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Abstract 

The liquid mean and fluctuating velocity field, the pressure drop, the gas-phase distribution and the 

bubble size distribution in a compact inline swirler for gas-liquid separation were experimentally 

measured. The results served as validation for the proposed computational approach and the most 

suitable turbulence model was identified. The gas phase distributions obtained considering both a 

constant bubble diameter and the local bubble size distribution (BSD) through the solution of a 

Population Balance Equation (PBE) confirmed the lighter gas phase accumulation towards the pipe 

centre. The study highlights that to realistically predict the BSD a coupled solution of the PBE with the 

flow equations is needed and that the resulting distribution is relatively narrow. The gas accumulation 

zone obtained coupling the solution of the PBE is in good agreement with the experimental one. It is 

shown that CFD may help the design of inline swirlers for gas-liquid separation. 
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1. Introduction 

The separation of multiphase mixtures exploiting swirling flows is a well-known operation in chemical 

and process engineering, with applications in solid-liquid, liquid-liquid, gas-solid and gas-liquid 

processes [1]. The working principle relies on the generation of a rotating motion that produces angular 

accelerations larger than the gravitational acceleration that can enhance and speed-up the separation due 

to the density difference of the phases constituting the mixture [2]. Exploiting a force larger than the 

gravitational one, results in smaller equipment and lower investment cost to production ratio [3], thus 

enforcing one of the principle of process intensification proposed by Stankiewicz and Moulijn [4]. The 

rotating flow can be generated either by moving parts, as for instance in the centrifuges typically adopted 

in pharmaceutical industries, or by static geometrical details, such as the case cyclones adopted for gas-

solid separation [5]. Larger separation efficiencies are obtained when the rotating flow is generated by 

moving parts, leading to higher operating costs. 

For all the aforementioned reasons, gas-liquid separators, such as static swirling flow devices placed 

inside pipes, have been receiving increasing attention in the recent years, especially in applications 

related to energy production. For instance, these devices are being successfully applied to coalbed 

methane wells to reduce the liquid content [6] and in the fission gas removal systems in Thorium Molten 

Salt Reactors (TMSR) [7]. On the other hand, the industrial application of static inline swirling flow 

devices for gas-liquid separations is hindered by the relative high pressure drop, compared to vessel-

type separators. Moreover, their sensitivity to flow rates makes them not suitable for widely varying 

flow rates [8]. The study of these static separators can help in analyzing and troubleshooting their 

limiting aspects and widening their adoption in several industrial applications. 
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One promising tool to study inline static swirling separators is Computational Fluid Dynamics (CFD). 

CFD can provide information on the gas-liquid fluid dynamics in real-size systems without the need to 

scale-down the equipment to fit in a laboratory, thus eliminating the need to transfer the results from the 

pilot to a full-scale plant. Furthermore, several operating conditions and separator design solutions can 

be tested [9], limiting the need for prototypes. However, since the literature on the topic is still in its 

developing stage, any computational approach must be validated with experimental campaigns to ensure 

that the numerical simulations are reliable and robust [10]. CFD has been adopted since the very first 

numerical studies on static swirling separators [11], in which a very dilute gas-liquid mixture was 

separated with a static inline swirler in nuclear applications. Different design solutions were tested with 

a Reynolds Averaged Navier-Stokes (RANS) approach. An early attempt to apply the baseline model 

for bubbly flows developed for the Euler-Euler Two Fluid Model (TFM) [12] to the gas-liquid flow in 

inline static helical swirlers was proposed by Zidouni et al. [10]. The authors highlighted the limitations 

in the modelling approach due to the neglected bubble-bubble interaction and due to the monodispersed 

bubble size approximation. The modelling approach by Zidouni et al. was then validated and tested on 

a vertical swirl generating device by Putra et al. [9]. In this study the local comparison of numerically 

determined gas volume fraction with results obtained with high-resolution gamma-ray computed 

tomography was performed. The authors did not overcome the mono-dispersed approximation, but they 

tested several constant bubble diameters and a bimodal distribution, concluding that the results were 

strongly influenced by the bubble size. The same computational approach was also adopted in the 

comparative numerical simulations of different inline swirlers [13] adopting a bi-modal bubble size 

distribution and renouncing the solution of a population balance model (PBM). To the best of authors 

knowledge, the only study on static inline swirlers that couples a PBM to the RANS equations is the 

work by Yuan et al. [14] in which the authors solve a population balance equation (PBE) with the Taylor 

expansion method of moments (TEMOM). The authors consider a one way coupling between the liquid 

flow and the gas phase and solve the model equations just inside the static inline swirler, without tracing 

the flow evolution downstream of the separator. 
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In this work both experimental and numerical investigations are conducted to characterize a compact 

inline swirler for gas-liquid separation. The single-phase liquid flow field is experimentally determined 

with the Particle Image Velocimetry (PIV) and the pressure drop is measured with a differential pressure 

manometer. Digital Image Analysis (DIA) is adopted to determine the bubble size in the proximity of 

the central core region of gas accumulation and to track the evolution of this zone along the pipe length. 

From a computational point of view, the TFM-RANS equations are solved both with a constant bubble 

diameter and coupled with a PBE, comparing the predicted gas distribution with the experimental 

results. Different turbulence models are evaluated, and a computational approach for such systems is 

proposed as a tool to identify the size of the central core of gas accumulation. 

The manuscript is organized as follows: firstly, the system and the experimental techniques are 

introduced, then the flow equations, the PBM and the numerical solution procedure are presented. The 

results of the grid independence study are then reported, followed by the single and two-phase 

comparison of different turbulence models with the experimental results. The results of the PBE solved 

both in a frozen flow field and coupled with the flow equations are then presented, focusing on bubble 

size distribution and on the size of the central core region of gas accumulation. Lastly conclusions are 

drawn. 

 

2. Investigated System and experimental techniques 

An inline compact swirling device (also called swirler, for short) was positioned inside a plexiglass 

straight horizontal pipe of diameter D equal to 0.09 m. The pipe was 3.5 m long before the swirler and 

3.5 m after, to allow for the complete development of the flow inside the pipe. The swirler consisted of 

a central cylindric hub of 25mm from which 6 flat blades, tilted at 45° from the pipe and hub axis, 

extended up to the pipe internal walls. The blades had a 2mm thickness and the total axial length of the 

swirler was 13 mm, making the design of the swirler extremely compact with respect to other inline 

separators [13]. The system, which is schematically depicted in Figure 1, was operated at room 
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temperature both with just a liquid phase, consisting of tap water (density, ρL = 998 kg/m3, viscosity μL 

= 0.001 Pa s) and a mixture of air (density, ρG = 1.225 kg/m3, viscosity μG = 1.79×10-5 Pa s) and water.  

