_bSupporting information

How the crosslinker amount influences the final properties of HEMA Cryogels.

Giuseppe Proietto Salanitri^{*1,2}, Enrica Luzzi ³, Daniele Caretti², Tommaso Mecca⁴, Sabrina C. Carroccio¹, and Andrea A. Scamporrino¹

- ¹ CNR-Institute for Polymers, Composites and Biomaterials, Via Paolo Gaifami 18, 95126 Catania, Italy; sabrinacarola.carroccio@cnr.it (S.C.C.); andreaantonio.scamporrino@cnr.it (A.A.S.)
- ² Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4,
 - 40136 Bologna, Italy; daniele.caretti@unibo.it
- ³ Department of Chemical Engineering, Materials and Industrial Production, University of Naples Federico II, DICMaPI–P. le Tecchio 80, 80125 Naples, Italy; enrica.luzzi@unina.it
- ⁴ CNR-ICB, Via Paolo Gaifami 18, 95126 Catania, Italy; tommaso.mecca@icb.cnr.it
- * Correspondence: giuseppe.proietto3@unibo.it

Table S1. Cryogel's washing parameters

CYCLE N°	WASHING SOLUTION	METHOD
1 st	33 mL H ₂ O	Directed percolation
2 nd	33 mL H ₂ O-EtOH 50:50	Directed percolation
$3^{rd} - 4^{th}$	H ₂ O-EtOH 25:75	Immersion
5 th - 6 th - 7 th	EtOH	Immersion
8 th	EtOH- Et ₂ O 50:50	Immersion
$9^{th} - 10^{th} - 11^{th}$	Et ₂ O	Immersion

Table S2. Average pore properties calculated on 5 images for each cryogel samples: (A) 1:5; (B) 1:6; (C) 1:7.

SAMPLE		Α		В		С
Pore Tot. Number	393		238		168	
Av Pore Area Ratio	39,34%		31,10%		46,12	
	Median	Average	Median	Average	Median	Average
Circle eq. diameter	9.09 μm	12.8 μm	11.8 µm	14.5 μm	12.3 µm	17.4 μm
Major axis	12.3 μm	18.4 μm	16.4 μm	20.7 μm	18.7 µm	25.5 μm
Minor axis	6.53 μm	9.36 µm	8.01 μm	10.7 μm	8.49 µm	12.7 μm
Circumference	31.7 μm	48.4 μm	41.1 μm	54.2 μm	46.4 µm	73.9 μm
Convex hull	31.7 μm	45.2 μm	39.8 µm	50.8 μm	45.4 μm	66.1 μm
Circum. circle diam.	12.7 μm	18.6 μm	16.2 μm	20.9 µm	18.9 µm	27.2 μm
Area	64.9 μm²	200 μm²	110 μm²	238 μm²	118 μm²	406 μm²
Volume by area	394 μm³	3.82E+03 μm³	868 μm³	4.44E+03 μm³	965 μm³	1.21E+04 μm³
Pixel count	340	1049	576	1247	618	2126
Aspect ratio	0.581	0.573	0.588	0.574	0.57	0.561
Circularity	0.798	0.777	0.814	0.77	0.742	0.719
Convexity	1	0.974	1	0.972	0.989	0.956
Elongation	0.419	0.427	0.412	0.426	0.43	0.439
Grayscale	183	183	175	175	187	187
Inscrib. circle diam.	6.21 μm	9.02 μm	8.18 µm	9.94 μm	8.07 μm	11.3 μm

Figure S1. Cumulative % of pore distribution related to for each cryogel samples: (A) 1:5; (B) 1:6; (C) 1:7 calculated by using Phenom Porometric 1.1.2.0 (Phenom-World BV, Eindhoven, The Netherlands).

Figure S2. Variation of MV adsorption values as a function of time of the three synthesized samples.

Figure S3. Calibration curve

Figure S4. Thermograms of samples A, B, and C.

Table S3. Parameters obtained by applying Langmuir and Freundlich for the three synthesized cryogels.

	Langmuir Model Parameters				
	*Q _m (mg/g)	K∟	R∟	R2	
А	94	20,2	0.00009	0.9624	
В	110	0.0308	0.0556	0.9529	
С	114	0.0327	0.0494	0.9616	

* Maximum adsorption capacity

Figure S5. Equilibrium MV adsorption isotherms by plotting Qe versus Ce experimental data for the three synthesized cryogels.

Langmuir model is described by Equation S1, where qe (expressed in mg/g) represents the amount of methylene violet adsorbed, Ce (mg/L) is the concentration at the equilibrium, Q_0 (mg/g) is the monolayer capacity, and b (mg/L) represents a constant whose value is related to the heat of adsorption (KL).

Eq. S1:
$$q_e = \frac{Q_0 b C_e}{1 + b C_e}$$

The following Equation S2, may be used to determine the separation factor (\mathbf{R}_{L}), related to the adsorption process' efficiency, from \mathbf{K}_{L} value

Eq. S2:
$$R_L = \frac{1}{1 + K_L C_0}$$