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1 Introduction and motivation

In the search for regular black holes one usually imposes regularity conditions inspired
by classical physics, like finite (effective) energy density and scalar invariants (for recent
reviews, see refs. [1, 2]). These conditions allow one to remove the singularities that plague
known black hole solutions [3] but usually bring back (or do not allow to remove) a seemingly
undesirable inner Cauchy horizon. This fact is easily seen in the static spherically symmetric
case, for which one can always introduce a Killing time t and the areal radial coordinate r
in which the metric reads1

ds2 = gtt dt2 + grr dr2 − r2
(
dθ2 + sin2 θ dφ2

)
, (1.1)

where gtt = −eϕ grr, with ϕ = ϕ(r) a regular function and

− grr = 1− 2m(r)
r

. (1.2)

In the above, the Misner-Sharp-Hernandez mass function [4, 5] is given by

m(r) = 4π
∫ r

0
ε(x)x2 dx , (1.3)

where ε = ε(r) is the proper energy density of the source. We recall that the mass function
approaches the ADM mass [6] M in asymptotically flat space, that is m(r →∞) = M . For

1We use units with c = GN = 1 and metric signature (+−−−).
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the Schwarzschild vacuum solution, m = M and constant, and both the component gtt of
the metric and its Kretschmann scalar diverge for r → 0. The latter result signals that
tidal gravitational forces also diverge towards the centre.

If we require that ε = ε(r) is regular for r → 0, we find m ∼ r3 and both the components
of the metric in the chosen frame and its Ricci and Kretschmann scalars remain finite in
r = 0 [1, 2]. The central Schwarzschild singularity is removed but one necessarily finds
a Cauchy horizon if there is an event horizon. In fact, horizons are located at values of
r = rH such that gtt(rH) = grr(rH) = 0. Since gtt > 0 for r > r+ = rH, it must be negative
just inside the event horizon. However, for m ∼ r3 one necessarily finds gtt(0) = eϕ(0) > 0,
which implies that there must exist a second zero r = r−, with 0 < r− ≤ r+.2

In the quantum theory, one can allow for milder conditions to apply for the energy
density of the source. In particular, if one considers that

ε ∝ |Ψ|2 , (1.4)

where Ψ = Ψ(r) is the wavefunction of the static matter source, the fundamental requirement
is that Ψ be integrable, since a wavefunction must yield finite probability densities. For any
finite r, one then must have3

4π
∫ r

0
|Ψ(x)|2 x2 dx <∞ . (1.5)

This accommodates for the milder condition ε ∼ r−2 and m ∼ r, which still ensures that
m(0) = 0. We shall recall in section 2 that this behaviour is tame enough to both replace
the central singularity with an integrable one and not allow for the emergence of a Cauchy
inner horizon for electrically neutral black holes [7]. Moreover, the Cauchy horizon of the
Reissner-Nordström black hole can also be eliminated by this prescription [8]. Note that
by integrable singularity we mean regions where the curvature invariants and the effective
energy-momentum tensor diverge, while their “volume” integrals remain finite [9].

When one considers rotating systems, however, the above condition on Ψ, hence on m,
is not sufficient to remove the inner horizon that appears in the Kerr black hole. As we
shall show in section 3, this is due to the ultrarigid nature of the vacuum general relativistic
solution, which is characterised by a constant specific angular momentum a = J/M (like its
generalisations [10–12]). On the contrary, a radial dependent specific angular momentum is
indeed more natural for extended bodies. For example, an homogeneous sphere with mass
function m ∼ r3 rotating with angular velocity ω has angular momentum J ∼ mr2 ω ∼ ω r5

and a ∼ r2. We will show that the simultaneous tempering of the ring singularity and
removal of the inner horizon are accomplished by assuming that the quantum state Ψ is
such that a ∼ m ∼ r for r → 0.

