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Abstract

This paper discusses the results for the second edition of
the Monocular Depth Estimation Challenge (MDEC). This
edition was open to methods using any form of supervi-
sion, including fully-supervised, self-supervised, multi-task
or proxy depth. The challenge was based around the SYNS-
Patches dataset, which features a wide diversity of environ-
ments with high-quality dense ground-truth. This includes
complex natural environments, e.g. forests or fields, which
are greatly underrepresented in current benchmarks.

The challenge received eight unique submissions that
outperformed the provided SotA baseline on any of the
pointcloud- or image-based metrics. The top supervised
submission improved relative F-Score by 27.62%, while
the top self-supervised improved it by 16.61%. Super-
vised submissions generally leveraged large collections of
datasets to improve data diversity. Self-supervised submis-
sions instead updated the network architecture and pre-
trained backbones. These results represent a significant
progress in the field, while highlighting avenues for future
research, such as reducing interpolation artifacts at depth
boundaries, improving self-supervised indoor performance
and overall natural image accuracy.
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1. Introduction

Monocular depth estimation (MDE) refers to the task of
predicting the distance from the camera to each image pixel.
Unlike traditional geometric correspondence and triangula-
tion techniques, this requires only a single image. Despite
the ill-posed nature of the problem, deep learning has shown
rapid improvements in this field.

Unfortunately, many existing approaches have focused
solely on training and evaluating in an automotive urban
setting. This puts into question their ability to adapt to
previously unseen environments. The proposed Monocular
Depth Estimation Challenge (MDEC) aims to mitigate this
by evaluating models on a complex dataset consisting of
natural, agricultural, urban and indoor scenes. Furthermore,
this is done in a zero-shot fashion, meaning that the models
must be capable of generalizing.

The first edition of MDEC [77] focused on benchmark-
ing self-supervised approaches. The submissions outper-
formed the baseline [25,78] in all image-based metrics (Ab-
sRel, MAE, RMSE), but provided slightly inferior point-
cloud reconstructions [62] (F-Score). The second edition
of MDEC, detailed in this paper, ran in conjunction with
CVPR2023. This edition was open to any form of super-
vision, e.g. supervised, self-supervised or multi-task. The
aim was to evaluate the state of the field as a whole and
determine the gap between different supervision strategies.

The challenge was once again centered around
SYNS-Patches [1, 78]. This dataset was chosen due
its diversity, which includes urban, residential, indus-
trial, agricultural, natural and indoor scenes. Furthermore,
SYNS-Patches contains dense high-quality LiDAR ground-
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truth, which is exceedingly rare in outdoor environments.
This ensures that the evaluations accurately reflect the ca-
pabilities of each model.

Eight teams out of the 28 final submissions outperformed
the State-of-the-Art (SotA) baseline in either pointcloud- or
image-based metrics. Half of these submission were super-
vised using ground-truth depths, while the remaining half
were self-supervised with the photometric reconstruction
loss [25,28]. As expected, supervised submissions typically
outperformed self-supervised ones. However, the novel
self-supervised techniques generally outperformed the pro-
vided baseline, even in pointcloud reconstructions. The re-
mainder of the paper will provide the technical details of
each submission, analyze their results on SYNS-Patches
and discuss potential directions for future research.

2. Related Work
Supervised. Eigen et al. [22] introduced the first end-to-
end CNN for MDE, which made use of a scale-invariant
loss and a coarse-to-fine network. Further improvements
to the network architecture included the use of CRFs [53,
100], regression forests [72], deeper architectures [67, 88],
multi-scale prediction fusion [60] and transformer-based
encoders [9,15,66]. Alternatively, depth estimation was for-
mulated as a discrete classification problem [7,8,24,49]. In
parallel, novel losses were proposed in the form of gradient-
based regression [51, 84], the berHu loss [47], an ordinal
relationship loss [14] and scale/shift invariance [67].