 

 

Figure 1 – Sketch of the experimental rig 

For the experiments in single-phase conditions, a water volumetric flow rate equal to 20m3/h, 

corresponding to a mean liquid velocity equal to 0.87m/s, was considered. For the gas-liquid analysis a 

liquid volumetric flow rate of 25m3/h and a gas volumetric flow rate of 7.5L/h were considered, 

corresponding to a mean mixture velocity equal to 1.11m/s, with a gas volume fraction of 1.77%. 

The single-phase velocity field was measured by means of Particle Image Velocimetry (PIV). Data were 

collected on a portion of a vertical diametrical plane, located downstream the swirler. A pulsed Nd:YAG 

laser (λ = 532nm, 65mJ) sheet lighted the investigating area. As previously done in measuring the flow 

field in stirred tanks [15], talc powder was adopted for seeding the liquid, for cheaply obtaining a good 
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laser light scatter towards a Charge-Coupled Device camera (resolution of 1344 × 1024 pixels) handled 

by a Dantec Dynamics synchronization and acquisition system. Based on the Sauter mean diameter of 

13 m and the density of 2820 kg/m3, the talc particles were found to be a suitable tracer, having a 

relaxation time very close to the value of classical liquid seeding particles and a Stokes number well 

below unity. The instantaneous velocity vectors were obtained on a square grid of 1.28mm side from 

the adaptive PIV correlation of 5000 camera images collected in double-frame mode. The time interval 

between the two laser pulses was set to 300 s. Preliminary tests ensured statistical convergence of mean 

velocities and turbulent fluctuations, as shown by the velocity profiles in Figure 2. A validation 

procedure discarded the instantaneous vectors that not fulfilled two criteria one based on the evaluation 

of the peak heights in the correlation plane and the other on the velocity magnitude. Based on a cartesian 

coordinate system with the origin located on the centre of the downstream surface of the swirler and the 

z-axis aligned with the axis of the pipe, the PIV data were collected in a vertical diametrical section of 

total length of 75 mm, starting at the z coordinate equal to 60 mm (green section in Figure 3). From the 

instantaneous flow field, the mean axial (corresponding to the z-velocity component) and the vertical 

velocity components, U and V, and the axial and vertical root mean square (rms) velocity fluctuations, 

u and v, were obtained. The y coordinate is positive if directed to the top of the pipe, the z coordinate is 

positive if directed towards the tube outlet.  
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Figure 2 – Experimental axial profiles of mean  vertical and axial velocity, V and U, and vertical and axial root mean square 

(rms) velocity fluctuations, v and u. Velocities are collected at y=0 and a liquid flow rate of 20m3/h, without gas. The measurements 

were obtained with a different number of image pairs 

A differential manometer was employed to measure the concentrated pressure drop due to the inline 

separator. Two sampling zones located 1 m before and 2.16 m after the swirler were considered. The 

pressure drop due to the swirler was obtained as the pressure drop measured with the swirler minus the 

(distributed) pressure drop due to the pipe, measured without the swirler.  

In gas-liquid conditions, the camera view for the bubble size distribution (BSD) measurements was 

located at 0.45m < z < 0.56m (yellow section in Figure 3). The BSD was obtained by capturing and 

processing 400 images, collected in single frame mode. The pipe was illuminated adopting a 

diffused/incoherent light emitted by five tubular neon lamps at 50 kHz. The number, dimensions and 

position of the lamps were chosen for obtaining an almost uniform illumination of the selected pipe 

portion. The camera was placed at the pipe side opposite with respect to the lamps, thus enhancing the 

contrast between the image background and the bubble shadow. The exposure time was optimised to 

avoid the distortion effects due to the bubble motion. Only the bubbles contained in the thin slab 

identified by a focal depth of a few millimetres were measured; in this way a reliable calibration factor 

could be adopted. The calibration factor between the CCD pixels and the real images was determined 
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by means of an object of known size placed in the focused region. The images were analyzed with the 

Canny algorithm, based on the identification of local maxima of the image gradients—the gradient being 

calculated using the derivative of a Gaussian filter [16]. The analysed zone was outside the central core 

of gas accumulation, and it extended radially up to the pipe wall, since in this zone the bubbles are not 

clustered, and they can be easily identified. Overall, about 20,000 bubbles were identified to obtain the 

bubble size distribution, ensuring statistically significant measurements. With the adopted technique and 

configuration, the minimum detectable bubble size was equal to 0.6mm. 

In addition, four hundred pictures of a pipe section were collected in the region located at 0.31m < z < 

0.46m (red section in Figure 3) in the gas-liquid operation. The images were converted in grayscale and 

from 4 pictures the grey values corresponding to a portion of pipe devoid of bubbles were taken. The 

average of the 400 frames was calculated and it was normalized between the gray value corresponding 

to just liquid and the maximum white level corresponding to the zones with high gas hold up, in order 

to normalize the picture from 0 to 1. The external pipe portion was cropped since the reflection on the 

pipe walls produced optical disturbances and the resulting image allows to obtain the shape and size of 

the central zone of gas accumulation. 

 

3. CFD simulations 

The set of equations solved in this work are presented in this section. Firstly, the equations for the 

determination of the single and two-phase flow are presented, together with the formulation of the 

interphase forces coupling the momentum conservation equations for each phase. The gas-liquid 

simulations were preliminarily run assuming a constant bubble diameter, then the bubble size was 

calculated from the solution of a population balance equation, which is presented in Section 3.2). 

3.1 Flow Equations 
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The Reynolds averaged formulation of the Two-fluid model equations assuming steady state, 

incompressible fluids and isothermal conditions read as: 

∇ ⋅ (𝛼𝑖𝜌𝑖𝒖𝒊) = 0 (1) 

∇ ⋅ (𝛼𝑖𝜌𝑖𝒖𝒊𝒖𝒊) = −𝛼𝑖∇𝑃 + 𝛼𝑖𝜌𝑖𝒈 + ∇ ⋅ (𝝉𝒊 + 𝝉𝒊
𝒕) + 𝑭𝑫 + 𝑭𝑻𝑫 (2) 

With 𝛼𝑖, 𝜌𝑖 and 𝒖𝒊 being the volume fraction, the density, and the mean velocity of phase i, respectively, 

P being the mean pressure shared by the phases, g being the gravitational acceleration, 𝝉𝒊 and 𝝉𝒊
𝒕 being 

the laminar and the Reynolds stress tensor, respectively, and the two last terms, 𝑭𝑫 and 𝑭𝑻𝑫, being the 

interphase drag and turbulent dispersion force. For single phase calculations, 𝛼𝑖 = 𝛼𝐿 = 1 and no 

interphase forces were considered. Both in single and two-phase calculations, the Reynolds stress tensor 

was calculated by adopting three different turbulence models: the standard k-ε turbulence model, the k-

ω shear stress transport (SST) turbulence model and the Reynolds stress model, RSM, as implemented 

in Ansys Fluent. The description of these three well-known turbulence models is omitted, and 

information can be found elsewhere [17,18]. Regarding the extension of these models to multiphase 

flows, the so-called dispersed formulation is adopted [19], as implemented in ANSYS Fluent 2020R2. 

