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ABSTRACT 

 
Eumelanin is a redox active, quinone-based biopigment, featuring a broad band absorption in 
the UV-Vis region. The combination of the redox and optical properties makes eumelanin an 
interesting candidate to explore light-assisted storage technologies. Electrodes of melanin on 
indium tin oxide (ITO) current collectors were investigated for their morphological and 
voltammetric characteristics in aqueous electrolytes. Under solar light, we observed that the 
capacity and the capacitance of the melanin electrodes significantly increase with respect to 
the dark conditions (by 63% and 73%, respectively). 

 
INTRODUCTION 

In order to face possible energy shortages caused by the increasing world population, it is 
relevant to develop sustainable and efficient solar energy storage technologies, combining 
the solar energy conversion and electrochemical energy storage functions [1]– [4]. 

 
Scheme 1. Hydroquinone (H2Q), semiquinone (SQ) and quinone (Q) redox forms of the building blocks of eumelanin: 
5,6-dihydroxyindole (DHI) and 5,6-dihydroxyindole-2-carboxylic acid (DHICA). R is –H in DHI whereas R is the – 
COOH group in DHICA. The quinone imine form (QI) is the tautomer of Q. 

 

 
Nature is resourceful of environmentally benign and redox active materials, e.g. organic 
quinone-based species that can be assembled into energy storage devices [5]–[17]. 
Eumelanin is a quinone-based biopigment ubiquitous in flora and fauna. It has interesting 



physicochemical features, such as UV-Vis absorption, photoconductivity, hydration- 
dependent electrical conductivity, metal binding affinity (chelation) [18]–[20]. In 
eumelanin, different redox states coexist in the two building blocks 5,6-dihydroxyindole 
(DHI) and 5,6-dihydroxyindole carboxylic acid (DHICA) making up the biopigment 
(Scheme 1). Eumelanin-based electrodes have been employed in energy storage devices, 
such as supercapacitors and batteries. Photovoltaic cells including eumelanin have been 
reported in the literature [7], [21]–[24]. The broad band optical absorption of eumelanin 
can be explained by chemical disorder (co-existing chromophores) and geometric disorder 
models [25], [26]. 
In this work, we report on the capacity and capacitance of DHI-melanin and DHI/DHICA-
melanin on ITO current collectors (indium tin oxide) in aqueous electrolytes, as enhanced 
by solar light illumination [27], [28]. Synthetic, chemically controlled melanins, noted as 
DHI-melanin and DHICA-melanin, were obtained from the polymerization of the building 
blocks DHI or DHICA, respectively. DHI/DHICA- melanin (weight/weight 7/3), 
polymerized from both building blocks, was used to model the behaviour of natural 
melanin [29]. The transparent ITO current collector permitted rear illumination, expected 
to lead to higher solar light absorption, in turn leading to faster and higher electrochemical 
response, under solar light illumination, with respect to carbon paper current collectors. 
Scanning Electron Microscopy (SEM) images shed light onto the morphology of the 
material. Cyclic voltammetry of eumelanin, under dark and light conditions, was used to 
gain insight on the improvement of capacity and capacitance. 

 
EXPERIMENT 

 
 
 
Chemically controlled melanins, i.e. DHI-melanin and (7/3 weight/weight) DHI/DHICA 
melanin, were synthesized in situ on ITO surfaces by a solid-state polymerization method 
already reported in the literature [28]. 2 mg/mL solutions of DHI were prepared in ambient 
conditions and used as precursor. For DHI/DHICA-melanin, 10 mg of powder, including 
7 mg of DHI monomer powder and 3 mg of DHICA monomer powder, were dissolved in 
5 ml methanol, in ambient conditions, and the solution was used as precursor. Afterwards, 
the monomer solution (5 µl) was drop cast 3 times, sequentially, on the ITO surface 
(geometric area 1.56 cm2). Between each drop casting step, the  samples were exposed to 
NH3 vapors from NH3(aq) (Sigma Aldrich, 28-30% w/v), a polymerization catalyst, for 1 
hour. After the third drop cast step, samples were exposed to NH3 vapors from NH3(aq) 