Recent approaches focused on the generalization capa-
bilities of MDE by training with collections of datasets [7,
23, 66, 67, 69, 82]. This relied on the availability of ground-
truth annotations, including automotive data LiDAR [27,
32, 38], RGB-D/Kinect [16, 61, 79], SfM reconstructions
[50,51], optical flow/disparity estimation [67,88] or crowd-
sourced annotations [14]. These annotations varied in ac-
curacy, which may have impacted the final model’s perfor-
mance. Furthermore, this increased the requirements for
acquiring data from new sources, making it challenging to
scale to larger amounts of data.
Self-Supervised. Instead of relying on costly annotations,
Garg et al. [25] proposed an algorithm based on view syn-
thesis and the photometric consistency across stereo pairs.
Monodepth [28] incorporated differentiable bilinear inter-
polation [42], virtual stereo prediction and a SSIM+L1 re-
construction loss. SfM-Learner [108] required only monoc-
ular video supervision by replacing the known stereo trans-
form with a pose estimation network.

Artifacts due to dynamic objects were reduced by incor-
porating uncertainty [45,65,93], motion masks [12,20,31],
optical flow [57, 68, 98] or the minimum reconstruction
loss [29]. Meanwhile, robustness to unreliable photo-
metric appearance was improved via feature-based recon-
structions [76, 99, 105] and proxy-depth supervision [45,

73, 86]. Developments in network architecture design
included 3D (un-)packing blocks [32], positional encod-
ing [30], transformer-based encoders [2, 106], sub-pixel
convolutions [64], progressive skip connections [58] and
self-attention decoders [43, 91, 107].
Challenges & Benchmarks. The majority of MDE ap-
proaches have been centered around automotive data. This
includes popular benchmarks such as Kitti [27, 81] or the
Dense Depth for Autonomous Driving Challenge [32]. The
Robust Vision Challenge series [104], while generalization
across multiple datasets, has so far consisted only of auto-
motive [27] and synthetic datasets [10, 70].

More recently, Ignatov et al. introduced the Mobile AI
Challenge [40], investigating efficient MDE on mobile de-
vices in urban settings. Finally, the NTIRE2023 [102] chal-
lenge, concurrent to ours, targeted high-resolution images
of specular and non-lambertian surfaces.

The Monocular Depth Estimation Challenge se-
ries [77]—the focus of this paper—is based on the
MonoDepth Benchmark [78], which provided fair evalua-
tions and implementations of recent SotA self-supervised
MDE algorithms. Our focus lies on zero-shot generaliza-
tion to a wide diversity of scenes. This includes common
automotive and indoor scenes, but complements it with
complex natural, industrial and agricultural environments.

3. The Monocular Depth Estimation Challenge
The second edition of the Monocular Depth Estima-

tion Challenge1 was organized on CodaLab [63] as part
of a CVPR2023 workshop. The initial development phase
lasted four weeks, using the SYNS-Patches validation split.
The leaderboard for this phase was anonymous, where all
method scores were publicly available, but usernames re-
mained hidden. Each participant could see the metrics for
their own submission.

The final challenge stage was open for two weeks. In
this case, the leaderboard was completely private and par-
ticipants were unable to see their own scores. This encour-
aged evaluation on the validation split rather than the test
split. Combined with the fact that all ground-truth depths
were withheld, the possibility of overfitting due to repeated
evaluations was severely limited.

This edition of the challenge was extended to any form of
supervision, with the objective of providing a more compre-
hensive overview of the field as a whole. This allowed us to
determine the gap between different techniques and identify
avenues for future research. We report results only for sub-
missions that outperformed the baseline in any pointcloud-
/image-based metric on the Overall dataset.
Dataset. The challenge is based on the SYNS-Patches
dataset [1, 78], chosen due to the diversity of scenes and
1 https://codalab.lisn.upsaclay.fr/competitions/10031
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Table 1. SYNS-Patches. Distribution of images per category in the val/test splits.