For improving the stability of the simulation when the solution of the PBE was coupled with the flow 

equations, just the drag and the turbulent dispersion interphase forces were considered. Moreover, for 

bubbly flows in horizontal pipes a small effect of the lift and the wall lubrication force on the fluid 

velocities and gas distribution is reported [20]. The interphase drag force can be expressed as: 

𝑭𝑫 =
3

4𝑑𝐵
𝜌𝐿𝛼𝐿𝛼𝐺𝐶𝐷‖𝒖𝑮 − 𝒖𝑳‖(𝒖𝑮 − 𝒖𝑳) 

(3) 

Where 𝑑𝐵 is the bubble size and  𝐶𝐷 is the drag coefficient. In Eq. 3 the presence of both the gas and the 

liquid volume fractions derives from a force balance in an Eulerian frame [21,22] and it was 

demonstrated to limit the interphase force where gas segregation occurs [23]. The drag coefficient was 
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described with the Ishii and Zuber model [24], as previously done for a similar system [9]. The model 

assumes different drag coefficients depending on the shape of the bubbles and it reads as: 

𝐶𝐷 = max(𝐶𝐷
𝑠𝑝ℎ𝑒𝑟𝑒

, min(𝐶𝐷
𝑒𝑙𝑙𝑖𝑝𝑠𝑒

, 𝐶𝐷
𝑐𝑎𝑝

))  (4) 

With 𝐶𝐷
𝑠𝑝ℎ𝑒𝑟𝑒

, 𝐶𝐷
𝑒𝑙𝑙𝑖𝑝𝑠𝑒

and 𝐶𝐷
𝑐𝑎𝑝

 being the drag coefficients of spherical, ellipsoidal, and spherical cap 

bubbles. The 𝐶𝐷
𝑠𝑝ℎ𝑒𝑟𝑒

 is obtained from the Schiller and Naumann correlation [25] as a function of the 

bubble Reynolds number, 𝑅𝑒𝐵: 

𝐶𝐷
𝑠𝑝ℎ𝑒𝑟𝑒

=
24

𝑅𝑒𝐵

(1 + 0.15𝑅𝑒𝐵
0.687) 

(5) 

The 𝐶𝐷
𝑒𝑙𝑙𝑖𝑝𝑠𝑒

 is obtained from Eq. 6 as a function of the Eotvos number, 𝐸𝑜 Eq.7, and 𝐶𝐷
𝑐𝑎𝑝

 is assumed 

equal to 8/3: 

𝐶𝐷
𝑒𝑙𝑙𝑖𝑝𝑠𝑒

=
2

3
√𝐸𝑜  

(6) 

𝐸𝑜 = 𝑔(𝜌𝐿 − 𝜌𝐺)𝑑𝐵
2 /𝜎  (7) 

With 𝜎 being the interfacial tension between air and water assumed equal to 0.072 N/m. 

The turbulent dispersion force was modelled with the Favre Averaged Drag (FAD) model as proposed 

by Burns et al. [26], and it reads as: 

𝑭𝑻𝑫 =
3

4𝑑𝐵
𝛼𝐿𝛼𝐺𝐶𝐷

𝜇𝐿
𝑡

𝑆𝑐𝐿
𝑡

‖𝒖𝑮 − 𝒖𝑳‖ (
∇𝛼𝐺

𝛼𝐺
−

∇𝛼𝐿

𝛼𝐿
) 

(8) 

Where 𝜇𝐿
𝑡  is the turbulent viscosity and 𝑆𝑐𝐿

𝑡 is the liquid phase turbulent Schmidt number equal to 0.9. 

3.2 Population Balance Equation 

In order to close the set of equations presented in Section 3.1) a bubble size must be provided. In this 

work either a single constant bubble diameter or a population of bubbles with different diameters are 
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considered. In this section the population balance equation, PBE, solved to determine the bubble size in 

the system is presented. 

The bubble size number density function (NDF), 𝑛(𝑑𝐵), transport equation can be expressed as follows: 

𝜕𝑛(𝑑𝐵)

𝜕𝑡
+ ∇ ⋅ (𝑢𝐺𝑛(𝑑𝐵)) = 𝐵𝐵 + 𝐵𝐶 − 𝐷𝐵 − 𝐷𝐶 

(9) 

Where on the right-hand side of Eq. 9 the birth, 𝐵, and the death, 𝐷, discrete source terms due to breakup 

and coalescence events are reported. 

The breakup birth and death rates are described by Eq. 10: 

𝐵𝐵 − 𝐷𝐵 = ∫
Ω(𝑑𝐵, 𝛿𝐵)

𝑛(𝑑𝐵)
× 𝑛(𝑑𝐵)𝑑𝛿𝐵

∞

𝑑𝐵

− 𝑏(𝑑𝐵)𝑛(𝑑𝐵) 
(10) 

Where the total breakage frequency, Ω(𝑑𝐵, 𝛿𝐵), and the breakage frequency function, 𝑏(𝑑𝐵), are 

modelled with the Luo and Svendsen [27] breakup model, which assumes that binary breakage of 

bubbles is determined by the energy level of the colliding eddies [28]. The total breakage frequency can 

then be expressed as: 

Ω(𝑑𝐵, 𝛿𝐵)

𝑛(𝑑𝐵)
= 0.923(1 − 𝛼𝐺) (

𝜀

𝑑𝐵
2 )

1/3

∫
(1 + 𝑍)2

𝑍
11
3

1

𝑍𝑚𝑖𝑛

exp (
−12𝑐𝑓(𝑑𝐵, 𝛿𝐵)𝜎

𝛽𝜌𝐿𝜀
2
3𝑑𝐵

5
3 𝑍

11
3

) 𝑑𝑍 

(11) 

With 𝑑𝐵 and 𝛿𝐵 being the parent and child diameter, respectively, 𝜀 being the turbulent dissipation rate 

of the liquid phase, 𝑍 being the ratio between the size of the eddy and the diameter of the bubble, 𝛽 

being a model constant equal to 2.045 and 𝑐𝑓 being the so-called surface energy increase constraint, 

defined as: 

𝑐𝑓(𝑑𝐵, 𝛿𝐵) = (
𝑑𝐵

3

𝛿𝐵
3)

2
3

+ (1 −
𝑑𝐵

3

𝛿𝐵
3)

2
3

− 1 

(12) 
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The lower limit of integration in Eq. 11 is assumed as 𝑍𝑚𝑖𝑛~(11.4 ÷ 31.4)𝜂, with 𝜂 being the 

Kolmogorov length scale. The breakage frequency function can be obtained from the total breakage 

frequency as: 

𝑏(𝑑𝐵) =
1

2
∫

Ω(𝑑𝐵, 𝛿𝐵)

𝑛(𝑑𝐵)

3𝛿𝐵
3

𝑑𝐵
3

𝑑𝐵

2
1
3

0

𝑑𝛿𝐵 

(13) 

Where the term multiplying the integral accounts for binary breakage.  