(Sigma Aldrich, 28-30% w/v) for more than 65 hours, to complete the polymerization 
reaction. The loading of eumelanin on ITO was ca 20 µg cm-2. The morphology of the 
electrodes was examined by scanning electron microscopy (SEM, JEOL JSM7600F), with 
secondary electron mode, at an acceleration voltage of 5 kV. The morphology of the 
samples was examined by atomic force microscopy (AFM, D3100). 0.25 M buffer 
solutions of NaCH3COO, pH ca 5, were prepared from NaCH3COO (Sigma-Aldrich 
>99%) and CH3COOH (Sigma-Aldrich >99.7%), dissolved in DI water (18.2 MΩ cm). 
Electrochemical measurements were performed using a Biologic bipotentiostat (SP-300) 
in a three-electrode cell, with melanin loaded on ITO as the working electrode, a Pt mesh 
as the counter electrode and Ag/AgCl(aq) in 1 M KCl as the reference electrode. A solar 
simulator (SLB300A, Sciencetech) was used for electrochemical experiments under light 
conditions (1 sun, with air mass 1.5 G filter). The experimental configuration was realized 
by rear (back) illumination. 

 
RESULTS AND DISCUSSION 



 
We used SEM to characterize the morphology of DHI-melanin and DHI/DHICA- melanin 
samples loaded on ITO. SEM images show dark and bright regions in both DHI-melanin 
and DHI/DHICA-melanin samples (Figure 1). DHI-melanin samples are quite 
homogeneous in terms of coverage (Figure 1a, c). DHI/DHICA-melanin samples are 
composed of continuous regions and nanosized flakes, probably due to the aggregation of 
DHICA or DHI-DHICA components (Figure 1b, d) [30]. 
We performed cyclic voltammetry experiments following the protocol: dark (8 cycles) ® 
light (5 cycles) ® dark (5 cycles) ® light (5 cycles) in a suitable aqueous electrolyte 
(Figure 2). The choice of the slightly acidic electrolyte was determined by considering the 
favourable proton transport properties of eumelanin. [31] Broad redox features, slightly 
more pronounced under light irradiation, are observable at 0.05 V and -0.1 V vs Ag/AgCl. 
Apart from such broad features, the voltammograms are characterized by a quasi box-
shape behaviour, attributable to the pseudocapacitive nature of eumelanin, featuring 
Faradaic processes [21], [32], [33]. Light enhances the current in the quasi box- shaped 
voltammograms of eumelanin on ITO, suggesting the presence of a photo- enhanced 
pseudocapacitive behaviour (Table 1). For DHI-melanin, from dark (8th cycle) to light (10th 
cycle), the capacity (µC cm-2, the total electric charge accumulated by melanin per unit of 
surface) and capacitance (µF cm-2, the capability of melanin to accumulate electric charge 
per volt) both increase by about 50%. 
 

 

Figure 1. SEM images of (a, c) DHI-melanin and (b, d) DHI/DHICA-melanin on ITO (loading ca 20 µg cm-2). 
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Figure 2. Cyclic voltammetries of (a) DHI-melanin and (b) DHI/DHICA-melanin on ITO at 5 mV/s in NaCH3COO 

aqueous buffer solution at pH 5. Protocol: dark (8 cycles) ® light (5 cycles) ® dark (5 cycles) ® light (5 cycles). Only 
the cycle indicated in the legend is shown. 

 

 
 

 
Sample Condition Cycle number Capacity 

(µC cm-2) 
Capacitance 
(µF cm-2) 

DHI-melanin Dark 2 245 459 
4 216 409 
6 197 379 
8 188 361 

Light 10 252 495 
12 238 473 

Dark 14 235 432 
16 217 415 
18 211 409 

Light 20 312 617 
22 310 619 

DHI/DHICA-melanin Dark 2 419 554 
4 320 483 
6 215 359 
8 190 353 

Light 10 274 534 
12 267 532 

Dark 14 170 334 
16 156 308 
18 154 306 

Light 20 244 504 
22 237 497 

 

