017), while c = ȳ(1 − ȳ)/φ(Φ−1(ȳ))2 = 1.82 for the probit link. This
leads to b = 26.5 and b = 9.34 for the logit and probit links respectively, when q = 1.5
and p = 0.5 as suggested in Section 3.4 and π0 = 0.5. Concerning computational time,
25000 MCMC iterations with probit link require 29 seconds when adopting the Inverse
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Figure 7: Fitted probabilities with respect to calendar days.

Figure 8: V[E[f(day)|y]] divided by the maximum as a function of π0 (left panel). Leave
One Out Information Criterion as a function of π0 (right panel).

Gamma prior and 34 seconds when adopting the DSD prior on a PC equipped with
processor Intel Core i7-9750H (2.60 GHz). At the moment, the C++ code for sampling
the logit model is highly inefficient, being demanding in terms of computational time.

The merit of assigning different priors in the probit and the logit scale is highlighted
in Figure 7, where one can see that adopting the same IG-J prior independently on the
link delivers a sensibly different smoothness of the fitted probabilities as a function of cal-
endar day. On the other hand, DSD priors show limited variation with respect to the type
of link function, being the smoothness of the predicted probabilities mainly affected by
π0. In this application, posterior inference shows a marked sensitivity to π0, as shown in
the sensitivity curves reported in the left panel of Figure 8: this is not surprising because
of the limited amount of information available to estimate a smooth function of time.

In the right panel of Figure 8 the leave-one-out cross-validation information criterion
(LOOIC, Vehtari et al., 2017) is reported. LOOIC serves as a model selection criterion,
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giving preference to models demonstrating lower values of the indicator. It can be seen
that LOOIC increases as the amount of shrinkage (determined by π0) increases. We
observed a similar behavior in the Munich rental data application (see Figure S2),
particularly with reference to the reduced dataset. This suggests that extreme values of
π0 can give rise to excessive smoothing resulting in worse model performances. On the
basis of these considerations, we suggest to set π0 = 0.5 as a default value, completing
the default setting sketched in Section 3.4.

6 Concluding Remarks
In this paper, a unified strategy for prior specification of scale parameters in latent
Gaussian models has been proposed. This is a debated problem in the literature about
Bayesian Hierarchical models and several interesting proposals have been developed to
date. In our opinion, the lack of agreement about sensible default strategies for prior
specification in this kind of models is due to three aspects that hinder clear-cut interpre-
tation of the priors on parameters that act as mere scalers: design matrices, structure
matrices, and linear constraints. From an applied point of view, we believe that the most
important phase of model specification concerns indeed these three components which
contain: auxiliary information on the phenomenon under study (design), prior beliefs on
the correlation structure/smoothness of model components (structure) and precautions
needed for model identifiability or, possibly, for customizing parameters interpretability
(linear constraints). Scale parameters are far less relevant in model specification, but
they require careful prior specification in order to obtain a sensible allocation of prior
variability to model components. As shown in Section 3, this can be done by taking into
account the whole model architecture, comprising the link function. From a method-
ological point of view, this approach is in line with the discussion provided in Gelman
et al. (2017), particularly when the authors discuss the role of the prior in generative
and predictive modeling. Indeed, the π0 parameter in DSD priors can be interpreted
as a measure of plausibility of observed data under the model: for this reason, we find
it sensible to set π0 on the basis of the data variability when a Gaussian likelihood is
concerned or on pseudo-variance in generalized linear models.

DSD priors operate by transforming the base B2(b, p, q) prior to accommodate all
model features impacting the marginal variance of the linear predictor. By default, we
set parameter p = 1/2 for two reasons. Firstly, this selection ensures a positive finite
density at zero on the standard deviation of the model component, thereby assigning
positive probability to models that exclude the component, a feature also suggested in
the development of the theory regarding Penalized Complexity Priors (Simpson et al.,
2017). Secondly, setting p = 1/2 guarantees the existence of the DSD prior, as stated in
Theorem 3.1. Parameter q governs the right tail of the prior distribution; we recommend
setting q = 1.5, corresponding to a Half-t distribution with 3 degrees of freedom on the
standard deviation scale. Regardless of the observed low sensitivity to this parameter
in our simulations and applications, we consider its impact on posterior inference to
be less critical compared to the scale parameter b. This last parameter is specified
as a function of π0, which establishes a crucial link between the prior distribution
and the data being modeled, as the data variance corresponds to the π0-th quantile
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of the model component’s marginal variance. As a default value, we set π0 = 0.5 in
the DSDprior package, meaning that data variance corresponds to the median of the
prior marginal sampling variance of each model component. Regardless that it has
been shown to be a sensible value in our applications, we recognize that this choice
lacks a particularly compelling rationale; informally, it suggests that observed data
are ‘reasonably’ generated by the data generating process implied by the prior. In our
opinion, it is not possible to prescribe default values that universally suit all diverse
applications and, of course, default values are not able to reflect different modeler’s
prior beliefs. The true merit of π0 lies in its consistency of interpretability across various
models, facilitating the expression of prior beliefs and serving as a natural choice for
investigating the sensitivity of posterior inference to prior choices.

Concerning usability and easiness of application of latent Gaussian models, we think
that DSD priors can be a useful tool for practitioners to be used in disparate situations
comprising spatial, temporal, spatio-temporal, ANOVA, semi-parametric models and in
general all models that can be cast coherently with the models summarised in Table 1.
One limitation of the proposed approach lies in its applicability only to models char-
acterized by fixed structure matrices. Extension to models containing parameterized
structure matrices poses several challenges related to integration over parameters that,
being contained within the structure matrix, greatly complicate the study of the dis-
tribution of quadratic forms involved in the analysis. Nonetheless, extensions to more
general models will be the subject of future research.

Besides the practical aspects, another goal of the paper is to deepen the theory be-
hind latent Gaussian models, trying to characterize conditional and marginal sampling
variances of linear predictor components. These quantities provide a meaningful inter-
pretation of scale parameters, useful in the prior elicitation step. These developments
allow contextualizing previous contributions in the field like those by Sørbye and Rue
(2014) and Klein and Kneib (2016). Indeed, the scaling procedure by the former can be
seen as an attempt of removing the impact of the structure in the conditional expecta-
tion of the sampling variance, as deducible by results in Section 3.1. On the other hand,
finding a prior that solves the integral equation in (12) is in line with the proposal of
scale dependent priors by Klein and Kneib (2016), where the prior on scale parameters
is retrieved numerically, relying on a different synthesis of the effect dispersion and in-
corporating the design through arbitrary covariate patterns. In this sense, taking the
sampling variance of the effect as focal quantity leads us to meaningful distributional
results by resorting to the theory of quadratic forms.

As regards the allocation of prior variability to model components, all the develop-
ments discussed in the paper implicitly assume that the modeler has no preference for
some specific components, all being assigned the same prior variability. A potentially
useful extension that we plan to develop in future work is to allow unbalancing of prior
variability assigned to model components by introducing some a priori weighting sys-
tem: to this aim, we find it appealing to resort to the approach proposed in Fuglstad
et al. (2020).
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