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Abstract—Digital Twins (DTs) have recently emerged as a

valuable approach for modeling, monitoring, and controlling

physical objects in Industrial Internet of Things applications.

Measuring the quality of entanglement between the digital and

physical counterparts plays a crucial role in the adoption of

DTs. In this paper, we propose a concise yet expressive metric

for representing the quality of entanglement, namely Overall

Digital Twin Entanglement (ODTE), based on two key factors:

timeliness and completeness. Furthermore, the paper presents

the development of our industrial testbed implemented on top

of Kubernetes, where we show practical applications of the

proposed ODTE metric by highlighting and discussing its benefits

in realistic use cases.

Index Terms—Digital Twins, Entanglement, Industrial IoT

I. INTRODUCTION

Under the Industry 4.0 innovation umbrella, Digital Twins
(DTs) are finding a place in the realm of Industrial Internet
of Things (IIoT) applications [1], [2]. DTs have been defined
as digital entities connected to Physical Objects (POs) and
serving as their indistinguishable counterparts. While some
works focus on DTs for designing and simulating POs and
do not require a ’live’ connection between DTs and POs at
run-time (referred to as digital models in [3]), here we focus
on the application domain where DTs mediate the interactions
between applications and POs at run-time.

Because of their intrinsic relationship, DTs require regular
synchronization with their corresponding POs. Recent works
[4], [5], [6] characterize a small set of foundational properties
for DTs, among which reflection and entanglement are focused
on the requirement of keeping the DT and the PO synchronized
over time. More specifically, the reflection property (also
denoted as shadowing or mirroring) defines the digitalization
procedure allowing to clone and keep synchronized the behav-
ior and the states of the DT with the associated PO. On the
one hand, physical changes or events faced by the PO should
be reflected in the DT. On the other hand, variations occurring
to the DT should be forwarded to the physical entity to trigger
specific changes. In this context, the definition of entanglement

as the representation of the linkage and the instantaneous
exchange of information between DTs and POs highlights its
strong relationship with the reflection property.

For guaranteeing adequate levels of entanglement and en-
suring that DTs have a consistent representation of their
associated POs and vice versa, it is of paramount importance
to define a metric for measuring it. The standard set of

performance indicators for measuring network link perfor-
mance (required to keep DTs and POs entangled) is usually
indicated with the general term of QoS. Traditionally, QoS
focuses on network characteristics such as latency, jitter, and
packet loss, all of which, even if relevant, are not able to
capture application-specific nuances. For instance, an increase
of one second in network latency could be irrelevant for an
application requiring updates every minute while dramatic
for another one monitoring near real-time phenomena and
requiring at least ten updates per second. To avoid such issues,
alternative measures have been developed, e.g., Quality of
Experience (QoE) [7] or Quality of Information (QoI) [8],
with the goal of evaluating the performance of applications
instead of the network links they rely upon. However, existing
QoE definitions focus on evaluating application quality from
the lens of their users (e.g., video-conferencing) and are not
suited for unsupervised use cases (i.e., applications where
human feedback is unavailable). An analysis of the existing
literature led Fizza et al. [7] to conclude that measuring
QoE of applications where human involvement or feedback is
not readily available can be approximated by observing four
key features of collected data: timeliness (i.e., how fresh the
collected data are for actually making decisions), completeness

(i.e., the ratio of the amount of collected data to the total
amount of required data), accuracy (i.e., the precision of the
collected data), and usefulness (i.e., how useful the collected
data are for the application).

Based on these considerations, we propose an original
metric named Overall Digital Twin Entanglement (ODTE)

capable of capturing in a concise yet expressive way the
quality of entanglement between a DT and its connected PO.
It addresses timeliness and completeness while disregarding
accuracy and usefulness, which cannot be defined in a general
manner but rather should be defined at the application level.
ODTE provides, by definition, an easy-to-understand indicator
normalized between 0 and 1. In this way, it synthesizes
whether the state changes happening in both the DT and the
PO are effectively communicated to the counterpart, allowing
anyone (or anything) to monitor the communication process
without any a priori, application-specific knowledge.