2The region of negative gtt shrinks to zero volume in the extremal case r− = r+.
3One might argue that the correct volume measure must contain the determinant of the spatial metric,

which implies an extra factor of
√
−gtt for r < r+. Such a factor would then depend on Ψ itself according to

eq. (1.3). However, we notice that the condition (1.5) remains valid if |gtt| is finite everywhere inside r+.
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2 Spherical black holes

Consider a spherically symmetric and static spacetime described by the line element (1.1)
with ϕ = 0, that is

gtt = −grr = 1− 2m(r)
r

, (2.1)

where the mass aspect m = m(r) is not fixed a priori. The corresponding energy-momentum
tensor is obtained from

8π Tµν = Gµν , (2.2)

with Gµν denoting the Einstein tensor computed from the line element (2.1). By introducing
the tetrad

eµt =
(√

gtt, 0, 0, 0
)
, eµr = (0,√gtt, 0, 0) ,

eµθ =
(
0, 0, r−1, 0

)
, eµφ = −

(
0, 0, 0, (r sin θ)−1

)
,

(2.3)

the effective energy-momentum tensor can be written as

Tµν = ε eµt e
ν
t + pr e

µ
r e

ν
r + pθ e

µ
θ e

ν
θ + pφ e

µ
φ e

ν
φ , (2.4)

with ε the energy density and pr, pθ, and pφ are pressure functions. One therefore finds

ε = −pr = m′(r)
4π r2 , (2.5)

and
pθ = pφ = −m

′′(r)
8π r . (2.6)

Furthermore, from the metric functions in eq. (2.1) one can easily compute the Ricci scalar

R = −2 rm
′′ + 2m′

r2 , (2.7)

and the Kretschmann scalar

Rαβµν R
αβµν = 4 r

4 (m′′)2 + 4
[
2 r2 (m′)2 − 4 rmm′ + 3m2]+ 4 r2(m− rm′)m′′

r6 . (2.8)

For m ∼ r3, it is easy to see that the Ricci scalar (2.7) and the Kretschmann scalar (2.8),
as well as the effective energy density (2.5) and pressures (2.6) remain finite for r → 0. The
singularity is thus removed and tidal forces do not diverge by approaching what would be
the singular centre of the Schwarzschild black hole along radial geodesics.

Under the weaker condition m ∼ r, one can likewise check that all of the above
quantities are still (at least) integrable, and should therefore not be discarded in the
quantum context. Furthermore, it is easy to prove (see appendix A for a detailed discussion)
that radial geodesics can be extended past r = 0, namely the position of the would-be
classical singularity. These properties are clearly displayed by the models introduced in
refs. [7, 8] and, e.g., refs. [13–16], but are not enjoyed by all regular black holes in the
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literature [17]. In particular, the coherent quantum states in refs. [7, 8] are meant to
represent (simplified) gravity states in any quantum theory of gravity, from which the
effective classical geometry emerges as a mean field for any matter source. In this respect,
it would be very interesting to investigate the transition from the more classical behaviour
m ∼ r3 to m ∼ r which must happen in the interior of a collapsing body when it becomes
a black hole.

3 Rotating black holes

There exist several procedures to map a spherically symmetric metric into a rotating one,
like the Janis-Newman algorithm [10]. In the end, all of these procedures lead to a metric
of the Kerr form with the constant ADM mass M replaced by the mass function m = m(r)
of the spherically symmetric seed metric [11].

3.1 The ultrarigid Kerr metric

Let us start by recalling that the Kerr metric reads

ds2 =
[
1− 2 rM

ρ2

]
dt2 + 4 a rM sin2 θ

ρ2 dt dφ− ρ2

∆ dr2 − ρ2 dθ2 − Σ sin2 θ

ρ2 dφ2 , (3.1)

where

ρ2 = r2 + a2 cos2 θ (3.2)
∆ = r2 − 2 rM + a2 (3.3)

Σ =
(
r2 + a2

)2
− a2 ∆ sin2 θ (3.4)

and a = J/M , with J is the angular momentum of the system.
The above metric contains a ring singularity located at ρ2 = 0 (i.e., r = 0 and θ = π/2),

where the Kretschmann scalar Rαβµν Rαβµν diverges (see appendix B.1). For a2 < M2, the
Kerr metric also has the horizons

r± = M ±
√
M2 − a2 , (3.5)

corresponding to the two zeros of ∆ = ∆(r). Note in particular that the existence of the
inner (Cauchy) horizon follows from the “ultrarigid” rotation described by a constant a. In
fact, one has

∆(0) = a2 > 0 , (3.6)

which implies that ∆ = ∆(r) must change sign twice going inward, from positive to negative
across rH = r+ and then back to positive across r−.

