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A B S T R A C T   

Freshwater and marine ecosystems are a suitable habitat for parasitic nematodes of the genus 
Contracaecum (family: Anisakidae) to complete their complex life cycle. Several fish species of the 
Sea of Galilee (Lake Kinneret) were reported in 1964 as second intermediate/paratenic hosts of 
Contracaecum spp. larvae. The lack of taxonomically relevant morphological features of these 
larvae hindered their proper identification. Here we report the results of a 1-year survey con-
ducted in 2021, 57 years after the first (and only) such survey. We analyzed 352 specimens from 
10 fish species (native and non-native) of the Sea of Galilee (Israel) ichthyofauna. We compared 
our results with those of the first parasitological survey conducted by Paperna in 1964; the overall 
prevalence of nematodes referable to Contracaecum larvae was 16.8% and 0.85% in 1964 and in 
2021, respectively. Different from the first survey that identified Contracaecum larvae morpho-
logically, we used both morphological and molecular tools. Two wild native cyprinids—Jordan 
himri (Carasobarbus canis) and Jordan barbel (Luciobarbus longiceps)—were infected (a single 
specimen each) with Contracaecum quadripapillatum larvae in their abdominal cavity. A single 
specimen of blue tilapia (Oreochromis aureus) was infected with two larvae of Contracaecum 
multipapillatum E, localized in the pericardial cavity. The findings of our study, which is part of a 
large project focused on Contracaecum spp. infecting both piscivorous birds and fish collected in 
Israel, advance our knowledge about the distribution and host range of this potentially zoonotic 
parasite in fishery products of the Sea of Galilee.   

1. Introduction 

Parasitic nematodes of the family Anisakidae naturally parasitize poikilothermic organisms (fish and aquatic invertebrates) and 
homeothermic organisms (marine mammals and fish-eating birds) as intermediate/paratenic hosts and definitive hosts, respectively, 
with humans becoming accidental hosts when eating raw fish infected with the third-stage larvae (L3) (Nagasawa, 2012). The 
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Anisakidae family includes, among others, three genera such as Anisakis, Pseudoterranova and Contracaecum of zoonotic/potentially 
zoonotic importance (Buchmann and Mehrdana, 2016). Larval nematodes belonging to this family are widespread in wild and farmed 
fish populations worldwide (Shamsi, 2019). The genus Contracaecum consists of over 60 species which mature in fish-eating birds, 
mainly of the families Pelecanidae (Landsberg, 1989; Mattiucci et al., 2010), Phalacrocoracidae and Ardeidae (Shamsi, 2019) but also 
marine mammals and penguins (Shamsi et al., 2009; Garbin et al., 2019). 

The Sea of Galilee (Lake Kinneret or Lake Tiberias) is a monomictic lake, considered to be the largest (21 km long and 13 km wide) 
surface freshwater reservoir in the Middle East; it is located in the Syrian–African Rift Valley in the northeastern part of Israel (Berman, 
1998). The ichthyofauna of the Sea of Galilee includes 19 native and 8 exotic fish species (Goren and Ortal, 1999; Ostrovsky et al., 
2014). The native fish species are dominated by members of the families Cyprinidae and Cichlidae (Goren and Ortal, 1999; Werner and 
Mokady, 2004). Of the eight exotic fish species in the lake, only two, common carp (Cyprinus carpio) and mosquitofish (Gambusia 
affinis), have established viable populations (Golani et al., 2019). 