The remainder of the paper is organized as follows. Section
II presents related work in the field. Section III outlines a
reference scenario and theoretically defines the ODTE metric.
Section IV details the in-the-field experiments that we de-



ployed within a real Kubernetes environment to quantitatively
measure the proposed metric for two different applications and
to highlight the benefits of the proposed metric. Section V
draws final remarks.

II. RELATED WORK

Several attempts have been made to define QoE-like metrics
capable of enriching traditional QoS indicators with a synthetic
representation of application-dependent qualities.

In the field of IoT systems, various attempts have been made
to measure application QoE via both subjective and objective
means. Concerning the subjective family, recent works [9],
[10], [11], [12] propose QoE metrics in different contexts.
However, these approaches do not assess how the application
QoE relates to the individual components of IoT applications
and models it through human evaluations. These approaches
are not suitable for evaluating the quality of DT entanglement
since it is a product of a machine-to-machine process. Con-
cerning the objective family, in [13], authors aimed to ensure
QoE through existing QoS metrics. They proposed a regression
model between QoE and QoS indicators (after extracting their
principal components). Their results show that, in case of
the absence of human feedback, QoE can be derived from
QoS parameters. In [14], authors proposed a QoE model for a
communication app. They identified five key factors impacting
QoE (i.e., integrality, retainability, availability, usability, and
instantaneousness) and measured them. The final QoE value
is a composition of these five measures, normalized between
0 and 1. Although these two proposals share several aspects
with ours (i.e., QoE key factors are identified, QoE measure
put in relation with lower-level QoS metrics, output values
normalized on a fixed range), they are not tuned for capturing
features of the DT entanglement.

In the field of manufacturing, it is widely used the Overall

Equipment Effectiveness (OEE) metric—a QoE-like measure
to evaluate production capabilities synthetically. It is defined
as the product of three key factors: availability (i.e., the ratio
of actually worked time to the total planned working time),
performance (i.e., the ratio of the number of completed tasks
to the number of tasks that could be hypothetically completed
in the same period), and quality (i.e., the ratio of the number
of tasks completed correctly to the total number of completed
tasks). Its output is normalized between 0 and 1. Despite
OEE shares many commonalities with ODTE, it lacks two key
aspects. Firstly, it has been specifically designed for industrial
rather than IoT environments. Secondly, it does not consider
the timeliness aspect (i.e., how fresh the collected data are
for actually making decisions), which is paramount for time-
dependent applications.

Finally, in the field of software engineering, [15] proposes
a metric for quantifying operational coupling in embedded
control systems. The quantification of the metric is performed
by considering the topology of connections, their multiplic-
ity, replication, frequency, and accuracy of properties of the
relationship. Then, individual couplings are combined into
an overall coupling, where domain-specific heuristics and

technology constraints are used to determine the weighting.
Since it could be possible to exploit DTs as control systems,
this approach could be applied to DTs as well. However, it is
very complex and largely takes into account structural aspects
of the software systems, which are not relevant for measuring
the entanglement.

III. MEASURING DIGITAL TWIN ENTANGLEMENT

This section explores the concept of entanglement and how
it is key for guaranteeing the reflection property between
DTs and POs. Starting from these considerations, the ODTE
metric is introduced and theoretically defined. From a general
perspective, the interactions between DTs and POs can unfold
in two key ways: (a) a state change in the PO has to be com-
municated to the DT; (b) a request to the DT from an external
service (e.g., an IIoT application) has to be communicated to
the PO and then a state change confirmation sent back to the
DT and the external service.

Fig. 1a schematically depicts the synchronization flow re-
quired to keep aligned the DT and PO states (denoted as
S
PO

i
and S

DT

i
) when the PO detects a state change. At the

beginning S
PO and S

DT are aligned at version 1 (t0). When a
new physical event (e.g., a change in the environment) occurs,
it triggers a variation of the physical state (changed to S

PO
2 )

and generates a state update toward the DT. At this point,
there is a misalignment between the two counterparts since the
physical variation has not yet been reflected on the DT (t1).
Only when the DT receives the state update and computes its
new state S

DT
2 the two counterparts are properly synchronized

(t2). In this first scenario, the entanglement is unidirectional
and directly reflects the time shift between the state of the
physical entity and its digitalized replica.