The birth and death rates due to coalescence phenomena are obtained as: 

𝐵𝐶 − 𝐷𝐶 =
1

2
∫ 𝑎 ((𝑑𝐵

3 − 𝛿𝐵
3)

1
3, 𝛿𝐵) 𝑛 ((𝑑𝐵

3 − 𝛿𝐵
3)

1
3) 𝑛(𝛿𝐵)𝑑𝛿𝐵

𝑑𝐵

0

− 𝑛(𝑑𝐵) ∫ 𝑎(𝑑𝐵, 𝛿𝐵)𝑛(𝛿𝐵)𝑑𝛿𝐵

∞

0

 

(14) 

With 𝑎(𝑑𝐵, 𝛿𝐵) being the aggregation kernel, consisting of two parts, the collision frequency and the 

coalescence efficiency [29]. In this work it was assumed that bubble collisions are dominated by 

turbulence fluctuations. The collision frequency was modelled with the kernel proposed by Prince and 

Blanch [30], which has a similar expression to the one derived by Coulaloglou and Tavlarides [31] 

assuming isotropic turbulence. The coalescence efficiency is defined as the ratio of the time required for 

bubbles to coalesce and the contact time between bubbles, and it was also described with the model 

proposed by Prince and Blanch [30] assuming bubbles with mobile surface. The resulting aggregation 

kernel reads as: 

𝑎(𝑑𝐵, 𝛿𝐵) =
𝜋√2

4
𝜀

1
3(𝑑𝐵 + 𝛿𝐵)2 (𝑑𝐵

2
3 + 𝛿𝐵

2
3)

1
2

exp (−𝛾
𝜀

1
3𝜌𝐿

1
2

𝜎
1
2

(
1

𝑑𝐵
+

1

𝛿𝐵
)

−
5
6

) 

(15) 

Where the exponential quantifies the coalescence efficiency and the model constant 𝛾 = 1.7 contains 

information regarding the initial and final liquid film thickness between the two colliding bubbles. Those 

two values were taken equal to the original values proposed by Prince and Blanch [30]. 
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Several breakup and coalescence kernels were developed for bubbly flows [29]. More advanced models 

consider the whole turbulence spectrum [32–34] to obtain breakup and coalescence rates, thus describing 

particle discrete events not only in the inertial subrange but also in the dissipation range [33]. These 

advanced models require higher computational costs. For this reason, as a first attempt to couple the 

TFM with the solution of PBE in pipes with compact swirlers, simpler and computationally cheaper 

kernels were firstly investigated. Future work may address a detailed comparison between experimental 

and numerical BSD, obtained with more advanced kernels. 

The population balance equation presented was solved with the Quadrature Method of Moments 

(QMOM) [35]. The moment transform was applied to Eq.9, thus obtaining the transport equation for the 

moments of the NDF [29]. In order to mathematically close the set of equations, the generic moment of 

order 𝑘, 𝑀𝑘, was then estimated with a quadrature approximation resulting in: 

𝑀𝑘 = ∫ 𝑛(𝑑𝐵)𝑑𝐵
𝑘𝑑𝑑𝐵

∞

0

≈ ∑ 𝑤𝑖𝜉𝑖
𝑘

𝑁𝑄

𝑖=0

 

(16) 

Where 𝑁𝑄 is the approximation order, 𝑤𝑖 are the quadrature weights and 𝜉𝑖 are the quadrature abscissas 

or nodes. In this study, 𝑁𝑄 was taken equal to three and the three weights and nodes are obtained from 

the solution of the transport equations of the first 6 moments of the NDF through the well-known 

Product-Difference algorithm [35]. The QMOM solution method is particularly convenient since it is 

quite computationally cheap and it allows for a fast calculation of the Sauter mean diameter, as the ratio 

of the third and second moment of the NDF, which is adopted in Eq.3 and Eq.8 for the calculation of 

the interphase forces.  

3.3 Numerical Solution Procedure 

The numerical simulations were run in ANSYS Fluent 2020 R2. A computational domain matching the 

geometry described in Section 2 was designed, with a pipe section 0.9m long before the swirler, equal 

to 10 pipe diameters, and a 0.91m long pipe section downstream the swirler, as shown in Figure 3. The 
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sections before and after the swirler allowed for a fully developed flow inside the pipe. The geometry 

was then discretized with three different meshes.  

 
 

(a) (b) 

Figure 3 – Cutaway drawing of the system geometry discretized with the coarsest mesh (a) and the swirler (b). The portion of 

pipe upstream the swirler and the terminal portion of the pipe are not shown. In green it is highlighted the vertical pipe section in 

which the single-phase PIV measurements are performed, in red the vertical section in which the gas-liquid measurement of the 

central core is performed and in yellow the vertical section in which the bubble size distribution was measured. The orange zone 

derives from the partial overlapping of the red and yellow zones. 

The swirler volume was discretized with tetrahedral cells while the rest of the pipe was discretized with 

hexahedral cells and the cells nodes between these different regions matched univocally, thus producing 

a conformal interface. The coarsest mesh consisted of nearly 200’000 cells and the finer meshes were 

obtained by subsequently dividing the edges of each cell in two, thus obtaining an intermediate mesh of 

around 1’500’000 cells and a fine mesh of 11’600’000 cells. 

At the solid walls of the system no-slip boundary conditions for both phases were enforced. The fluid 

inlet was modelled as a velocity inlet, and the system outlet was modelled as a pressure outlet with a 0-

gauge pressure. 

The second order upwind discretization scheme was adopted for the momentum equations and the 

transport of turbulent variables, while the QUICK scheme was adopted for the volume fraction. The 

moment transport equations were discretized with the first order upwind scheme for stability purposes.  

The model equations in single-phase simulations were solved with a steady state solver. The converged 

flow field was used as initial conditions for the two-phase simulations with a constant bubble diameter. 
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A pseudo-transient approach with pseudo-time-steps of 0.001 s was adopted, to enhance the solution 

stability. The coupled solution of the flow equations and the PBE was achieved with a transient second 

order implicit solver with a time step of 0.001s, starting from the converged gas-liquid flow field 

obtained with a constant bubble diameter. 40 internal iterations for time step were employed and a total 

time of 4.2 seconds were simulated, following preliminary sensitivity tests. 