3.2 From spherical black holes to rotating black holes

We next consider the rotating metric obtained by replacing the constant M in eq. (3.1)
with a mass function m = m(r) [11]. In order to attenuate the ring singularity, one could
impose m ∼ r3. Like in the spherically symmetric case, the weaker condition m ∼ r is again
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sufficient to make the relevant scalar quantities integrable around r = 0. However, it is not
sufficient to remove the inner horizon, since eq. (3.6) still holds for a constant.

Let the mass function be analytic and related to an integrable energy density in the
neighbourhood of r = 0, that is

m = m1 r +M
∞∑
k=2

mk

(
r

M

)k
, (3.7)

where all the coefficients m1 ≥ 0 and mk are dimensionless. Further, we require a less than
ultrarigid rotation by assuming that a/(r/M)α is also analytic for fixed values of α ≥ 0 in the
neighbourhood of r = 0. In other words, we assume a specific angular momentum given by

a = M

(
r

M

)α ∞∑
k=0

ak+1

(
r

M

)k
, (3.8)

in the neighbourhood of r = 0, where the coefficients ak are also dimensionless. Our metric
will represent a black hole with one horizon at r = rH > 0 if ∆ = ∆(r) has only one
(strictly) positive real root and ∆(0) ≤ 0. With the above expansions, on assuming m1 6= 0
and a1 6= 0, we have

∆ '
(
r

M

)2α
(a1M + a2 r)2 − 2 r2

M
(m1M +m2 r) + r2 . (3.9)

For 0 ≤ α < 1, we would have ∆ ' (r/M)2α a2
1M

2, which is always positive near r = 0
since a1 6= 0. If we assume α = 1, then ∆ ' (1 + a2

1 − 2m1) r2, which is negative inside
the horizon provided

2m1 > 1 + a2
1 . (3.10)

Lastly, ∆ ' (1− 2m1) r2, for α > 1, which is consistent with the condition ∆ < 0 inside
the horizon if 2m1 > 1. Note that for α ≥ 1, we always have ∆(0) = 0, so that the location
of the would-be inner Cauchy horizon is in fact pushed to the centre of the system.

To clarify the above result, let us consider a simple example given by

m = 2M
π

arctan
(
r

M

)
and a = 2A

π
arctan

(
r

M

)
, (3.11)

which smoothly interpolate between the required behaviour near r = 0 and the asymptotic
ADM mass M and specific angular momentum A. In particular,

m = 2
π
r + O(r2) for r → 0+ , lim

r→∞
m(r) = M , (3.12)

which implies m1 = 2/π, and

a = 2A
πM

r + O(r2) for r → 0+ , lim
r→∞

a(r) = A , (3.13)

which yields a1 = 2A/πM . Furthermore, one finds that

∆ = r2 + 4A2

π2 arctan2
(
r

M

)
− 4M r

π
arctan

(
r

M

)
, (3.14)
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Figure 1. ∆ = ∆(r) in eq. (3.14) for M = 1 for different values of A satisfying the condition (3.10)
(solid lines) and a case violating eq. (3.10) (dotted line). All solid lines display one horizon
where ∆(rH > 0) = 0.

which admits at most one horizon at rH > 0 for values of A satisfying the condition (3.10),
that is 0 < A <

√
(1− π/4)πM , as is shown in figure 1.

The effective energy-momentum tensor for a rotating metric with general m = m(r)
and a = a(r) is given in appendix B. In particular, the behaviour near the centre for mass
and specific angular momentum of the forms in eqs. (3.7) and (3.8) with α = 1 is analysed
in appendix B.2.