Fig. 1b, instead, represents a scenario where an action is
performed on the DT (e.g., from an IIoT application) and has
to be propagated to the PO. It is worth noting that an action
issued on the DT—aiming at modifying the state of the PO—
should be intended as another form of state synchronization.
When the DT receives the action, it notifies the PO about the
request and waits for its state transition (from S

PO
1 to S

PO
2 ).

Then, once the state change on the PO is confirmed, the state
of the DT is updated as well (from S

DT
1 to S

DT
2 ). In this

second scenario, the entanglement is even more relevant since
a bidirectional exchange of information is required.

A. Overall Digital Twin Entanglement (ODTE)

The main goal of the ODTE metric is to measure in a con-
cise yet expressive way the interactions involving state updates
between DTs and POs. Similarly to OEE, it is conceived as a
multiplication of factors resulting in a number between 0 and
1. The factors involved—timeliness and completeness—have
been suggested by Fizza et al. [7] for measuring the QoE of
applications where data features can be captured while human
feedback is unavailable. While we represent timeliness (T ) as a
single factor, completeness is represented with two sub-factors:
reliability (R), i.e., the ratio of the received state updates to
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Fig. 1: Unidirectional and bidirectional synchronization processes between the PO and DT.

the expected ones, and availability (A), i.e., the expected up-
time of the PO from the perspective of the DT. Accordingly,
ODTE is defined as:

ODTE = T ⇥R⇥A (1)

To quantify the timeliness of a state update, the DT needs to
track the rate of incoming status updates over time, the elapsed
time between when the PO produces a given update and when
the DT receives it, and how long the DT takes to change its
state (based on the received update). A suitable way to model
this phenomenon is by making use of histograms. The DT may
use a histogram to sample observations about the timeliness
of the received updates. In this case, an observation oi may
be defined as follows:

o
uni

i
= t

DT

i
� t

PO

i
+ t

exec

i
(2)

where
• t

DT

i
is the time at which the DT received the ith update;

• t
PO

i
is the time at which the PO had produced the ith

update;
• t

exec

i
is the time the DT took to change state as a result

of the ith update.
It is worth noting that ouni

i
only works for unidirectional en-

tanglement. In the case of bidirectional entanglement, instead,
an observation oi may be modeled as follows:

o
bi

i
= t

PO
0

i
� t

DT
0

i
+ o

uni

i
(3)

where
• t

PO
0

i
is the time at which the PO received the command

from the DT;
• t

DT
0

i
is the time at which the DT had issued the com-

mand.
We can now express the timeliness T as a quantile over a

time window:
T (', t, O) (4)

where
• 0  '  1 is the quantile;
• t is a time window (e.g., last 5 minutes);
• O is the set of observations about the received updates.

For example, T (0.99, now � 5m,O) = 0.100 means that
99% of the observations had timeliness of at most 100 ms over
the last 5 minutes. For computing a normalized metric such as
ODTE, it is useful to express the timeliness as a percentage
instead of in seconds. Thus, (4) may also be defined as:

T
0(Td, t, O) (5)

where Td is the desired timeliness.
Equation (5) expresses the timeliness as a percentage and

encapsulates any application-specific detail within the DT
itself. It is reasonable, in fact, to assume that a DT is aware
of the desired timeliness (Td) of its physical counterpart. For
example, if Td is set to 200 ms (i.e., anything lower than
200 ms fulfills the requirement), T 0(200ms, 5m,O) = 0.999
means that 99.9% of the updates had the desired timeliness.
By doing so, anyone (or anything) monitoring the DT can
understand if the timeliness of state updates respects the
entanglement requirements without any a priori, application-
specific knowledge.