According to the Ministry of Agriculture and Rural Development, of the 175,000 tons of fish supplied to the Israeli market in 2018, 
less than 1% originated from local fisheries, including the Sea of Galilee and the Mediterranean Sea (Bar-Nahum, 2019). Several studies 
have described the biology and ecology of fish populations in the Sea of Galilee (Ostrovsky et al., 2014), including biomanipulation 
based on food-web modeling (Ofir et al., 2017). Recently, Shapiro et al. (2022) published a study on ecosystem changes related to fish 
diet and trophic chains. In contrast, studies on parasites affecting the fish in this area are scarce, and most of them refer to digenetic 
trematodes (Farstey, 1986; Finkelman, 1988; Yekutiel, 1985). Dzikowski et al. (2003) reported the presence of metacercariae of the 
family Clinostomidae in cichlids, and the relationship between these parasites and declining water level in the Sea of Galilee. Other 
studies describing metacercariae of the family Clinostomidae in the Sea of Galilee were published by Caffara et al., in 2014 and in 
2016. Most recently, Falk et al. (2020) described the presence of some generalist protozoans, myxozoans and digeneans affecting 
cichlids. To the best of our knowledge, none of the papers published to date, except for Paperna (1964), has addressed parasites of the 
family Anisakidae, with reference to the genus Contracaecum, in fish of the Sea of Galilee. Paperna (1964) examined seven fish species 
collected in this area, reporting the presence of unidentified Contracaecum larvae with an overall prevalence of 16.8%, and briefly 
describing the few morphological characteristics available for this developmental stage. 

Herein, we describe the results of a 1-year fish survey carried out in the same site examined by Paperna (1964) in the Sea of Galilee, 
57 years after the first and only morphological report on Contracaecum, using both morphological and molecular approaches. 

2. Materials and methods 

2.1. Fish sampling 

In 2021, a parasitological survey was carried out on 352 fish, mainly of the families Cyprinidae and Cichlidae, collected from the 
Sea of Galilee (see Table 1 for details). 

The fish were caught by professional anglers using mesopelagic gillnets and purse seines and were kept refrigerated (+4 ◦C) until 

Table 1 
Comparative data of Contracaecum spp. infecting different fish species from the Sea of Galilee in 1964 by Paperna and in 2021 in the present study.  

Fish Family Fish species Year 1964 (Paperna, 1964) Year 2021 (present study) 

No. of analyzed 
fish 

Prevalence No. of fish infected / fish 
examined 

Prevalence (MI/ 
MA) 

Cyprinidae Jordan himri (Carasobarbus canis) (formerly Barbus canis) 12 0 1/63 1.6 % (1/0.01)  
Jordan barbel (Luciobarbus longiceps) (formerly Barbus 
longiceps) 

5 20 % 1/87 1.1% (1/0.01)  

Levantine scraper (Capoeta damascina) (formerly 
Varicorhinus damascinus) 

5 25 % 0/2 0  

Levantine minnow (Garra nana) (formerly Tylognathus 
steinitziorum) 7 14.3 % nt nt  

Common carp (Cyprinus carpio) 7 0 0/40 0 

Leuciscidae Kinneret bleak (Mirogrex terraesanctae) (formerly 
Acanthobrama terraesanctae) 

19 16.7 % 0/14 0 

Mugilidae Flathead grey mullet (Mugil cephalus) nt nt 0/8 0  
Thinlip grey mullet (Chelon ramada) (formerly Mugil 
capito) 1 2.6 % nt nt 

Cichlidae Blue tilapia (Oreochromis aureus) nt nt 1/29 3.4 % (2/0.07)  
Mango tilapia (Sarotherodon galilaeus) (formerly Tilapia 
galileae) 12 nt 0/92 0  

Tvarnun simon (Tristramella simonis) 12 0 0/6 0  
Redbelly tilapia (Coptodon zillii) (formerly Tilapia zillii) 19 14.3 % 0/11 0 

Clariidae North African catfish (Clarias gariepinus) (formerly Clarias 
lazera) 

4 25 % nt nt 

nt = not tested 
MI = Mean Intensity 
MA = Mean Abundance 
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examination. In the laboratory, fish were measured, weighed, sexed, and then subjected to visual inspection of the abdominal cavity, 
internal organs, and musculature for the presence of zoonotic parasites following the procedure for fish premarketing control (Israeli 
Veterinary Services, 2017). Moreover, each filet was cut into thin slices (5 mm) and carefully inspected using a white light trans-
illuminator as described by Menconi et al. (2020). Nematodes were isolated with a dissecting needle, counted, and preserved in 70% 
ethanol for both morphological and molecular analyses. Mean intensity and mean abundance were calculated following Bush et al. 
(1997). 