Agriculture Indoor Industry Misc Natural Recreation Residential Transport Woodland Total

Val 104 67 36 72 36 14 13 4 54 400
Test 211 81 71 0 147 48 110 17 90 775

Total 315 148 107 72 183 62 123 21 144 1,175
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Figure 1. Depth Distribution Per Scene Type. Indoor scenes are limited to 20m, while outdoor scenes reach up to 120m. Natural and
Agriculture scenes contain a larger percentage of long-range depths (20-80m), while urban scenes focus on the mid-range (20-40m).

Figure 2. SYNS-Patches. Sample images from the diverse dataset scenes, including complex urban, natural and indoor settings. The
dataset contains high-quality ground-truth with 78.20% coverage. Depth boundaries were computed as Canny edges in the log-depth maps.

environments. A breakdown of images per category and
some representative examples are shown in Table 1 and
Figure 2. SYNS-Patches also provides extremely high-
quality dense ground-truth LiDAR, with an average cov-
erage of 78.20% (including sky regions). Given the dense
ground-truth, depth boundaries were obtained using Canny
edge-detection on the log-depth maps. This allows us to
compute additional fine-grained metrics for these challeng-

ing regions. As outlined in [78], the images are manually
checked to remove dynamic object artifacts.

Evaluation. Participants provided the unscaled disparity
prediction for each dataset image. The evaluation server
bilinearly upsampled the predictions to the target resolution
and inverted them into depth maps. Self-supervised meth-
ods trained with stereo pairs and supervised methods using
LiDAR or RGB-D data should be capable of predicting met-
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ric depth. Despite this, in order to ensure comparisons are as
fair as possible, the evaluation aligned predictions with the
ground-truth using the median depth. We set a maximum
depth threshold of 100 meters.
Metrics. We follow the metrics used in the first edition of
the challenge [77], categorized as image-/pointcloud-/edge-
based. Image-based metrics represent the most common
metrics (MAE, RMSE, AbsRel) computed using pixel-wise
comparisons between the predicted and ground-truth depth
map. Pointcloud-based metrics [62] (F-Score, IoU, Cham-
fer distance) instead evaluate the reconstructed pointclouds
as a whole. In this challenge, we report reconstruction F-
Score as the leaderboard ranking metric. Finally, edge-
based metrics are computed only at depth boundary pixels.
This includes image-/pointcloud-based metrics and edge ac-
curacy/completion metrics from IBims-1 [46].

4. Challenge Submissions
We outline the technical details for each submission, as

provided by the authors. Each submission is labeled based
on the supervision used, including ground-truth (D), proxy
ground-truth (D*) and monocular (M) or stereo (S) photo-
metric support frames. The first half represent supervised
methods, while the remaining half are self-supervised.

Baseline – S
J. Spencer1 j.spencermartin@surrey.ac.uk
C. Russell4 cmruss@amazon.de
S. Hadfield1 s.hadfield@surrey.ac.uk
R. Bowden1 r.bowden@surrey.ac.uk

Challenge organizers submission from the first edition.
Network. ConvNeXt-B encoder [56] with a base Mon-
odepth decoder [28, 59] from [78].
Supervision. Self-supervised with a stereo photometric
loss [25] and edge-aware disparity smoothness [28].
Training. Trained for 30 epochs on Kitti Eigen-Zhou with
an image resolution of 192× 640.