Timeliness itself does not account for those updates which
are never received by the counterpart that, instead, are taken
into account by the completeness factor. As stated above, we
split the contribution of the completeness factor into two sub-
factors, namely R and A. Firstly, R measures the reliability of
an entity expressed as the ratio of the received state updates
to the expected ones within a specified time frame. Formally:

R(t, O) =
umeasured(t, O)

uexpected(t)
(6)

where
• umeasured(t, O) is the per-second average rate of the

received updates based on the set of observations O over
the time window t;

• uexpected(t) is the minimum per-second average rate
of the expected updates over the time window t. If
umeasured(t, O) > uexpected(t), then R(t, O) = 1.

For example, R(now � 5m) = 0.5 indicates that the
DT received half of the expected updates within the last 5
minutes. Secondly, A measures the availability of the PO over
a specified time frame. For example, A(now � 5m) = 0.5
means that the PO was active only half of the expected time



over the last 5 minutes. Putting the three components together,
the ODTE is defined as:

ODTE = T
0(Td, t, O)⇥R(t, O)⇥A(t) (7)

From an operational viewpoint, the DT should be responsi-
ble for quantifying its own ODTE to provide either human
operators or IIoT applications with a representation of its
entanglement. It would also be possible to compute the ODTE
outside the DT, e.g., by third parties services querying a time-
series database containing T , R, and A.

IV. EXPERIMENTAL EVALUATION AND DISCUSSION

A notable use case of the Industry 4.0 revolution is the
manufacturing sector. Typically, manufacturing firms are log-
ically structured on three primary levels, i.e., shop floor,
plant, and enterprise. Specifically, the shop floor level is
where industrial automation takes place. This level consists of
industrial machines, IIoT devices, human-machine interfaces,
and programmable logic controllers. Then, the plant level
is about the management of manufacturing processes whose
primary component is the Manufacturing Execution System
(MES). Lastly, the enterprise level is about decision-making
to run business operations. The Enterprise Resource Planning
(ERP) system helps managers make such decisions.

The Purdue model is arguably the most common network
implementation of such a logical structure. A pillar of the
Purdue model is the concept of network segmentation. In
particular, the Purdue model recommends a hierarchical ap-
proach that splits the industrial network into five layers, with
the first three layers related to Operational Technology (OT).
The shop floor components crafting goods belong to layer
0/1. This layer relies on a time-sensitive network connecting
industrial machines and programmable logic controllers. Then,
layer 2 hosts devices that control the crafting processes (e.g.,
human-machine interfaces), whereas layer 3 includes those
components that manage the whole manufacturing process
(e.g., the MES). Lastly, layers 4 and 5 are dedicated to
Information Technology (IT), such as web servers, email
servers, databases, and the ERP system.

From a network perspective, each layer of the Purdue
model is supposed to provide different performances. As a
rule of thumb, the lower, the better. For example, since the
goal of layer 0/1 is to meet safety-critical requirements, the
network is expected to provide high reliability and low latency
(e.g., within 10 ms). However, layer 0/1 does not provide
as abundant computing resources as the upper layers. In this
regard, layer 2 tends to provide worse network performance
(e.g., within 25 ms) than layer 0/1 but potentially more
computing resources and less stringent security requirements.
As a result, it is paramount to quantify the ODTE under
a spectrum of plausible network conditions to decide upon
the optimal deployment of DTs within the target industrial
environment.

A. Four Illustrative Scenarios for Entanglement

We elaborated on four illustrative scenarios pointing out
the main factors that may affect entanglement. Such scenarios

illustrate the interactions between IT and OT in IIoT envi-
ronments and how those interactions affect the entanglement.
Specifically, each scenario involves an OT technician working
on a PO and an IT technician working on a DT. For instance,
the former might be a shop floor operator operating on a
production line, while the latter might be a software archi-
tect deploying a DT as a microservice through a container
orchestration system.