2.2. Morphological examination 

The larvae were observed under a light microscope (Leica Microsystems, Wetzlar, Germany) to record total length and for mo-
lecular analysis, a small portion (about 5 mm) that was devoid of taxonomical features was cut from the central part of the larvae. 
Anterior and posterior portions of the body were clarified in Amman's lactophenol to measure the internal taxonomical structures by 
light microscope with the aid of a digital Nikon DS-Fi1 camera and image-acquisition software (Nikon Nis-Elements D3.0). 
Morphometric analysis was carried out following Anderson (2000), Berland (1961) and Saad et al. (2018). Measures are given in 
micrometers unless otherwise indicated. 

After measuring their anterior and posterior portions, the four nematodes were processed for scanning electron microscopy (SEM): 
they were dehydrated through a graded ethanol series, subjected to critical point drying, sputter-coated with gold palladium, and 
observed using a Phenom XL G2 Desktop SEM (Thermo Fisher Scientific, Eindhoven, The Netherlands) operating at 5 kV. 

2.3. Molecular identification 

For molecular analysis, genomic DNA was extracted from the central pieces of all four larvae found in this study, using a PureLink® 
Genomic DNA Kit (Life Technologies, Carlsbad, CA, USA) following the manufacturer's instructions. Amplification of the internal 
transcribed spacer (ITS) rDNA region was performed with the primers NC5_f (5′-GTAGGTGAACCTGCGGAAGGATCATT-3′) and NC2_r 
(5′-TTAGTTTCTTCCTCCGCT-3′). A 10- μL aliquot of the PCR product was subjected to PCR-restriction fragment length polymorphism 
(RFLP) with the enzyme MspI (Caffara et al., 2023). 

For sequencing, the amplicons were excised from a gel, purified by Nucleo-Spin Gel and PCR Clean-up (Macherey-Nagel, Düren, 

Fig. 1. SEM micrographs of Contracaecum third-stage larvae from Sea of Galilee fish. (A) C. quadripapillatum anterior end showing a well-defined 
boring tooth (arrow). (B) C. quadripapillatum conical posterior end. (C) C. multipapillatum E anterior end. (D) C. multipapillatum E posterior end with 
detail of the pointed tip. 
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Germany), and sequenced in an ABI 3730 DNA analyzer (StarSEQ, Mainz, Germany). The DNA trace files were assembled with Contig 
Express (VectorNTI Advance 11 software, Invitrogen, Carlsbad, CA, USA), and the consensus sequences of the ITS rDNA and cox2 
mtDNA were compared with previously published data by BLAST tools (https://blast.ncbi.nlm.nih.gov/Blast.cgi). 

The sequences generated in this study have been deposited in GenBank under accession numbers OQ690009–10 
(C. quadripapillatum) and OQ690011–12 (C. multipapillatum E). 

3. Results 

Overall, three out of 352 (0.85%) fish examined showed non-encysted Contracaecum larvae: two larvae from one blue tilapia were 
in the pericardial cavity, whereas both Jordan himri and Jordan barbel specimens were infected in the abdominal cavity by only one 
Contracaecum larva each. All of the other examined fish species were negative (Table 1). 

The RFLP produced two different restriction patterns: two larvae (from Jordan himri and Jordan barbel) showed bands of 360–600 
bp corresponding to C. quadripapillatum, whereas the two other specimens (from blue tilapia) were undigested and tentatively 
identified as C. multipapillatum E. The ITS rDNA sequences obtained compared by BLAST with the sequences available in GenBank, 
showed 99.9% identity with C. quadripapillatum and 99.8–100% with C. multipapillatum E, confirming the RFLP identification. 

The C. quadripapillatum larvae were 3.8 ± 0.56 (3.4–4.2) cm long × 1 ± 0.016 (0.98–099) cm wide, with a finely striated cuticle 
along the whole body. Cuticular ridges were slightly more marked at the anterior end, interrupted by narrow lateral lines. Anterior end 
had three small lips and a well-defined boring tooth, 12.4 ± 0.56 (12–12.8) long (Fig. 1A). A subterminal excretory pore was very close 
to the oral opening. Narrow esophagus was present, 3286 ± 1087.4 (2516.9–4054.7) long; the intestinal cecum was 2569.1 ± 1198.1 
(1722–3416.3) long, and the ventricular appendix was 773.8 ± 347.2 (528.3–1019.4) long, much shorter than the cecum; a conical tail 
was 86 ± 16.6 (74.2–97.7) long (Fig. 1B). 