Team 1: DJI&ZJU – D
W. Yin8 yvanwy@outlook.com
K. Cheng9 chengkai21@mail.ustc.edu.cn
G. Xu9 xugk@mail.ustc.edu.cn
H. Chen7 haochen.cad@zju.edu.cn
B. Li10 libo@nwpu.edu.cn
K. Wang8 wkx1993@gmail.com
X. Chen8 xiaozhi.chen@dji.com

Network. ConvNeXt-Large [56] encoder, pretrained on
ImageNet-22k [21], and a LeReS decoder [97] with skip
connections and a depth range of [0.3, 150] meters.
Supervision. Supervised using ground-truth depths from a
collection of datasets [3,6,13,16,17,26,32,36,90,92,103].
The final loss is composed of the SILog loss [22], pair-
wise normal regression loss [97], virtual normal loss [95]

and a random proposal normalization loss (RPNL). RPNL
enhances the local contrast by randomly cropping patches
from the predicted/ground-truth depth and applying median
absolute deviation normalization [75].
Training. The network was trained using a resolution of
512 × 1088. In order to train on mixed datasets directly
with metric depth, all ground-truth depths were rescaled as
ŷ′ = ŷfc/f, where f is the original focal length and fc is
an arbitrary focal length. This way, the network assumed
all images were taken by the same pinhole camera, which
improved convergence.

Team 2: Pokemon – D
M. Xiang10 xiangmochu@mail.nwpu.edu.cn
J. Ren10 renjiahui@mail.nwpu.edu.cn
Y. Wang10 wangyufei777@mail.nwpu.edu.cn
Y. Dai10 daiyuchao@nwpu.edu.cn

Network. Two-stage architecture. The first part was
composed of a SwinV2 backbone [54] and a modified
NeWCRFs decoder [100] with a larger attention window.
The second stage used an EfficientNet [80] with 5 inputs
(RGB, low-res depth and high-res depth) to refine the high-
resolution depth.
Supervision. Supervised training using LiDAR/synthetic
depth and stereo disparities from a collection of datasets [5,
6, 11, 16–18, 22, 34, 37–39, 61, 71, 83–85, 88, 89, 92, 94, 96].
Losses included the SILog loss [22] (λ = 0.85) for metric
datasets, SILog (λ = 1) for scale-invariant training, the Hu-
ber disparity loss for Kitti disparities and an affine disparity
loss [67] for datasets with affine ambiguities.
Training. The final combination of losses depended on
the ground-truth available from each dataset, automati-
cally mixed by learning an uncertainty weight for each
dataset [44]. Since each dataset contained differently-sized
images, they were resized to have a shorter side of 352 and
cropped into square patches. Some datasets used smaller
crops of size 96 × 352, such that the deepest feature map
fell entirely into the self-attention window (11 × 11). A
fusion process based on [60] merged low-/high-resolution
predictions into a consistent high-resolution prediction.

Team 3: cv-challenge – D

C. Li13 lichao@vivo.com
Q. Zhang13 zhangqi.aiyj@vivo.com
Z. Liu13 zhiwen.liu@vivo.com
Y. Wang13 wangyixing@vivo.com

Network. Based on ZoeDepth [9] with a BEiT384-L back-
bone [4].
Supervision. Supervised with ground-truth depth from Kitti
and NYUD-v2 [61] using the SILog loss.
Training. The original ZoeDepth [9] and DPT [66] were
pretrained on a collection of 12 datasets. The models were
then finetuned on Kitti (384×768) or NYUD-v2 (384×512)
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for outdoor/indoor scenes, respectively. Different mod-
els were deployed on an automatic scene classifier. The
fine-tuned models were combined with a content-adaptive
multi-resolution merging method [60], where patches were
combined based on the local depth cue density. Since the
transformer-based backbone explicitly captured long-term
structural information, the original double-estimation step
was omitted.

Team 4: DepthSquad – D

M. Nam11 mwn0221@deltax.ai
H. T. Hoa11 hoaht@deltax.ai
K. M. Umair11 mumairkhan@deltax.ai
S. Hossain11 sadat@deltax.ai
S. M. N. Uddin11 sayednadim@deltax.ai

Network. Based on the PixelFormer architecture [2] which
used a Swin [55] encoder and self-attention decoder blocks
with cross-attention skip connections. Disparity was pre-
dicted as a discrete volume [7], with the final depth map
given as the weighted average using the bin probabilities.
Supervision. Supervised using the SILog loss w.r.t. the
LiDAR ground-truth.
Training. The model was trained on the Kitti Eigen-Zhou
(KEZ) split using images of size 370× 1224 for 20 epochs.
Additional augmentation was incorporated in the form of
random cropping and rotation, left-right flipping and Cut-
Depth [41]. When predicting on SYNS-Patches, images
were zero-padded to 384×1248 to ensure the compatibility
of the training resolution. These borders were remove prior
to submission.