4 Concluding remarks

In refs. [7] and [8] coherent states were constructed to reproduce the classical Schwarzschild
and Reissner-Nordström metrics. The condition of normalisability of such quantum states
implies the necessary departure from the respective exact classical geometries, an effect
that one can understand with the existence of an extended (quantum) matter core [13, 15,
16, 19, 20]. The similar quantum condition (1.5) has been analysed here in more generality
to show that the classical singularity can be generically replaced by an integrable singular
structure in the interior of a spherically symmetric black hole if m ∼ r near r = 0.

For a spherically symmetric system, the above condition on the mass function can
be implemented in order to also avoid the presence of inner horizons (see ref. [8] for the
details). However, the inner horizon in rotating black holes can be circumvented only if
one further assumes that the specific angular momentum a is not constant throughout
space but vanishes sufficiently fast towards the centre. This additional condition is in fact
natural if one considers that the geometry is again sourced by a quantum core [21], for
even classical extended bodies do not rotate as rigidly as the vacuum Kerr spacetime. We
showed that the conditions m ∼ a ∼ r are sufficient to ensure an integrable interior without
Cauchy horizon. One could therefore use the quantum metrics from refs. [7, 8] as seeds for
generating the rotating integrable versions of the Kerr and Kerr-Newman geometries by

– 6 –
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means of the algorithms described in refs. [11, 18] with the additional generalisation a ∼ m
(or faster decay towards the centre).

The absence of Cauchy horizons cures the issue of mass inflation that plagues most
regular black hole geometries present in the literature [2]. This suggests that the quantum
picture of black holes developed in this work could indeed represent (meta)stable final
configurations for the gravitational collapse of compact astrophysical objects. Since our
analysis is limited to stationary configurations, the effects due to matter accretion, or
the merging of two black holes, and the Hawking evaporation must be left for future
developments. In particular, we notice that the global size of the core is not relevant for
the issues discussed here, as long as m ∼ a ∼ r in a sufficiently large neighbourhood of
the centre. However, we expect that departures from the outer classical geometry (usually
termed “quantum hair”) are highly sensitive to the relative size of the core radius with
respect to the horizon radius, as shown explicitly in refs. [7, 8], and that all of black hole
phenomenology is therefore related to this aspect of the interior.
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A Geodesics in spherical spacetime

Let us consider the Lagrangian for the motion of a point-like particle in the metric (1.1)
with ϕ = 0,

L =
(

1− 2m
r

)
ṫ2 −

(
1− 2m

r

)−1
ṙ2 − r2 θ̇2 − r2 sin2 θ φ̇2 , (A.1)

where dots denote derivatives with respect to the an affine parameter λ. This Lagrangian is
constant along geodesics and takes the value L = 1 for timelike trajectories and L = 0 for
the null case. Since L does not depend explicitly on t and φ, the corresponding conjugate
momenta are conserved and read

E = gtt ṫ =
[
1− 2m(r)

r

]
ṫ and L = r2 sin2 θ φ̇ . (A.2)

Furthermore, taking advantage of the spherical symmetry one can fix θ = π/2 for all λ,
without loss of generality. By plugging in the conserved quantities E and L, one finds the
radial equation

ṙ2

2 + Veff = E2

2 , (A.3)

with
Veff = 1

2

[
1− 2m(r)

r

](
L + L2

r2

)
. (A.4)

– 7 –
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For radial geodesics with L = 0, and assuming m = m1 r + O(r2) as r → 0+, we find

Veff = −
(
m1 −

1
2

)
L + O(r) for r → 0+ , (A.5)

which guarantees the extendibility of radial geodesics past r = 0. Furthermore, gtt must
change sign only once (from positive to negative inward), say at r = rH, in order to guarantee
the existence of one horizon. This implies that the component gtt cannot be positive at
r = 0 and the condition m1 ≥ 1/2.

We should remark that a process of gravitational collapse leading to a spherically
symmetric configuration must satisfy the same degree of symmetry throughout its evolution.
In other words, in order to potentially form the geometry (1.1), a self-gravitating system
must undergo a spherical collapse. As a result, the relevant causal structure for the system
is determined by radial null geodesics. Geodesics with non-vanishing angular momentum
are of limited interest since the presence of matter moving along such trajectories would
require to abandon the spherical symmetry in order to provide a fully consistent description,
particularly inside the core sourcing the geometry.