The two larvae of C. multipapillatum E were 4.5 ± 2.8 (4.3–4.7) cm long × 1.4 ± 0.29 (1.2–1.6) cm wide, with a stout body, tapering 
at both ends, and with cuticular ridges along the whole body, considerably more pronounced at the anterior end (Fig. 1C), interrupted 
by narrow lateral lines. The anterior end had three labial primordia and a short and faint boring tooth-like structure, 8.9 ± 1.99 
(7.4–10.3) long. The subterminal excretory pore was very close to the oral opening; a narrow esophagus, 4301.1 ± 292.4 
(4094.3–4508) long, ended in a small roundish ventriculus. Intestinal cecum, 3207.6 ± 208.9 (3059.9–3355.3) long, extended beyond 
a slightly visible nerve ring. The ventricular appendix, 970.1 ± 14.6 (959.7–980.4) long, was much shorter than the cecum. The tail, 
59.5 ± 7.44 (54.2–64.7) long, was conical, ending in a pointed tip (Fig. 1D). 

4. Discussion 

Fishery products can harbor a variety of parasites, some of which may cause zoonotic diseases in humans, whereas others may 
disqualify the fish for marketing (Davidovich et al., 2022; Guardone et al., 2021). Fish catch infected with larval nematodes of the 
family Anisakidae, especially from a marine environment, are responsible for a rising number of human cases (Aibinu et al., 2019; 
Buchmann and Mehrdana, 2016). The occurrence of C. osculatum s.l. larvae has been reported in two human cases (Nagasawa, 2012); 
nevertheless, the zoonotic potential of the different Contracaecum species has yet to be proven (Shamsi and Butcher, 2011). 

C. quadripapillatum (adults and larvae) was first described by Saad et al. (2018) after an experimental infection of American white 
pelican (Pelecanus erythrorhynchos) with L3 collected from North African catfish (Clarias gariepinus) (formerly Clarias lazera) that were 
captured from different areas of Lake Nasser (Egypt). Hamouda and Younis (2022) examined cichlids and silurids collected in the same 
area, reporting the presence of C. quadripapillatum only in the latter family. In the same year, Thabit and Abdallah (2022) reported a 
high prevalence of infection with C. quadripapillatum larvae in Nile perch (Lates niloticus) collected from the Nile River, Assiut 
Governorate (Egypt). In 2023, Caffara et al. published the first description of C. quadripapillatum adults collected from naturally 
infected great white pelican (Pelecanus onocrotalus) sampled elsewhere in Israel. In the present study, we confirm—for the first 
time—that wild native cyprinids from the Sea of Galilee, namely Jordan himri (Carasobarbus canis) and Jordan barbel (Luciobarbus 
longiceps) can be intermediate/paratenic hosts of C. quadripapillatum L3. Interestingly, in the literature, we found no reports of 
infection with C. quadripapillatum larvae in non-native edible cyprinids farmed in Israel, namely common carp (Cyprinus carpio), grass 
carp (Ctenopharyngodon idella), silver carp (Hypophthalmichthys molitrix) or black carp (Mylopharyngodon piceus). The appearance and 
morphometrics of C. quadripapillatum larvae analyzed in the present study, although based on a limited number of specimens, are in 
accordance with the description provided by Saad et al. (2018). 