Team 5: imec-IDLab-UAntwerp – MS

L. Trinh6 khaclinh.trinh@student.uantwerpen.be
A. Anwar6 ali.anwar@uantwerpen.be
S. Mercelis6 siegfried.mercelis@uantwerpen.be

Network. Pretrained ConvNeXt-v2-Huge [87] encoder with
an HR-Depth decoder [58], modified with deformable con-
volutions [19]. The pose network instead used ResNet-
18 [35].
Supervision. Self-supervised using the photometric loss [29]
and edge-aware smoothness.
Training. Trained on the Kitti Eigen-Benchmark (KEB)
split with images of size 192×640. The network was trained
for a maximum of 30 epochs, with the encoder remaining
frozen after 6 epochs.

Team 6: GMD – MS
B. Li12 1966431208@qq.com
J. Huang12 huang176368745@gmail.com

Network. ConvNeXt-XLarge [56] backbone and an HR-
Depth [58] decoder.
Supervision. Self-supervised based on the photometric

loss [29].
Training. Trained on KEZ using a resolution of 192× 640.

Team 7: MonoViTeam – MSD*
C. Zhao15 zhaocq@mail.ecust.edu.cn
M. Poggi14 m.poggi@unibo.it
F. Tosi14 fabio.tosi5@unibo.it
Y. Tang15 yangtang@ecust.edu.cn
S. Mattoccia14 stefano.mattoccia@unibo.it

Network. MonoViT [106] architecture, composed of
MPViT [48] encoder blocks and a self-attention decoder.
Supervision. Self-supervised on Kitti Eigen (KE) using
the photometric loss [29] (stereo and monocular support
frames) and proxy depth regression. Regularized using
edge-aware disparity smoothness [28] and depth gradient
consistency w.r.t. the proxy labels.
Training. Proxy depths were obtained by training a self-
supervised RAFT-Stereo network [52] on the trinocular
Multiscopic [101] dataset. The stereo network was trained
for 1000 epochs using 256×480 crops. The monocular net-
work was trained on KE for 20 epochs using images of size
320× 1024.

Team 8: USTC-IAT-United – MS
J. Yu9 harryjun@ustc.edu.cn
M. Jing9 jing mohan@mail.ustc.edu.cn
X. Qi9 xiaohua000109@163.com

Network. Predictions were obtained as a mixture of multiple
networks: DiffNet [107], FeatDepth [74] and MonoDEVS-
Net [33]. DiffNet and FeatDepth used a ResNet backbone,
while MonoDEVSNet used DenseNet [38].
Supervision. Self-supervised using the photometric
loss [29].
Training. The three models were trained with different res-
olutions: 320 × 1024, 376 × 1242, 384 × 1248, respec-
tively. All predictions were interpolated to 376×1242 prior
to ensembling using a weighted average with coefficients
{0.35, 0.3, 0.35}.

5. Results
Participant submissions were evaluated on

SYNS-Patches [1, 78]. As previously mentioned, this
paper only discusses submissions that outperformed the
baseline in any pointcloud-/image-based metric across the
Overall dataset. Since both challenge phases ran indepen-
dently and participants were responsible for generating the
predictions, we cannot guarantee that the testing/validation
metrics used the same model. We therefore report results
only for the test split. All methods were median aligned
w.r.t. the ground-truth, regardless of the supervision
used. This ensures that the evaluations are identical and
comparisons are fair.
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Table 2. SYNS-Patches Results. We provide metrics across the whole dataset and per scene-category. As expected, supervised methods
generally outperform self-supervised ones. The largest gap can be found in Indoor scenes, self-supervised methods were trained exclu-
sively on automotive data. Teams DepthSquad & imec-IDLab-UAntwerp outperformed the challenge baseline [78] by incorporating more
advanced network architectures.