1) Baseline: The baseline scenario describes the interac-
tions between IT and OT in a DT-based industrial environment
(see Fig. 2a). Under the baseline scenario, we assume that
those interactions do not disrupt the current entanglement
characterizing the communication relationship between the PO
and the DT. The OT technician interacts with the PO (e.g., a
production line) to craft goods and observes the PO status to
oversee what is going on. Additionally, the OT technician may
request a simulation to the DT and, based on the simulation
results, decide on the subsequent commands to send to the PO.
The IT technician, instead, only interacts with the DT. Such
interactions may relate, for example, to the deployment of the
DT. It is worth remarking that different layers of the Purdue
model provide different network performances, thus influenc-
ing the entanglement. Therefore, the IT technician should
plan the DT deployment carefully and re-plan it dynamically
according to the network conditions. As the number of DTs
grows, so does the complexity of making effective decisions
about their deployment. Thus, quantifying the entanglement in
a concise yet expressive way becomes even more critical.

2) Physical Reconfiguration: The physical reconfiguration
scenario sketches the case where an action of the OT tech-
nician on the PO disrupts the entanglement (see Fig. 2b).
For instance, the OT technician may change the configuration
of the PO, which may result in a different status update
rate, say halving the status updates per second. In turn, the
DT detects an abnormal entanglement because it still expects
double the status updates it is actually receiving. As soon as
the DT detects that the entanglement got disrupted, it notifies
the OT/IT technicians. At this time, the IT technician can
only infer that something is not going as expected. There-
fore, the OT technician, whose initial interaction caused the
misalignment between the PO and the DT, should notify the IT
technician about the change they made to the PO. Then, the IT
technician can update the configuration of the DT accordingly,
thus bringing the system back to a steady-state phase.

3) Digital Reconfiguration: The digital reconfiguration sce-
nario sketches the case where an action of the IT technician on
the DT disrupts the entanglement (see Fig. 2c). At first glance,
this scenario might seem symmetrical to the physical reconfig-
uration one, but it is not. In particular, the IT technician uses
the DT to change the configuration of the PO. For example,
the IT technician may halve the status update rate of the PO
through the DT. As soon as the DT receives the instructions
issued by the IT technician, it sets the PO accordingly. At this
time, the DT must wait until the PO reports a status update
reflecting a status change meeting the request(s) of the DT.
Then, the DT can notify the OT/IT technicians back. Note
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Fig. 2: Illustrative scenarios showing the main interaction patterns between the involved cyber-physical industrial entities.

that the OT technician might have already noticed that the PO
changed status because of physical feedback from the PO, e.g.,
a robot part of the production line where the OT technician is
operating changed position.

4) Anomaly Detection: Under the physical and digital
reconfiguration scenarios, an intentional action triggered the
course of action affecting the entanglement. In contrast, the
anomaly detection scenario is about things that could go wrong
unpredictably (see Fig. 2d). In particular, this scenario takes
into account anomalies striking either the PO (e.g., crash
of the production line), the environment (e.g., poor network
connectivity between the PO and the DT), or the DT (e.g.,
hardware fault of the server hosting the DT). Let us assume an
outburst of latency upon the communication link that connects
the PO and the DT. The DT can detect such an anomaly by
looking at the timeliness of the received status updates from
the PO. If we instead assume a crash of the PO, the DT can
detect that something is not as expected because of a drop
in the status update rate. Note that the OT technician may
also detect the crash of the PO through physical feedback,
e.g., the production line stops working. The recovery phase is
started by the actor that detects the anomaly first. In the former
case, the DT would start the recovery phase by notifying the
IT technician, who might decide, e.g., to redeploy the DT
somewhere else or fix the network. In the latter case, the OT
technician would start the recovery phase, e.g., by fixing the
PO. The outcome of the recovery phase is to bring the system
back to a steady-state phase.

B. Testbed and Experiments

An emerging trend in industrial environments is to adopt
cloud-oriented technologies, such as Virtual Machines (VMs)
and containers [16]. In particular, a microservice approach
makes software development, deployment, and management
more effortless. In fact, microservices are also gaining mo-
mentum in Industry 4.0 [17], [18] and represent a valuable
option for managing the lifecycle of DTs. Accordingly, we
relied on Kubernetes to build a representative testbed in line

with current industry trends. Specifically, Kubernetes—the de
facto industry standard container-orchestration system—is a
platform for automating the deployment, scaling, and manage-
ment of containerized applications. On top of Kubernetes, we
deployed Prometheus and Chaos Mesh. The former was used
to scrape metrics from DTs (deployed as containers through
Kubernetes), store such metrics in a time-series database, and
query the database to extrapolate aggregate insights. The latter
is a cloud-native chaos engineering platform for Kubernetes
that allows injecting a broad spectrum of faults into a target.
Through Chaos Mesh, we reproduced a broad spectrum of
network conditions under which we tested the effectiveness of
the proposed ODTE metric in quantifying the entanglement.

