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Abstract 21 

Temperature is a relevant abiotic factor affecting physiological performance and 22 

distribution of marine animals in natural environments. The changes in global seawater 23 

temperatures make it necessary to understand how molecular mechanisms operate under 24 

the cumulative effects of global climate change and chemical pollution to promote/hamper 25 

environmental acclimatization. Marine mussels are excellent model organisms to infer the 26 

impacts of those anthropogenic threats on coastal ecosystems. In this study, 27 

Mediterranean mussels (Mytilus galloprovincialis) were exposed to different concentrations 28 

of the metal copper (Cu as CuCl2: 2.5, 5, 10, 20, 40 µg/L) or the antibiotic oxytetracycline 29 

(OTC: 0.1, 1, 10, 100, 1000 µg/L) at increasing seawater temperatures (16°C, 20°C, 30 

24°C). Transcriptional modulation of a 70-kDa heat shock protein (HSP70) and of the ABC 31 

transporter P-glycoprotein (P-gp, encoded by the ABCB gene) was assessed along with 32 

the cAMP/PKA signaling pathway regulating both gene expressions. At the physiological 33 

temperature of mussels (16°C), Cu and OTC induced bimodal changes of cAMP levels 34 

and PKA activities in gills of exposed animals. A correlation between OTC- or Cu- induced 35 

changes of PKA activity and expression of hsp70 and ABCB was observed. Temperature 36 

increases (up to 24°C) altered ABCB and hsp70 responses to the pollutants and disrupted 37 

their relationship with cAMP/PKA modulation, leading to loss of correlation between the 38 

biological endpoints. On the whole, the results indicate that temperature may impair the 39 

effects of inorganic and organic chemicals on the cAMP/PKA signaling pathway of 40 

mussels, in turn altering key molecular mediators of physiological plasticity and 41 

cytoprotection. 42 

 43 

Keywords: temperature; antibiotic; metal; stress response; transcriptional control; marine 44 

mussel. 45 

  46 
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1. INTRODUCTION 47 

Owing to its impact on biochemical and cellular machinery, temperature is a key 48 

abiotic factor affecting organism physiological performances and environmental distribution 49 

(Judge et al., 2018; Pörtner and Gutt, 2016). The changes in seawater temperatures 50 

associated with global climate change are fostering the research to understand the 51 

potential interactive effects of global warming with other sources of physiological stress in 52 

marine animals (Freitas et al., 2019; Sokolova and Lannig, 2008). To predict future 53 

scenarios, physiological studies attempt to determine the key physiological processes that 54 

set the limits of stress tolerance, how these operate in natural conditions where complex 55 

exposure scenarios occur, and whether species differ in acclimatization capacities for 56 

modifying their stress tolerances (Somero, 2012; Sulmon et al., 2015). In this regard, 57 

investigations of the regulatory mechanisms governing acclimatory and stress responses 58 

may provide early-warning molecular markers of animal-environment interaction and 59 

elucidate on how animal acclimatization is hampered under the cumulative effects of 60 

global warming and chemical pollution. 61 

Contamination by metals is a typical anthropogenic footprint in coastal areas (Hatje 62 

et al., 2018). Increasing temperatures can influence distribution and fate of metals in 63 

sediments and seawater, as well as their bioaccumulation in marine organisms. For 64 

example, temperature affects metal bioaccumulation by enhancing bioavailability 65 

(Sokolova and Lannig, 2008) or by increasing or decreasing animal uptake through altered 66 

ventilation and feeding activity that support the enhanced energy demand (Coppola et al., 67 

2018; Nardi et al., 2018; Negri et al., 2013). 68 

Amongst the emerging pollutants, antibiotics are attracting particular attention since 69 

relatively high concentrations are detected in various aquatic ecosystems as a 70 

consequence of their worldwide use to treat microbial infections and enhance the growth 71 

and feeding efficiency of livestock in aquaculture (Flandroy et al., 2018; Scott et al., 2016), 72 



 4 

resulting in the induction and spread of antibiotic resistance genes in natural microbial 73 

communities (Dantas et al., 2008; Zhang and Zhang, 2011). However, potential risks to 74 

non-target aquatic organisms via mechanisms that are apparently not related to the 75 

therapeutic actions of antibiotics are emerging (Stengel et al., 2016; Van Trump et al., 76 

2010). Chemical stability of these compounds is thought to decrease with increasing 77 

temperatures, thus modifying their environmental concentrations, bioavailability, and 78 

animal accumulation (Chang et al., 2012, 2019). 79 

Marine mussels (Mytilus spp.) are sessile organisms and often dominate coastal 80 

environments. They live in environments characterized by a wide array of salinities and 81 

temperatures, and are extremely tolerant to sudden changes of abiotic and biotic 82 

parameters, which makes them ideal model organisms for studying physiological 83 

alterations driven by environmental changes (Franzellitti et al., 2010; Viarengo et al., 84 