Convergence was evaluated by monitoring the scaled residuals which reached a plateau with values of 

the order of 10-5. The simulations were stopped once the velocities measured in several positions along 

the pipe reached a constant value, the average volume fraction inside the system did not change anymore 

and the total mass of fluid exiting the pipe equalled the total mass of fluid entering the system. When 

the solution of the PBE was performed, also the Sauter mean diameter in several positions was monitored 

until it reached the steady state. 

4. Grid independence study 

Single phase simulations with a water volumetric flow rate of QL = 20m3/h were run with the three 

turbulence models introduced in Section 3.1. The pressure drop obtained as the difference between the 

average pressure on a cross sectional pipe section just upstream the swirler and one just downstream is 

shown in Figure 4 as a function of the grid resolution, together with the volume average turbulent 

dissipation rate, < 𝜀 >. 
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(a) (b) 

Figure 4 – Average pressure drop in the swirler zone (a), and volume average turbulent dissipation rate (b) as predicted by 

different turbulence models and grids with different linear resolution. 

The dimensionless mesh resolution in Figure 4 is the average edge size in the swirler zone normalized 

with the finest mesh average edge size in the same zone, therefore the higher this parameter, the coarser the 

mesh. For each model, the pressure drop calculated with the coarse grid differs less than 15% from the same 

value obtained with the fine grid. The intermediate mesh requires less than 13% of the computational cost 

required by the fine grid and the pressure drop deviations from the fine mesh results is around 6% for each 

model, confirming that the predictions on the mean flow variables are close to grid independency. The 

experimentally determined pressure drop is equal to 1005 Pa, and it can be observed that all the models 

underpredict such value, with deviations around 14% for the k-ε and the k-ω models and around 8% for the 

RSM. The volume average turbulent dissipation rate obtained with the coarse grid is underpredicted by 

34%, 45.6% and 53.4% by the k-ε, the k-ω and the RSM models, respectively, with respect to the 

predictions with the fine grid. The < 𝜀 > deviations between the intermediate and fine grids are equal to 

11.6%, 19.4% and 26.8%, with the k-ε, the k-ω and the RSM models, respectively. These results confirm 

that in RANS simulations finer grids are required to obtain grid independent turbulent variables, with 

respect to mean flow variables [36]. 

Since a further grid refinement would prohibitively increase the computational costs, the Richardson 

extrapolations [37] on the pressure drop and on the volume average turbulent dissipation rate were 

calculated to estimate the numerical uncertainties. The extrapolation obtained with the three turbulent 

models shows that the pressure drop obtainable with an infinitely dense grid differs less than 5% from the 

experimental value, proving that the computational approach can realistically predict the pressure drop. The 

volume average turbulent dissipation rate obtained from the experimental pressure drop is equal to 0.38 

m2/s3. The Richardson extrapolations on <ε> underpredict the experimental value by less than 6%, with all 

the models considered. The results of the grid independence study are reported in Table 1. 
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Table 1 – results of the grid independence study 

 

# of cells 

Linear 

resolution - m 

ΔP - Pa <ε> - m2/s3 

k-ε  k-ω RSM k-ε  k-ω RSM 

Fine 11’5 0’2   5.2×10-4 862 869 925 0.30 0.27 0.24 

Intermediate 1’   ’ 2  0.0010 805 842 868 0.27 0.22 0.17 

Coarse 1  ’ 0  0.0016 759 795 811 0.20 0.15 0.11 

Richardson 

Extrapolation 

  

1005 960 1003 0.35 0.36 0.37 

The pressure drop power, obtained as Δ𝑃 ⋅ 𝑄𝐿, was compared with the integral of the turbulent 

dissipation rate over the whole mass in the system. A discrepancy of about and 33% was observed with the 

predictions obtained with the RSM with the fine mesh, while a value of 20% was observed with both the 

k-ε and the k-ω models with the same mesh. These results are in agreement with what was observed by 

other authors in the numerical simulation of similar systems [38,39]. The underprediction of the turbulent 

variables may affect the results obtained from the solution of the PBE. On the other hand, the kernel 

parameter values usually derive from fitting procedures based either on simplified model or on CFD 

simulations performed in relatively coarse grids. As a consequence, a more accurate description of the 

turbulent field may not improve the agreement between experimental and numerical BSD [40]. To 

overcome the uncertainties related to the underprediction of the turbulent dissipation rate in the calculation 

of the coalescence and breakage rates, grid independent kernel parameters [40] and grid-dependent 

corrections [40,41] on the turbulent variables were proposed. Nevertheless, no scalar corrections and grid 

independent parameters were adopted in this preliminary study. From this analysis it emerges that the 

results are not entirely grid independent, but grid independent results in the present case are unaffordable 

due to the large computational costs required. Adopting the fine grid leads to moderate improvements in 

the prediction accuracy of the mean flow and turbulent variables with respect to the intermediate grid. 

Conversely, the computational costs are almost one order of magnitude different. For these reasons, the 
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finest grid was adopted just for single-phase calculations, whereas the intermediate grid was adopted for 

gas-liquid simulations. 

 

5. Results 

In this section the single-phase results are compared against the experimental measurements, 

successively the gas-liquid predictions obtained with a constant bubble diameter are analyzed and lastly the 

results from the coupled solution of the flow equations and the PBE are discussed. 

5.1 Single-phase comparison of different turbulent models 

In this section the predictions obtained with different turbulent models are compared with experimental 

data and observations. Single phase simulations performed with the fine mesh and a liquid flow rate of 

20m3/h are compared against the PIV measurements in the same operative conditions to assess the accuracy 

of the results. The accuracy of the different turbulence models is discussed, and the most suitable model is 

identified and selected for the coupling of the PBE solution.  

The single-phase liquid velocity components on a plane reproducing the investigation area of the PIV are 

shown in Figure 5, Figure 6 and Figure 7. In this work, the axis origin is positioned at the centre of the hub, 

on the face downstream the swirler, and the z-axis is coincident with the pipe axis. Figure 5 shows that the 

mean axial liquid velocity is higher towards the walls of the pipe and that a low mean liquid velocity zone 

is found close to the pipe axis. In fact, the swirler imparts a rotation of the flow and the solid central hub 

offers a resistance to the flow towards the pipe centre. The slow-velocity central region is qualitatively well 

predicted by the k-ε model that better predicts the axial acceleration in this zone, compared with the k-ω 

and the RSM model. In particular, the k-ω model slightly shifts the mean liquid velocity profiles towards 

higher axial coordinates while preserving the qualitative mean velocity distribution pattern. Conversely the 

RSM does not predict the mean axial velocity gradients of neither the central slower zone nor the periphery. 

The velocity distribution may be affected by the slight geometrical differences between the experimental 
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rig and the computational domain, therefore some of the discrepancies may be due to this effect, especially 

at higher radial coordinates. 