B Effective energy-momentum tensor

For a metric of the form (3.1) with mass function M = m(r) and a = a(r), it is convenient
to introduce the tetrads [22]

eµt =
(
r2 + a2, 0, 0, a

)√
ρ2∆

, eµr =
√

∆(0, 1, 0, 0)√
ρ2

eµθ = (0, 0, 1, 0)√
ρ2 , eµφ = −

(
a sin2 θ, 0, 0, 1

)√
ρ2 sin θ

,

(B.1)

so that the effective source can be written in the form (2.4), where the energy density is
given by

ε = r2m′

4π ρ4 −
r +m− rm′ − (3 r + rm′ − 9m) cos2 θ

8π ρ6 r2 a a′

+ 3 r +m+ rm′ − (r −m− rm′) cos2 θ

8π ρ6 a3 a′ cos2 θ

− 9 r2 + 14 rm+ 8
(
2 r2 + a2) cos2 θ −

(
r2 − 2mr

)
cos 4θ

64π ρ6 a2 (a′)2

− r2 − 3m2 +
(
r2 + 3m2 − 4 rm

)
cos2 θ

8π ρ6 r2 (a′)2

− ∆ (1 + cos2 θ)
8π ρ4 a a′′ , (B.2)

and the radial pressure reads

pr = − r
2m′

4π ρ4 + r3 + r2m− r3m′ + (r −m− rm′)a2 cos2 θ

8π ρ6

(
1 + cos2 θ

)
a a′

+ r2m2 +
[(
r2 + 2 rm

)
a2 − r2m2] cos2 θ + a4 cos4 θ

8π ρ6 (a′)2 . (B.3)

– 8 –
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The two tensions are given by

pθ = −a
2m′ cos2 θ

4π ρ4 − r3 + r2m− r3m′ + (r −m− rm′)a2 cos2 θ

8π ρ6 (1 + cos2 θ) a a′

+ r4 − r2m2 +
[(
r2 − 2 rm

)
a2 − r2m2] cos2 θ

8π ρ6 (a′)2

− rm′′

8π ρ2 + a a′′

8π ρ2 (B.4)

and

pφ = −a
2m′ cos2 θ

4π ρ4 + r − 3m+ 3 rm′ − (3 r −m+ rm′) cos2 θ

8π ρ6 r2 a a′

− (r −m− rm′)
(
3− cos2 θ

)
8π ρ6 a3 a′ cos2 θ

+ 4 r4 cos2 θ + 4 r2m2 sin2 θ − a4 sin2 2θ
32π ρ6 (a′)2

+ (4 cos 2θ + sin2 2θ) r − (9− cos 4θ)m
32π ρ6 r a2 (a′)2

− rm′′

8π ρ2 + 2 rm− a2 +
(
r2 − 2 rm− 2 a2) cos2 θ

8π ρ4 a a′′ , (B.5)

and we further notice that pθ = pφ on the axis (that is, for θ = 0 or π).
Other quantities of interest are the Ricci scalar

R = 2 2 a a′′ + (a′)2 − rm′′ − 2m′

ρ6 a4 cos4 θ − 2 rm
′′ + 2m′

ρ6 r4

+ 2
[
3 r + (r − 2m) sin2 θ

]
(a′)2 cos2 θ − (rm′′ + 2m′) sin2 θ

ρ6 r a2

+ r a′′
[
r(3 + cos 2θ)− 4m cos2 θ

]
− 2 a′

[
2 r − r (3 +m′) sin2 θ −

(
4− 5 sin2 θ

)
m
]

ρ6 r2 a

+ r a′′
[
r(7 + cos 2θ)− 4m cos2 θ

]
− 2 a′

[
2 r + r (1−m′) sin2 θ −m sin2 θ

]
ρ6 a3 cos2 θ

+ 2 2 r − (r −m) sin2 θ

ρ6 r2 (a′)2 , (B.6)

and the Kretschmann scalar Rαβµν Rαβµν , whose expression is really too cumbersome
to display.

For consistency, we will show below that the expressions for constant a and m are
correctly recovered.