2007). 85 

This study aims to investigate whether temperature may influence the effects of the 86 

metal copper (Cu) or the antibiotic oxytetracycline (OTC), both commonly detected in 87 

coastal marine environments (Farajnejad et al., 2017; Scott et al., 2016), on the regulatory 88 

pathways that control cytoprotective responses contributing to physiological plasticity of 89 

the Mediterranean mussel (Mytilus galloprovincialis). Cu is an essential element released 90 

in the marine environment through a variety of anthropogenic sources (Wang et al., 2018). 91 

At elevated concentrations, Cu can induce redox reactions that generate reactive oxygen 92 

species (ROS) capable of direct damage towards cellular proteins, lipids, and DNA (Wang 93 

et al., 2018). OTC is extensively used in aquaculture because of its broad-spectrum 94 

efficacy in the treatment of infections caused by microorganisms (Limbu et al., 2018). 95 

Aquatic toxicity of OTC has been observed on several marine organisms, from algae to 96 

crustaceans and fish (Kołodziejska et al., 2013; Limbu et al., 2018; Wu and He, 2019). We 97 

assessed mRNA expression changes of a stress-inducible 70 kDa heat shock protein 98 
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(hsp70) and an ABCB transcript encoding the ABC (ATP-binding cassette) transporter P-99 

glycoprotein (P-gp) along with temperature and/or pollutant induced modulations on the 100 

cAMP/PKA signaling pathway that may exert both transcriptional and post-transcriptional 101 

control on these proteins (Fig 1). Specifically, the cAMP/PKA pathway is involved in the 102 

activation of the heat shock transcription factor 1 (HSF1) (Murshid et al., 2010), one of the 103 

main mediators inducing hsp70 gene transcription. It is also involved in ABCB 104 

transcriptional activation through several transcription factors (Franzellitti and Fabbri, 105 

2013; Yao et al., 2009). P-gp and HSP70 are important players in the core stress response 106 

machinery that operates as a broad-spectrum cell protective mechanism allowing marine 107 

mussels to tolerate thermal stress (Luedeking and Koehler, 2004), exposure to pollutants 108 

(Franzellitti and Fabbri, 2006) or physiologically-demanding environments (Franzellitti et 109 

al., 2010). Induction of hsp70 expression is a common response to temperature developed 110 

by mussels in variable thermal regimes (Lockwood et al., 2015; Morris et al., 2013). 111 

However, HSP70s are also induced by mussel exposure to metals and organics (Fabbri et 112 

al., 2008). The function of HSP70s under stress conditions is to assist in repairing, 113 

refolding, and protecting cellular proteins from damages, to minimize protein aggregation, 114 

or to facilitate degradation of irreparably damaged proteins, thus contributing to cell 115 

homeostasis (Fernández-Fernández et al., 2017). P-gp is the best characterized amongst 116 

the bivalve ABC transporters (Franzellitti and Fabbri, 2006). It is a phase 0 membrane 117 

transporter mediating the ATP-dependent extrusion of unmetabolized organic compounds, 118 

although it may be also involved in the response to further biotic and abiotic stressors 119 

(Buratti et al., 2013; Fu et al., 2019; Minier et al., 2000). 120 

Mussels were acclimated to 16°C, 20°C, and 24°C under laboratory conditions and 121 

subsequently exposed for 4 days to a wide range of copper (Cu as CuCl2) or 122 

oxytetracycline (OTC) nominal concentrations. Transcriptional levels of ABCB and hsp70, 123 

as well as cAMP tissue levels and activity of the cAMP dependent protein kinase A (PKA) 124 



 6 

were assessed in gills of exposed mussels. For the purpose of this study, this 125 

experimental setup attempts to discriminate the contribution of the chemical and the 126 

physical stressors on the observed molecular outcomes and the underlying regulatory 127 

impairments, and to drive hypotheses on critical mechanisms that challenge 128 

acclimatization of marine organisms to anthropogenically modified environments.  129 

 130 

2. METHODS 131 

 132 

2.1. Mussel handling and experimental setup 133 

Specimens of M. galloprovincialis (5-7 cm in length) were collected from the northwestern 134 

Adriatic Sea by professional fishermen of the “Cooperativa Copr.al.mo” (Cesenatico, Italy). 135 