 

Figure 5 – mean axial liquid velocity distribution on a plane downstream of the swirler as measured from the PIV (Exp) and 

as obtained from the simulations with different turbulence models. The liquid is flowing from bottom to top, and the color scale is 

in m/s. 

Figure 6 shows that all the turbulent models underpredict the mean y-velocity component magnitude. 

The asymmetrical distribution of the mean radial liquid velocity is correctly described by the numerical 

simulations, but the minimum velocity magnitude is underpredicted almost by a factor of two. The mean 

liquid vertical velocity component magnitude, which is equal to the radial velocity magnitude since the 

plane is collected at a x=0 coordinate, is around an order of magnitude smaller than the mean axial 

component. Therefore, even relatively large percentual variations may result in secondary absolute mean 

liquid velocity differences. 
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Figure 6 – mean liquid y-velocity distribution on a plane downstream of the swirler as measured from the PIV (Exp) and as 

obtained from the simulations with different turbulence models. The liquid is flowing from bottom to top, and the color scale is in 

m/s. 

The third out-of-plane x-velocity component of the liquid was not experimentally measured, but from 

the CFD simulations its magnitude is found to be less than half the mean liquid axial velocity magnitude, 

as shown in Figure 7.  
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Figure 7 - mean liquid x-velocity distribution on a vertical plane downstream of the swirler as obtained from the simulations 

with different turbulence models. The liquid is flowing from bottom to top, and the color scale is in m/s. 

Figure 7 shows that very similar mean x-velocity fields are predicted by the k-ε and the k-ω models, 

with a maximum velocity magnitude found at a radial coordinate of about 0.02 m. These two turbulence 

models predict a maximum in the magnitude of the mean x-velocity position that shifts towards higher 

radial coordinates as the flow moves from the swirler towards the exit. Conversely, the RSM predicts 

an opposite trend, with the radial position of the maximum mean x-velocity magnitude migrating 

towards the centre of the pipe as the flow moves away from the swirler. 

To quantitatively assess the agreement between the numerical predictions and the experimental results, 

several mean liquid velocity profiles at different coordinates were compared. By means of example, the 

mean axial velocity profiles in Figure 8 confirm the qualitative observation drawn from the maps. 

Namely, the k-ε model predicts mean axial velocity profiles that better agree with the experimental 

measurements and the mean y-velocity magnitude is underpredicted by each model. Since the flow is 

mainly developed in the axial direction, this could explain why the k-ε model qualitatively and 

quantitatively better agrees with the experimental results. Since the intermediate grid was adopted for 

the simulation of the gas-liquid flow, as stated in Section 4, in the following figures the velocity profiles 

obtained with said grid are reported as well, to assess its accuracy. 
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Figure 8 – axial and radial profiles of mean liquid axial velocity, U, and mean liquid y-velocity, V, at different axial and y 

coordinates as obtained from PIV measurements, Exp, and from the simulations with different turbulence models and different 

grids 

The predictions of the intermediate grid show little deviations from those obtained with the fine grid, 

except for the profiles obtained with the RSM, that exhibits stronger grid dependency, as it can be observed 

by the large differences in the velocity profiles. The mean deviation between the numerical results and the 

experiments was calculated. The smallest mean deviations are found using the k-ε turbulence model, with 

deviations about 0.1 m/s. The mean deviation adopting the k-ω model is about twice that of the k-ε 

turbulence model, in the axial direction, while deviations larger than 0.4m/s are found with the RSM. The 

deviations on the radial component are less relevant, being the magnitude of the radial velocity smaller. 

Together with the mean liquid velocity components, the liquid velocity fluctuations were also 

experimentally determined. A comparison between the experimental and numerical axial liquid root mean 
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square velocity fluctuation, u, and radial liquid root mean square velocity fluctuation, v, is presented in 

Figure 9 and Figure 10 for the results obtained both with the intermediate and with the fine grid. For the 

RSM, the root mean square of the velocity fluctuations is obtained from the solution of the Reynolds stresses 

transport equation. For the k-ε and k-ω models, the root mean square velocity fluctuations were obtained 

from the turbulent kinetic energy as: 

𝑢 = 𝑣 = √
2

3
𝑘 

(17) 

Figure 9 shows the axial profiles of u and v and, despite the adoption of a simplified turbulent 

descriptions, the agreement between experimental and numerical results is acceptable and consistent with 

what expected from RANS simulations. Also in this case, the RSM predicts profiles that differ the most 

from the experimental trends. In particular, the RSM predicts liquid velocity fluctuation with opposite 

trends with respect to the experimental measurements, especially at lower axial coordinates. Conversely, 

the two-equations k-ε and k-ω turbulence models generally better describe the liquid velocity fluctuation 

trends, with the former model predicting a better agreement with the experiments. The mean deviations 

between experimental and numerical fluctuating velocity components were calculated, as previously done 

for the mean velocity components. Comparable deviations are found adopting the fine grid and the 

intermediate grid. Values below 0.05 m/s  are generally found with all the adopted models and grids. 

The liquid velocity fluctuations profiles along the vertical coordinate, shown in Figure 10, qualitatively 

agree with the experimentally observed trends. As shown by the axial profiles, the fluctuation magnitudes 

are underpredicted, with a general better agreement for the fluctuations obtained with the k-ε turbulent 

model. The maximum deviations between experimental and numerical results are found towards the pipe 

walls. The mean deviations on both velocity fluctuations components are in the order of 0.1 m/s, with small 

variations depending on the turbulence model adopted. 
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Figure 9 – axial profiles of the liquid axial velocity fluctuations, u, and the liquid y-velocity fluctuations, v, at different y-

coordinates as obtained from PIV measurements, Exp, and from the simulations with different turbulence models and different 

grids 
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Figure 10 –profiles of the liquid axial velocity fluctuations, u, and the liquid y-velocity fluctuations, v, along the y-coordinate 

at different axial positions as obtained from PIV measurements, Exp, and from the simulations with different turbulence models 

and different grids. The legend is the same as in Figure 9 

Figure 9 and Figure 10 confirm that the grid has a negligible effect on the prediction of the fluctuating 

velocities, and, as in the case of the mean velocity profiles shown in Figure 8, the largest differences are 

observable on the fluctuating velocity profiles obtained with the RSM turbulence model. 

From the analysis of the single-phase flow field, it can be concluded that the k-ε turbulence model better 

describes the mean and fluctuating liquid flow fields in the system, despite the swirling flow generated by 

the static separator device. The reason may be that the tangential and radial velocity components are smaller 

than the axial velocity and therefore the limitation in the application of the k-ε turbulence model in this 

particular swirling flow are negligible. Moreover, as shown in Section 4, the RSM requires finer grids to 
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reach grid independent results. This may contribute to the uncertainties observed in the comparison between 

the predictions of this model with experimental data. 