B.1 Kerr-like case

The above expressions reduce to those given in ref. [18] for a(r) = a constant, that is

ε = −pr = r2m′

4π ρ4 (B.7)

– 9 –
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and
pθ = pφ = − rm′′

8π ρ2 −
a2 cos2 θm′

4π ρ4 . (B.8)

Moreover, the Ricci scalar reads

R = −2 rm
′′ + 2m′

ρ2 (B.9)

and

RαβµνR
αβµν = 4 r

2(m′′)2

ρ4 +16m
′(2r4−5a2 r2 cos2 θ+a4 cos4 θ

)
−rm′′

(
r4−a4 cos4 θ

)
ρ8 m′

+16 r
2−3a2 cos2 θ

ρ8 r2mm′′−64 r
4−8a2 r2 cos2 θ+3a4 cos4 θ

ρ10 rmm′

+48m2 r
6−15a2 r4 cos2 θ+15a4 r2 cos4 θ−a6 cos6 θ

ρ12 . (B.10)

For the standard Kerr solution, one of course has the Ricci scalar R = 0 and

Rαβµν R
αβµν = 48M2 r

6 − 15 a2 r4 cos2 θ + 15 a4 r2 cos4 θ − a6 cos6 θ

ρ12 , (B.11)

which diverges for r = 0 at the equator θ = π/2.

B.2 Central quantities

We can finally study the leading order behaviour of the energy-momentum tensor near
r = 0 on assuming the expansions (3.7) and (3.8) with α = 1. Since the general expressions
are very cumbersome, we shall just consider the effective energy density and pressure terms
on the equator (θ = π/2) and on the axis of symmetry (θ = 0).

For θ = π/2, the leading terms in r/M for the energy density are given by

ε' 2m1−(1+2m1)a4
1−
(
2−3m2

1
)
a2

1
8π r2

+m2
(
4+a2

1−6m1 a
2
1−2a4

1
)
−
(
9−4m1−12m2

1 +12m1 a
2
1 +8a2

1
)
a1 a2

8πM r
. (B.12)

The radial pressure reads

pr ' −
2m1 −

(
1 +m2

1
)
a2

1
8π r2 − m2

(
4− 2m1 a

2
1 + a2

1
)
−
(
3 + 4m2

1
)
a1 a2

8πM r
, (B.13)

the tensions

pθ ' −
a2

1m
2
1

8π r2 −
2m2 − (1− 2m1)m1 a

2
1 −

(
3− 4m2

1
)
a1 a2

8πM r
(B.14)

and

pφ'
a2

1
(
1+m2

1−2m1a
2
1−a2

1
)

8πr2

−m2
(
2−3a2

1−2m1a
2
1+2a4

1
)
−
(
3+4m1+4m2

1−12m1a
2
1−8a2

1
)
a1a2

8πM r
. (B.15)
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For θ = 0, we find

ε ' 2m1
(
1− a2

1 + a4
1
)
− a4

1 − a6
1

8π (1 + a2
1)3 r2 (B.16)

+ m2 (1 + a2
1)
(
2 + a2

1 + 2 a4
1
)
−
[
3 + 2m1

(
2− 8 a2

1 + a4
1
)

+ 11 a2
1
(
1 + a2

1
)

+ 3 a6
1
]
a1 a2

4π (1 + a2
1)4M r

,

pr ' −
2m1 − a2

1
(
1− a2

1
)(

2− 2m1 + a2
1
)

8π (1 + a2
1)3 r2

− m2
(
2 + 5 a2

1 + 5 a4
1 + 2 a6

1
)
−
[
3 + 2m1

(
2 + a4

1
)

+ 5 a2
1 + 3 a4

1 + a6
1
]
a1 a2

4π (1 + a2
1)4M r

(B.17)

and

pθ = pφ ' −
a2

1
(
1 + 2m1 + a2

1
)

8π (1 + a2
1)3 r2

−
m2
[
1 + a2

1
(
2 + a2

1
)2]+

[
2m1

(
1− 2 a2

1
)
− 3 a2

1 − 4 a4
1 − a6

1
]
a1 a2

4π (1 + a2
1)4M r

. (B.18)
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