Train Rank F↑ F-Edges↑ MAE↓ RMSE↓ AbsRel↓ Acc-Edges↓ Comp-Edges↓

Overall

DJI&ZJU D 1 17.51 8.80 4.52 8.72 24.32 3.22 21.65
Pokemon D 2 16.94 9.63 4.71 8.00 25.35 3.56 19.95
cv-challenge D 3 16.70 9.36 4.91 8.63 24.33 3.02 18.07
imec-IDLab-UAntwerp MS 4 16.00 8.49 5.08 8.96 28.46 3.74 11.32
GMD MS 5 14.71 8.13 5.17 8.97 29.43 3.75 17.29
Baseline S 6 13.72 7.76 5.56 9.72 32.04 3.97 21.63
DepthSquad D 7 12.77 7.68 5.17 8.83 29.92 3.56 35.26
MonoViTeam MSD* 8 12.44 7.49 5.05 8.59 28.99 3.10 38.93
USTC-IAT-United MS 9 11.29 7.18 5.81 9.58 32.82 3.47 43.38

Outdoor-Urban

DJI&ZJU D 1 16.41 7.37 3.81 7.82 21.85 2.91 24.36
imec-IDLab-UAntwerp MS 4 16.28 7.27 4.49 7.98 26.18 3.67 13.11
GMD MS 5 15.21 6.80 4.60 8.00 27.55 3.73 16.26
Pokemon D 2 15.10 8.48 4.03 6.90 23.67 3.36 19.13
cv-challenge D 3 15.01 7.79 4.26 7.70 22.88 2.87 15.73
Baseline S 6 14.09 6.48 4.77 8.43 29.10 3.89 22.75
DepthSquad D 7 12.90 5.92 4.49 7.80 27.44 3.26 35.36
MonoViTeam MSD* 8 12.52 5.89 4.37 7.62 26.46 2.83 40.33
USTC-IAT-United MS 9 11.31 5.73 5.14 8.69 30.64 3.13 40.15

Outdoor-Natural

Pokemon D 2 14.90 6.75 6.26 10.47 28.40 3.54 14.44
cv-challenge D 3 14.66 6.79 6.35 10.86 27.09 3.08 19.73
imec-IDLab-UAntwerp MS 4 14.43 6.02 6.51 11.43 30.57 3.59 9.44
DJI&ZJU D 1 14.31 6.07 5.97 10.81 26.48 3.45 17.75
GMD MS 5 12.89 5.74 6.77 11.62 32.57 3.68 13.97
Baseline S 6 12.10 5.32 7.46 12.86 36.89 3.84 18.35
DepthSquad D 7 11.54 6.03 6.87 11.52 33.66 3.36 32.47
MonoViTeam MSD* 8 10.98 5.38 6.66 11.13 32.19 3.13 36.01
USTC-IAT-United MS 9 9.26 4.92 7.69 12.22 38.14 3.36 42.92

Outdoor-Agriculture

DJI&ZJU D 1 16.36 5.24 5.17 10.13 29.07 3.43 18.84
Pokemon D 2 15.58 6.40 5.25 9.09 27.45 3.64 18.30
imec-IDLab-UAntwerp MS 4 14.94 5.49 5.70 10.14 30.70 3.75 10.27
cv-challenge D 3 14.68 5.82 5.61 10.02 25.90 3.17 17.67
GMD MS 5 14.03 5.06 5.65 9.98 30.40 3.80 15.94
Baseline S 6 12.26 4.76 6.10 10.84 33.58 4.00 18.73
DepthSquad D 7 11.56 4.55 5.61 9.79 31.16 3.60 35.30
MonoViTeam MSD* 8 11.15 4.52 5.62 9.61 31.43 3.17 39.06
USTC-IAT-United MS 9 10.27 3.97 6.34 10.76 33.61 3.40 38.73