Due to the differences in the computational times, the intermediate mesh was deemed to produce 

sufficiently reliable results and the two-phase simulations were conducted with such grid. 

5.2 Gas-liquid simulations with a constant bubble size 

Having quantified the effect of the grids on the results, gas-liquid simulations with the intermediate grid 

were performed, with a liquid flow rate of 25 m3/h, a gas flow rate of 7.5 L/min (0.45 m3/h) and a constant 

bubble diameter inferred from experimental observations. Results from the different turbulence models 

were compared against experimental observations in the same operative conditions. 

The normalized average of the gas distribution, Figure 11, obtained as described in Section 2, shows 

that in gas-liquid operations the lighter phase collects towards the centre of the pipe due to the swirling 

flow. In these operative conditions, the apparent acceleration due to the centrifugal force is larger than the 

gravitational acceleration up to 3.15 pipe diameters downwind the swirler. This acceleration is larger than 

50% of g up to 6.1 pipe diameters, and then it decreases as the flow moves downstream. Therefore, 

immediately after the swirler, gravity is overcome by the centrifugal acceleration, and up to 6 pipe diameters 

the magnitude of the relative forces is comparable. The high centrifugal acceleration determines the gas 

accumulation in the central zone of the pipe. 
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Figure 11 – normalized average of the gas-phase distribution on a vertical pipe section. The white hue is proportional to the 

gas phase hold-up while the black color represents the liquid phase. The flow develops from left to right. 

The gas accumulating in the zone immediately downstream of the swirler is observed to produce a conic 

shape, while transitioning to a cylindrical shape as the flows moves at higher axial coordinates. Figure 11 

clearly shows the central cylindrical zone in which the lighter gas-phase accumulates and at low axial 

coordinates the terminal part of the cone zone forming behind the inline swirler is visible. 

Collecting several pictures of the system as described in Section 2, it was possible to calculate the bubble 

Probability Density Function (PDF) in the zone around the central core of gas accumulation and the results 

are shown in Figure 12. 
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Figure 12 – bubble probability density function measured around the central core of gas accumulation   

The PDF shown in Figure 12 is not representative of the whole bubble population, since towards the 

centre larger bubbles are expected, but due to the higher gas accumulation in this zone, determining optical 

inaccessibility, a bubble size could not be directly measured. Based on the PDF shown in Figure 12, a 

constant bubble diameter equal to 1.2 mm was used as a first guess bubble size to obtain a gas-liquid flow 

field from which derive preliminary information. In Figure 13 the gas volume fraction distribution on a 

vertical plane passing through the centre of the pipe is shown, together with the experimental gas hold up 

distribution previously reported in Figure 11.  



29 

 

 

Figure 13 – gas volume fraction distribution on a vertical plane passing through the centre of the pipe, as obtained with 

different turbulence models. The flow develops from left to right. On the top, the experimental hold-up distribution, as shown in 

Figure 11, is reported for direct comparison. 

Figure 13 shows that qualitatively similar gas volume fraction distributions are obtained adopting either 

the k-ε or the k-ω turbulence model. On the other hand, the RSM predicts a higher accumulation of gas 

towards the centre. The comparison with the experimental hold-up highlights that the numerical simulations 

overpredict the size of the central zone of accumulation. Since a single bubble diameter is considered, in 

the centre the bubble size is likely underestimated, allowing more gas to accumulate there. The difference 

in the average gas volume fraction profile as predicted by the different models is shown in Figure 14. 
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Figure 14 – axial profile of average gas volume fraction on the pipe sections, as obtained with different turbulence models, as 

a function of the non-dimensional axial coordinate z/D. The gas volume fraction entering the pipe, inlet αG, is also reported 

The section-average axial profiles of the gas volume fractions shown in Figure 13 are reported in Figure 

14. The analysis of these two figures highlights that firstly gas accumulates in the region downstream of 

the swirler hub, then a cylindrical central region with high gas volume fraction develops, confining the gas 

phase towards the centre of the pipe. This behavior is also experimentally observed with the formation of 

the conical and the cylindrical central core of gas accumulation. The cone axial evolution, identified by the 

sharp reduction in average gas volume fraction observable in Figure 14, is analogously predicted by all the 

three turbulence models. The gas volume fraction axial gradient is very similar, but the zone predicted by 

the RSM is shifted towards higher axial coordinates. The zone affected by the swirler presence can be 

defined as the distance from the swirler at which the gas volume fraction recovers a value of ±5% of the 

inlet volume fraction value, and it is equal to 3.9 pipe diameters for the k-ε model, and 6.8 pipe diameters 

for both the RSM and the k-ω model. Close to the swirler a noticeable drift velocity between the two phases 

is induced, that causes a gas accumulation as show by the average gas volume fraction axial profile.  At a 

distance larger than 3.9-6.8 pipe diameters, depending on the turbulent model used, the drift velocity is 

practically negligible and therefore the average gas volume fraction becomes equal to the ratio of the gas 

and the mixture flowrates. This information can be useful to design the equipment to remove the gas fraction 

from the liquid stream. The axial extension of the cone zone is underpredicted by all the simulations, since 
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this zone disappears at a distance of 1.1-1.7 pipe diameters from the swirler, while it was experimentally 

observed to last up to 3.3 pipe diameters.  

Based on the results of this Section and Section 5.1, the k-ε turbulence model was deemed to be the most 

suitable to describe the fluid flow generating in the pipe equipped with the swirling inline separator, since 

it better describes the single-phase and produces realistic gas-liquid distributions. For these reasons, the k-

ε turbulence model was adopted in the simulations where the bubble size was determined from a population 

balance approach. 

5.3 Gas-liquid simulations with bubble size determined with a population balance approach 

Starting from the gas-liquid flow field obtained with a constant bubble diameter and the k-ε turbulence 

model, the population balance equation presented in Section 3.2) is solved either in a frozen flow field, thus 

decoupling the solution of the flow equations from the PBE, or simultaneously with the flow equations, 

thus obtaining a coupled solution. The simulations are performed with the intermediate grid, with a liquid 

flow rate of 25 m3/h and a gas flow rate of 7.5 L/min (0.45 m3/h).  

The Sauter mean diameter distributions predicted by the two approaches are reported in Figure 15. 

 

Figure 15 – Sauter mean diameter distribution on a vertical plane as obtained either with a decoupled or a coupled solution 

of the PBE with the flow equations. Color scale in m 

Figure 15 shows that the bubble Sauter mean diameters predicted with a decoupled approach are larger than 

those predicted with a coupled approach. Since the flow field is frozen and the interphase forces acting on 

the dispersed phase do not change with the size of the bubbles, very large bubbles accumulate in the central 
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slower zone. Conversely, in the coupled solution the interphase forces change depending on the local bubble 

size and just bubbles smaller than a critical size are collected in the centre. Larger bubbles move away from 

the slower central zone towards the top of the pipe where higher turbulent dissipation rates enhance breakup. 