They were transferred to the laboratory in seawater tanks with continuous aeration and 136 

kept for 6 days in aquaria containing 60 L of aerated 35 psu seawater at 16 °C, under a 137 

natural photoperiod (30 animals per aquarium). Mussels were fed once a day with an algal 138 

slurry (Koral filtrator, Xaqua, Italy). The duration of the acclimation proved suitable to 139 

stabilize the mussel physiological responses at the reference temperature of 16 °C (Banni 140 

et al., 2015; Viarengo et al., 2007). Fifteen mussels were sampled at zero time to assess 141 

parameters at the onset of each experiment. A scheme of the experimental setup is 142 

reported in Fig 2. Following the acclimation period, mussels were randomly selected and 143 

divided into groups of 20 animals each and transferred to aquaria containing 20 L of 144 

seawater. One liter of seawater per mussel is the suitable volume to avoid overloading and 145 

the onset of stress conditions. Four aquaria for each experimental condition were the 4 146 

replicates (N = 4). One group of 44 aquaria was maintained at the reference temperature 147 

(16°C) throughout the experimental treatment, while the other 2 groups (each of 44 148 

aquaria) were subjected to a gradual seawater temperature increase up to 20°C or 24°C 149 

(1°C per day) and maintained for 24 h at the settled temperature before exposure to the 150 
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chemical treatment. The reference temperature (16°C) and the highest exposure 151 

temperature (24°C) were derived from the time-series of monthly average SSTs recorded 152 

at the sampling area in the North-West Adriatic Sea (retrieved at the Copernicus Marine 153 

Service web portal, http://marine.copernicus.eu/), where 16°C matches the average 154 

annual temperature, and 24°C approaches the maximum annual recorded values. The 155 

20°C represents a projection of the average annual temperature estimated for the end of 156 

the century in the North-West Adriatic Sea (Shaltout and Omstedt, 2014). In each 157 

aquarium, water temperature was monitored throughout the acclimation and the 158 

experimental periods using FT-800 thermometers (Econorma, Treviso, Italy). Once the 159 

selected temperatures in the aquaria were established, mussels were treated for 4 days 160 

with nominal 2.5, 5, 10, 20, 40 µg/L Cu (as CuCl2) or 0.1, 1, 10, 100, 1000 µg/L OTC. OTC 161 

is found in seawater at the ng/L to µg/L concentrations (max concentration about 15 µg/L) 162 

(Chen et al., 2015). Cu concentrations tested in this study encompassed the range of 163 

values detected in the Adriatic Sea (from 0.5 µg/L to about 7 µg/L) (Munari and Mistri, 164 

2007; Zago et al., 2000). The selected Cu concentrations were previously shown to 165 

decrease lysosomal membrane stability (LMS) in exposed mussels, and to exert further 166 

sub-lethal health effects (Negri et al., 2013). OTC effects on LMS were assessed in 167 

preliminary experiments in haemocytes of mussels exposed in vivo to the antibiotic at 168 

16°C (Supplemental material, Fig S1). LMS was selected as the reference parameter in 169 

these preliminary evaluations on chemical concentration ranges to be tested as it is a 170 

sensitive and reliable biomarker of general health status in bivalves (Viarengo et al., 2007). 171 

All selected OTC concentrations significantly reduced LMS, a sign that mussels were 172 

subjected to a physiological stress. Acclimation periods at the selected temperatures and 173 

duration of chemical exposures were selected considering the dynamic ranges of the 174 

investigated biological endpoints, that constrained our experimental setup. Indeed, cell 175 

signaling pathways and transcriptional regulation of stress related genes, such as ABCB 176 
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and hsp70, are early and fast responses to environmental stimuli. Furthermore, according 177 

to our previous studies, a 4- to 7-day exposure proved suitable to develop measurable 178 

changes in the selected endpoints (Franzellitti et al., 2019, 2014, 2013). A group of 179 

unexposed (0 µg/L OTC or 0 µg/L Cu) mussels was maintained in parallel to the treatment 180 

groups within each temperature. Mussels exposed to 0 µg/L OTC or Cu at 16°C served as 181 

the reference condition for data comparisons and statistics. Seawater was renewed each 182 

day and the chemicals added from stock solutions along with mussel feeding. Exposures 183 

were conducted under dimmed light to minimize possible photodegradation, in particular of 184 

OTC (Jiao et al., 2008). 185 

For all experimental treatments, the gills were dissected from individuals, snap-186 

frozen in liquid nitrogen, and stored at -80°C. Gills were selected as they are the mussel 187 

filter-feeding organs and the major barriers between the external environment and internal 188 

organs, where physiological conditions are mostly imposed by the external environment 189 

(Musella et al., 2020). Therefore, gills are supplied with effective protective mechanisms 190 