Indoor

DJI&ZJU D 1 33.20 33.12 0.70 1.63 13.08 2.89 33.52
cv-challenge D 3 33.08 33.57 0.87 1.35 16.52 2.90 21.76
Pokemon D 2 32.05 32.53 0.83 1.26 16.00 4.11 45.68
imec-IDLab-UAntwerp MS 4 22.49 29.53 1.06 1.59 23.38 4.38 14.52
Baseline S 6 21.11 28.96 1.04 1.51 22.77 4.60 37.09
GMD MS 5 20.25 29.52 1.03 1.48 23.37 3.96 35.68
MonoViTeam MSD* 8 19.82 28.62 0.97 1.42 20.91 3.63 43.46
USTC-IAT-United MS 9 19.81 28.93 1.02 1.49 21.83 5.19 69.50
DepthSquad D 7 19.18 28.34 1.09 1.61 23.24 5.14 44.02

M=Monocular – S=Stereo – D*=Proxy Depth – D=Ground-truth Depth
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Figure 3. SYNS-Patches Depth Visualization. Best viewed in color and zoomed in. Most methods struggle with thin structures, such as
branches and railings. Object boundaries are also characterized by “halos”, caused by interpolation between foreground and background
objects. Notable improvements can be seen in Natural and Agricultural scenes, where the top submissions provide much higher levels of
detail than the baseline.

5.1. Quantitative Results

Table 2 shows the overall performance for each submis-
sion across the whole dataset, as well as each category. Each
subset is ordered using F-Score performance. We addition-
ally show the ranking order based on Overall F-Score for
ease of comparison across categories.

The Overall top F-Score and AbsRel were obtained by
Team DJI&ZJU, supervised using ground-truth depths from
a collection of 10 datasets. This represents a relative im-
provement of 27.62% in F-Score (13.72% – Baseline) and
18% in AbsRel (29.66% – OPDAI) w.r.t. the first edition

of the challenge [77]. The top-performing self-supervised
method was Team imec-IDLab-UAntwerp, which leveraged
improved pretrained encoders and deformable decoder con-
volutions. This submission provided relative improvements
of 16.61% F-Score and 4.04% AbsRel over the first edition.

As expected, supervised approaches using ground-truth
depth generally outperformed self-supervised approaches
based on the photometric error. However, it is interest-
ing to note that supervising a model with only automo-
tive data (e.g. Team DepthSquad, trained on KEZ) was
not sufficient to guarantee generalization to other scene
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types. Meanwhile, as discussed in [78], improving the pre-
trained backbone (Teams imec-IDLab-UAntwerp & GMD)
is one of the most reliable ways of increasing perfor-
mance. Alternative contributions, such as training with
proxy depths (MonoViTeam) or ensembling different ar-
chitectures (USTC-IAT-United), can improve traditional
image-based results but typically result in slightly inferior
reconstructions.

The top submission (DJI&ZJU) consistently outper-
formed the other submissions across each scene category,
demonstrating good generalization capabilities. However,
Teams Pokemon & cv-challenge provided slightly better
pointcloud reconstructions in Natural scenes. We theo-
rize this might be due to the use of additional outdoor
datasets, while DJI&ZJU primarily relies on automotive
data. It is further interesting to note that self-supervised
approaches such as Teams imec-IDLab-UAntwerp & GMD
outperformed even some supervised methods in Urban re-
constructions, despite training only on Kitti.