As a result, the bubble Sauter mean diameter distribution is much narrower when the PBE is solved together 

with the flow equations, Figure 16.  

 

Figure 16 – mass weighted Sauter mean bubble diameter distribution in the system, as obtained either with a decoupled or a 

coupled solution of the PBE with the flow equations.  
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The PDF reported in Figure 16 is obtained by weighting the d32 on the gas mass and it is evident how the 

coupled solution of PBE and flow equations leads to a narrower Sauter mean diameter distribution. 

Interestingly, the bubble distribution is asymmetrical and very few bubbles larger than 3-3.5 mm are present 

in the pipe, due to the breakup of the larger bubbles that rise towards the high-turbulent-dissipation top 

section of the pipe. 

The bubble size distribution (BSD) obtained by the coupled solution of the PBE and the flow equations was 

compared with the experimentally determined BSD, and the results are presented as probability density 

functions in Figure 17. The numerical bubble size number distribution function was reconstructed assuming 

a lognormal distribution, where its mean and variance were obtained from the transported moments with 

an iterative procedure [35]. The NDF moments were volume averaged on the pipe section experimentally 

investigated for the determination of the NDF around the central core of gas accumulation. The investigated 

zone has an axial extension from 0.45m to 0.56m and a radial extension from 0.02m to 0.04m. The volume 

averaged moments were adopted in the moment-inversion algorithm, to obtain the PDF shown in Figure 

17. 

 

Figure 17 – Experimental (Exp) and numerical (CFD) probability density function around the central core of gas accumulation   

Figure 17 shows that a reasonable agreement was obtained between the experimental and numerical results. 

In both cases, a relatively narrow distribution was observable, with a numerical mean value, d10, of 1.4 mm 

and 1.3 mm for the experimental and numerical BSD, respectively. As discussed in Section 4), a 

discrepancy between the work done by the pressure drop and the total turbulent energy dissipation exists, 
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probably due to an underprediction of the turbulent variables due to an insufficient grid density [36,40]. 

This translates to a possible dependency of the calculated bubble size from the domain discretization, which 

is inevitable for most of practical applications. With the intermediate grid and the k-ε model adopted to 

obtain the results presented in this section, the underprediction of the turbulent dissipation rate is around 

29%. Grid independent kernel parameter values together with a grid dependent scalar correction in the 

formulation of the kernels, previously proposed and tested [40,42], may contribute to improve the 

agreement between numerical and experimental BSD. Moreover, a better agreement may be reached 

considering different kernels to model breakup and coalescence phenomena. The adopted kernels, albeit 

being computationally cheap, introduce uncertainties in the calculation of the daughter distribution function 

[42] and in the effect of the turbulent dissipation rate [33,43]. More advanced breakup and coalescence 

kernels will be tested in future works. Despite the discussed limitations of the computational approach, the 

presented method produces a realistic bubble size distribution that reasonably agrees with the experimental 

data. 

The gas volume fraction distribution obtained from the coupled solution of the PBE is reported in Figure 

18 and it is qualitatively similar to the gas volume fraction distribution obtained with a constant bubble 

diameter, observed in Figure 13. 

 

Figure 18 gas volume fraction distribution on a vertical plane passing through the centre of the pipe, as obtained from the 

coupled solution of the PBE. The flow develops from left to right. On the top, the experimental hold-up distribution, as shown in 

Figure 11, is reported for direct comparison. 
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Figure 18 shows that larger bubbles that result from coalescence phenomena reach the top of the pipe, 

where they flow touching the upper inner wall of the pipe, since the increased buoyancy does not allow for 

these bubbles to be re-entrained in the bulk of the flow. This results in a smaller central zone of gas 

accumulation that is in better agreement with the experimental hold-up distribution, compared to the single 

bubble diameter approach shown in Figure 13. 

To obtain practical information on the gas distribution, the size of the central cylindrical zone in which the 

gas accumulates is calculated for both the coupled PBE simulation and the experimental set-up. It should 

be pointed out that a direct comparison between numerical gas volume fraction and hold-up determined 

from the experiments is not possible, since it is not possible to correlate the gray scale to a gas volume 

fraction value. Nonetheless the size of the central gas accumulation zone was calculated as the limit on 

which a value of white equal to 0.1 was found, averaged on a 1cm moving window, roughly corresponding 

to the discernable black-white interface observable in Figure 11. This experimental profile was compared 

with the size of the central cylindrical zone obtained from the numerical simulation with a coupled PBE 

solution and the results are compared in Figure 19. 
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Figure 19 – profiles of the central zone of gas accumulation as experimentally determined, dashed red lines, and as predicted 

from the coupled PBE simulation, black solid lines. The experimental gas accumulation extension was identified with a white hue 

threshold of 0.1, while the numerical gas accumulation extension was identified with a gas volume fraction threshold of 0.01.  

Figure 19 shows that the numerical simulation predicts the size of the central cylindrical zone of gas 

accumulation in sufficient agreement with the experimentally determined one. These results prove that the 

proposed computational approach can be adopted for simulating the gas-liquid flow field generated by a 

swirling inline separator. The numerical simulations may help in troubleshooting and design this kind of 

separators, while also aiding in the design and positioning of the equipment needed to extract the segregated 

gas-liquid phases. 

 

6. Conclusions 

A numerical approach for the simulation of inline swirler for gas-liquid operations is validated with 

single-phase and gas-liquid experimental data. The comparison allowed to test different turbulence models 

and the k-ε turbulence model provided better predictions in single-phase applications, with realistic 

predictions of the gas-liquid flow field. 
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A population balance model coupled with the flow equations revealed that the Sauter mean bubble 

diameter distribution is relatively narrow, since the breakup phenomena occurring towards the periphery of 

the pipe reduce the size of the larger bubbles migrating towards the top of the pipe. As expected, this 

phenomenon is not captured by decoupling the solution of the PBE from the flow equations. 

The proposed and validated computational approach allows to satisfactorily predict the bubble size 

distribution and the size of the central cylindrical core of gas accumulation. It also provides useful 

information on the gas accumulation zone, which may be exploited to design and position devices for the 

gas removal from the pipe. 

Future work will be addressed to improve the predictions of the gas-liquid distribution, especially close 

to the swirler with more comprehensive turbulent models, turbulent interactions, and interphase forces. The 

adoption of more advanced breakup and coalescence kernels, the effect of grid independent kernel 

parameters and a scalar correction in the PBE kernels will be tested to quantify the effect of the turbulent 

dissipation rate on the BSD. 
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