The testbed consisted of a Kubernetes cluster of four nodes,
each within its own VM. A single node acted as the master
(i.e., the node running the control plane) while the others
joined as workers (i.e., regular cluster nodes). Each VM was
equipped with 2 vCPU and 2 GB of RAM, each one based
on Ubuntu. The testbed was automatically configured in a re-
producible manner using Ansible, a well-known configuration
management tool that configures a set of target nodes over
SSH through a control node. In this way, we made up the
Kubernetes cluster (i.e., Kubernetes along with the ancillary
software required by Kubernetes to run successfully, such as
cri-o and Flannel) as well as deployed Prometheus and Chaos
Mesh. The project we developed to configure our testbed is
publicly available on GitHub1.

Through Kubernetes, we deployed a DT, a PO, and a
message broker as containerized applications. The DT was
implemented by creating a Java DT engine, which supports
built-in modularity and a microkernel-oriented structure. Such
an implementation relies on a shared multi-thread engine that
effectively implements the DT behavior while defining its
shadowing procedures, data processing, and interactions with
external entities through dedicated interfaces. The PO, which
mimics the behavior of an IIoT device, was also implemented

1https://github.com/fglmtt/kubemake/
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Fig. 3: Performance of the ODTE metric taking into account different relevant configurations and experimental scenarios.

in Java and, as the DT, exposes proper interfaces to make its
behavior configurable at run-time. The message broker was
Mosquitto, supporting the MQTT protocol. The PO sent status
updates to the DT as MQTT messages, i.e., publishing on a
specific topic to which the DT was subscribed. Analogously,
the DT issued commands to the PO publishing on another
topic to which the PO was subscribed.

To validate the ODTE metric, we first focused on the time-
liness factor in the context of an industrial environment based
on the Purdue model. In this regard, Table I details the network
conditions we injected while performing the experiments.
More specifically, we set the regular (R) network conditions
potentially affecting each layer of the Purdue model. For
example, a DT deployed at layer 0/1 under regular network
conditions experienced a one-way latency of 2.5 ms±2.5 ms

(with a correlation between consecutive packets of 25%) and
no packet loss. We also defined plausible deteriorated (D)
and critical (C) network conditions for each layer. These
experiments were conducted over a time window of 5 minutes.

TABLE I: Experiments based on the Purdue model layers
Purdue Model Network conditions Latency ± Jitter Loss

Layer 0/1
Regular (R) 2.5 ms ± 2.5 ms -
Deteriorated (D) 5 ms ± 5 ms 5 %
Critical (C) 12.5 ms ± 12.5 ms 15 %

Layer 2
R 12.5 ms ± 7.5 ms -
D 25 ms ± 15 ms 5 %
C 50 ms ± 30 ms 15 %

Layer 3
R 35 ms ± 15 ms -
D 70 ms ± 30 ms 5 %
C 175 ms ± 75 ms 15 %

We then explored the responsiveness of the ODTE metric
under the illustrative scenarios described in Section IV-A. The
physical reconfiguration scenario was emulated by halving the
status update rate sent by the PO to the DT, i.e., from 1 to
0.5 status updates per second. Then, we instantiated the digital
reconfiguration scenario by forcing the DT to calculate 17.5K
prime numbers while performing a state transition. Lastly, we
produced two instances of the anomaly detection scenario to
investigate the responsiveness of the ODTE metric to latency
(i.e., 50 ms ± 50 ms) and the combined effect of latency
(as before) and packet loss (i.e., 10%). We performed these
experiments in three phases (5 minutes each) over a time
window of 15 minutes overall. The first phase resembled the
baseline scenario, the second put into action a given scenario,
and the third consisted of rolling back what had been injected
to reproduce the scenario (thus bringing the system back to
the baseline).