Finally, supervised methods provided the largest im-
provement in Indoor scenes, since self-supervised ap-
proaches were limited to urban driving datasets. DJI&ZJU
relied on Taskonomy and DIML, Pokemon on ScanNet,
SceneNet, NYUD-v2 and more and cv-challenge made use
of ZoeDepth [9] pretrained on the DPT dataset collec-
tion [66]. This demonstrates the need for more varied train-
ing data in order to generalize across multiple scene types.

5.2. Qualitative Results

Figure 3 shows visualizations for each submission’s pre-
dictions across varied scene categories. Generally, all ap-
proaches struggle with thin structures, such as the railings in
images two and five or the branches in image four. Models
vary between ignoring these thin objects (Baseline), treating
them as solid objects (USTC-IAT-United) and producing in-
consistent estimates (cv-challenge). Self-supervised meth-
ods are more sensitive to image artifacts (e.g. saturation or
lens flare in images one and three) due to their reliance on
the photometric loss. Meanwhile, supervised methods can
be trained to be robust to the artifacts as long as the ground-
truth is correct.

Object boundaries still present challenging regions, as
demonstrated by the halos produced by most approaches.
Even Team DJI&ZJU, while reducing the intensity of these
halos, can sometimes produce over-pixelated boundaries.
However, it is worth pointing out that many submissions
significantly improve over the Baseline predictions [78]. In
particular, Teams cv-challenge, imec-IDLab-UAntwerp &
GMD show much greater levels of detail in Urban and Agri-
cultural scenes, reflected by the improved Edge-Completion
metric in Table 2. This is particularly impressive given the
self-supervised nature of some of these submissions.

Unfortunately, self-supervised approaches show signifi-

cantly inferior performance in Indoor settings, as they lack
the data diversity to generalize. This can be seen by the
fact that many self-supervised approaches produce incor-
rect scene geometry and instead predict ground-planes akin
to outdoors scenes.

Images six, thirteen and sixteen highlight some interest-
ing complications for monocular depth estimation. Trans-
parent surfaces, such as the glass, are not captured when
using LiDAR or photometric constraints. As such, most ap-
proaches ignore them and instead predict the depth for the
objects behind them. However, as humans, we know that
these represent solid surfaces and obstacles that cannot be
traversed. It is unclear how an accurate supervision signal
could be generated for these cases. This calls for more flex-
ible depth estimation algorithms, perhaps relying on multi-
modal distributions and discrete volumes.

6. Conclusions & Future Work
This paper has summarized the results for the second edi-

tion of MDEC. Most submissions provided significant im-
provements over the challenge baseline. Supervised sub-
missions typically focused on increasing the data diver-
sity during training, while self-supervised submissions im-
proved the network architecture.

As expected, there is still a performance gap between
these two styles of supervision. This is particularly the case
in Indoor environments. This motivates the need for addi-
tional data sources to train self-supervised models, which
are currently only trained on automotive data. Furthermore,
accurate depth boundary prediction is still a highly chal-
lenging problem. Most methods frequently predicted “ha-
los”, representative of interpolation artifacts between the
foreground and background.

Future challenge editions may introduce additional
tracks for metric vs. relative depth prediction, as predict-
ing metric depth is even more challenging. We hope this
competition will continue to bring researchers into this field
and strongly encourage any interested parties to participate
in future editions of the challenge.
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falioglu, and Antonio M López. Monocular depth estima-
tion through virtual-world supervision and real-world sfm
self-supervision. IEEE Transactions on Intelligent Trans-
portation Systems, 23(8):12738–12751, 2021. 5

[34] Ankur Handa, Viorica Pătrăucean, Simon Stent, and
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[62] Evin Pinar Örnek, Shristi Mudgal, Johanna Wald, Yida
Wang, Nassir Navab, and Federico Tombari. From 2D to
3D: Re-thinking Benchmarking of Monocular Depth Pre-
diction. arXiv preprint, 2022. 1, 4

[63] Adrien Pavao, Isabelle Guyon, Anne-Catherine Letour-
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