 
Table 1. Capacity (extracted from integration of current vs. time plots within the cathodic current range, not shown) and 
capacitance (extracted from linear regression of charge vs. potential plots within the cathodic current range, not shown) of 
DHI- and DHI/DHICA-melanin on ITO extracted from the cathodic current measured during cyclic voltammetry (Figure 
2). 
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Importantly, the improvement of the storage properties observed under light irradiation 
persists in the dark (e.g. cycle 15 vs cycle 8: capacity increases by 25% and capacitance 
by 30%). The second series of experiments under light irradiation (from 19th to 24th) gives 
even more encouraging results: ca 50% increase of capacity and capacitance, from dark to 
light conditions (18th to 20th cycle). In the case of DHI/DHICA-melanin, from dark to light 
(8th to 10th cycle), the capacity increases by 63% whereas the capacitance increases by ca 
73%. From the 18th cycle in the dark to the 20th under light irradiation, the capacity 
increases by 58% and the capacitance increases by 64%. Bare ITO does not contribute to 
the overall current (Figure 2). 

 
 

Condition Cycle DHI-melanin DHI/DHICA-melanin 
  Capacity 

loss 
Capacitance loss Capacity loss Capacitance loss 

Dark 2 to 5 25% 27% 13% 12% 
 5 to 8 8% 3% 8% 7% 

Light 10 to 13 6% 2% 4% - 
Dark 15 to 18 5% - 4% 2% 
Light 20 to 23 4% 3% 3% - 

 
Table 2. Capacity and capacitance losses during cycling for DHI- and DHI/DHICA-melanin on ITO (extracted from Table 
1). 

 
Interesting observations can be proposed with respect to the stability of the melanin 
samples on ITO. On the one hand, there are capacity and capacitance losses during cycling, 
possibly due to a limited compatibility of eumelanin on ITO surface (Table 2). From the 
15th to the 18th cycle, for DHI-melanin, the capacity decreases by 5%, whereas the 
capacitance is maintained. For DHI/DHICA-melanin, the capacity decreases only by ca 
4%, whereas the capacitance decreases only by 2%. On the other hand, our experiments 
suggest that the cycling stability of both melanins is acceptable after exposure to solar 
light. Surprisingly, the capacitance of DHI/DHICA-melanin is maintained during light 
irradiation. 



 
 
 
 
 

Scheme 2. Melanin photo-electrodes (a) positively biased and (b) negatively biased investigated in this work. 

 
We explain the increased response of DHI- and DHI/DHICA-melanin under irradiation 
conditions by the action of the light that increases the number of charge carriers stored in 
the melanin (Scheme 2). In the dark, the positively biased melanin electrodes (with redox 
species largely present in the SQ and Q redox forms) experience electron transfers from 
SQ to ITO to produce Q. When the light is absorbed by the melanin, it excites electrons 
from the ground electronic state to the excited state, from where electrons are, in principle, 
easily transferred to ITO. Therefore, the total capacity of the melanin is enhanced under 
irradiation by the higher number of electron transfer events, due to photoinduced transfers 
from the excited states taking place in parallel to the transfers due to the applied 
electrochemical potential. On the other hand, the negatively biased melanin electrode 
(with redox species largely present in the H2Q and SQ redox forms) in the dark, 
experiences electron transfers from ITO to SQ to produce H2Q. When the light is absorbed 
by the melanin, the electrons are promoted to excited state and easily transferred from ITO, 
e.g., to SQ to produce H2Q [34]. 

 
CONCLUSION 

 
In conclusion, we reported on the use of chemically controlled melanins (DHI- and 
DHI/DHICA-melanins) deposited on transparent Indium Tin Oxide (ITO) electrode 
current collectors as sustainable organic redox materials where the electrode capacity and 
capacitance are improved under solar light. The broad band absorption and the redox 
properties offer the possibility to enhance the storage properties of melanin electrodes 
under solar light. We observed that the solar light improves the capacitance, capacity (by 
63% and 73%, respectively, with DHI/DHICA-melanin) and stability of the melanin 
electrodes. Work is in progress to understand if there is an effect of the solar light on the 
structure of eumelanin on ITO to better explain the beneficial effects of the solar 
illumination on the storage performance and the good eumelanin stability on ITO. 
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