C. multipapillatum E was described for the first time, by morphological and molecular analyses, by Davidovich et al. (2022) in hybrid 
tilapia (Oreochromis aureus × O. niloticus) and red drum (Sciaenops ocellatus) farmed in Israel. This species has also been recorded in 
several wild fish species in African countries (Ethiopia, Egypt, and Kenya) by Otachi et al. (2014) and Younis et al. (2017). Those 
authors did not provide any species identification, which was confirmed by Davidovich et al. (2022) by comparison to the sequences 
available in GenBank. Thereafter, Caffara et al. (2023) confirmed, by morphological and molecular analysis, the presence of a 
C. multipapillatum E adult female from a great white pelican (Pelecanus onocrotalus) in Israel. In this study, we confirm the presence of 
C. multipapillatum E larvae in wild blue tilapia (Oreochromis aureus) collected from the Sea of Galilee. 

The drastic reduction in the prevalence of Contracaecum larvae observed in our study compared to that reported by Paperna in 1964 
in the same area and fish species raises several different scenarios. In general, heteroxenous parasites are strictly dependent on the 
occurrence of suitable intermediate and definitive hosts to complete their life cycle (Davidovich et al., 2022). This makes them sen-
sitive bioindicators of environmental changes (Zhu et al., 2007; Dzikowski et al., 2003), because impacts on any of these hosts directly 
and indirectly affect the successful transmission of the parasite. Moreover, changes in host distribution, particularly in highly mobile or 
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migratory species, can play a significant role in influencing the abundance and distribution of certain parasite species, as shown for 
Contracaecum (Mattiucci et al., 2020) and other anisakids (Cipriani et al., 2022). 

Freshwater ecosystem biodiversity is well-known to be declining at an alarming and unexplainable rate due to anthropogenic 
activities (Brucet et al., 2013). Changes in lake morphometry (area and depth) are important natural factors that may influence fish 
communities (Brucet et al., 2013; Mehner et al., 2007). Many fish-eating birds, definitive hosts of Contracaecum spp., are migratory 
species, and their populations have steeply declined in the last few decades (Rosenberg et al., 2019). Schekler et al. (2022) reported 
that the distribution of migratory birds is primarily associated with artificial light at night, which is strongly correlated with high 
densities of migrants. 

With reference to the Sea of Galilee, a recent paper by Shapiro et al. (2022) analyzed the changes in phyto-zooplankton composition 
in the lake due to modifications in their ecosystem related mainly to water-level variations. The composition of the phytoplankton was 
modified from a stable dinoflagellate system to an unstable cyanobacteria-abundant system, affecting the composition of the 
zooplankton and consequently, the fish populations and ecosystem stability. Dzikowski et al. (2003) analyzed limnological variation 
that was strictly connected to the life cycle of some digenetic trematodes sharing the snail Bulinus truncatus as first intermediate host. 
The authors observed a decline in the trematode parasites, possibly because the decline in lake water level eliminated the habitats 
which supported thriving populations of B. truncatus. 

With respect to the present study, the dramatic reduction in the prevalence of Contracaecum spp. larvae from Lake Kinneret fishes 
could be related to changes in either the populations of intermediate aquatic hosts, as hypothesized in studies focused on other parasite 
species (Dzikowski et al., 2003), or the abundance and distribution of definitive host birds. In Israel, Pelecanus onocrotalus was found 
infected with adult stages of both C. quadripapillatum and C. multipapillatum E (Caffara et al., 2023), highlighting its role as definitive 
host of these Contracaecum species. P. onocrotalus migrate from the Danube Delta to wintering sites in Africa, stopping for several days 
in Israel to rest and feed; however, wetland deterioration has negatively affected long-distance migrating birds' ability to find suitable 
areas to stop over (Arad, 2021). 

More accurate hypotheses on the observed changes in infection patterns of Contracaecum spp. in the considered area rely on the 
identification of possible intermediate hosts in the life cycle of C. quadripapillatum and C. multipapillatum E, and on the understanding of 
how different forms of anthropogenic impacts might affect their natural populations. To the best of our knowledge, no human cases of 
Contraceacum larvae have been described in Israel in the past and most freshwater fisheries are not used for uncooked dishes; 
nevertheless, public veterinarians and consumers of fishery products, especially of traditionally homemade (uncooked) products (e.g., 
salted or smoked fish), should be aware of the possible presence of Contracaecum spp. larvae in some fish species of the Sea of Galilee. 
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