C. Results

Fig. 3a shows the results we collected from the exper-
iments focusing on timeliness. The results are expressed
in percentiles, i.e., 90th, 95th, 98th, 99th, and 99.9th, and
computed based on the metrics Prometheus scraped over a 5-
minute window. Note that the left y-axis depicts the timeliness
expressed in ms on a logarithmic scale (base 10). The bottom
x-axis divides the figure into three vertical macro-sections,
each representing a layer of the Purdue model. The top x-
axis further divides those macro-sections based on plausible
network conditions, i.e., regular, deteriorated, and critical, that
might affect each layer of the Purdue model (see Table I). For



example, the yellow cross on the second column means that
95% of the status updates received by the DT had timeliness
of at most 20 ms over the observed 5-minute window. The
solid red horizontal line distinguishes the layers of the Purdue
model that fit a DT with desired timeliness of 50 ms between
those that do not. If the target is the 90th percentile, then layer
0/1 represents a suitable option under any network condition.
Layer 2 is also a suitable option but only up to the deteriorated
network conditions (the 90th percentile almost doubled the
desired timeliness while critical network conditions occurred).
The dashed blue horizontal line, instead, refers to a DT whose
desired timeliness is 100 ms. If we still assume that the target
is the 90th percentile, then both layers 0/1 and 2 are suitable
deployment options under any network condition.

Fig. 3b, 3c, 3d, and 3e show the responsiveness of the ODTE
metric over a 15-minute time window concerning the exper-
iments instantiating the (a) physical reconfiguration scenario,
(b) digital reconfiguration scenario, (c) the anomaly detection
scenario where the anomaly was an outburst of latency, and
(d) where two anomalies were in place simultaneously, i.e.,
latency and loss. Such figures depict three lines, i.e., red, blue,
and green, each plotting the ODTE computed on a different
sliding window (see the abbreviation SW in the legend), i.e.,
30 s, 2 min, and 5 min, respectively. On the one hand, a shorter
sliding window makes the ODTE metric more responsive (the
red line reacts faster than the others to the scenario). On
the other hand, a shorter sliding window makes the ODTE
metric more sensitive to noise. The wide fluctuations depicted
in Fig. 3e (see the red line) make evident the impact of a
shorter sliding window on the ODTE metric. However, this
does not mean that longer sliding windows are always better
than shorter ones. The sliding window width choice should
reflect the target DT sensitivity to short-lived variations of
the entanglement over time. Finally, Fig. 3f shows the ODTE
(sliding window of 30 s) concerning two DTs whose desired
timeliness was 50 ms (red line) and 100 ms (blue line),
and both were performing under the same anomaly detection
scenario with latency and loss as described above. Note that
it is straightforward to understand if the DT is experiencing a
"good" or "bad" entanglement. Also, the application-specific
knowledge, i.e., the desired timeliness, is embedded within the
ODTE metric. Finally, it is worth pointing out that the DT with
100 ms of desired timeliness was much less influenced (blue
line) by the scenario than the one whose desired timeliness
was 50 ms (red line).

V. CONCLUSIONS AND FUTURE WORK

In this work, we have presented ODTE—an innovative
metric for quantifying the quality of entanglement between
DTs and POs. The metric is based on factors, such as time-
liness and completeness, for computing QoE without relying
on subjective evaluations. More specifically, while timeliness
has been represented with a single term, completeness has
been split into two terms, namely reliability and availability.
ODTE provides technicians with a concise yet expressive value
normalized between 0 and 1, not requiring any application-

specific knowledge to be correctly understood. Experimental
results show that ODTE is responsive at quantifying the quality
of entanglement under IIoT scenarios of practical interest.
In future work, we plan to generalize the ODTE concept
and develop additional metrics that account for other aspects
of DTs, such as their interaction with external services and
emergent properties of ensembles or hierarchies of DTs.
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