(Franzellitti et al., 2016; Luckenbach and Epel, 2008). There was no mortality during the 191 

exposure period. Mussels at zero time were immediately analyzed for the biological 192 

endpoints to assess their initial health status; no significant differences compared to 193 

mussels maintained for 4 days under the reference treatment was observed (data not 194 

shown).  195 

 196 

2.2. Measurements of cyclic AMP (cAMP) levels and PKA activity in mussel gills 197 

For the evaluations of cAMP tissue content, samples (about 200 mg of pooled gills) 198 

were homogenized with 6% trichloroacetic acid and further processed as reported by 199 

Franzellitti et al. (2014). cAMP contents were assessed in the aqueous extracts through 200 

the DetectXTM direct cyclic AMP enzyme immunoassay kit (Arbor Assay, USA) according 201 
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to the manufacturer’s protocol. Results were finally expressed as pmol cAMP/g fresh 202 

tissue. 203 

For the evaluations of PKA activity, samples (about 200 mg of pooled gills) were 204 

homogenized in cold extraction buffer (25 mM Tris–HCl, pH 7.4, 0.5 mM EDTA, 0.5 mM 205 

EGTA, 10 mM -mercaptoethanol and proteinase inhibitor cocktail P8340 from Sigma 206 

Aldrich), and further processed according to Franzellitti et al. (2014). Supernatants were 207 

assayed for PKA activity using the non-radioactive PepTag PKA assay kit (Promega, 208 

Milan, Italy) according to manufacturer’s protocol. Results are expressed as nmol/min/mg 209 

total protein, with total protein content being estimated with Lowry’s method (Lowry et al., 210 

1951). 211 

 212 

2.3. Mussel ABCB and hsp70 mRNA expressions 213 

Gills (200 mg tissue) were homogenized in a suitable volume of the TRI Reagent 214 

(Sigma Aldrich, Milan, Italy) and total RNA was extracted using the DirectZol kit (Zymo 215 

Research, Freiburg, Germany) following the manufacturer's instructions. RNA 216 

concentration and quality were confirmed using the Qubit system with the Qubit RNA 217 

assay kit (Thermo Scientific, Milan, Italy), electrophoresis using a 1.2% agarose gel under 218 

denaturing conditions, and analysis of UV absorbance spectra of the samples (λ = 200 – 219 

340 nm) for the calculation of Absorbance (A) ratio A260/A280 (cut-off values > 1.8 and < 220 

2.0). First strand cDNA for each sample was synthesized from 1 µg total RNA using the 221 

iScript supermix (BioRad Laboratories, Milan, Italy) following the manufacturer's 222 

instructions. 223 

ABCB and hsp70 mRNA expressions were assessed by quantitative real-time PCR 224 

(qPCR) as reported in previous studies (Balbi et al., 2016; Franzellitti and Fabbri, 2013). 225 

Primer sequences and PCR conditions are reported in Supplemental material, Table S1. 226 

18S rRNA and elongation factor 1α were selected as reference gene products for qPCR 227 
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data normalization by a preliminary stability analysis of 6 established candidate transcripts 228 

(Balbi et al., 2016). Relative expression values of target mRNAs were inferred by a 229 

comparative CT method (Schmittgen and Livak, 2008) using the StepOne and DataAssist 230 

softwares (Thermo Fisher, Milan, Italy). Data were reported as relative expression (fold 231 

change) with respect to the reference treatment (0 µg/L Cu and 0 µg/L OTC at 16°C).  232 

 233 

2.4. Statistical analysis 234 

Statistical analysis of cAMP level and PKA activity data was performed using 235 

GraphPad Prism 8 (GraphPad Inc.). Significant differences between treatment groups 236 

were determined through the non-parametric one-way ANOVA (Kruskal-Wallis test) 237 

followed by the Mann-Whitney U-test, after deviations from parametric ANOVA 238 

assumptions being verified (Normality: Shapiro-Wilk's test; equal variance: Bartlett's test). 239 

qPCR data were analyzed using the REST software (Pfaffl et al., 2002) to test for 240 

statistical differences in mRNA levels of the treatment groups vs the reference condition. 241 

Further pairwise comparisons were performed with the Mann-Whitney U-test. Correlation 242 

analyses (Spearman's test), data visualization and graphics were obtained with the 243 

ggplot2 R package in R (R Development Core Team, 2018). In any case, statistical 244 

differences were accepted when p < 0.05. 245 

The complete datasets from Cu or OTC treatments were further analyzed by a 2-246 

way permutation multivariate analysis of variance (PERMANOVA) using PRIMER v6 247 

(Anderson et al., 2008) to test for the interactive effects of temperature and Cu or OTC 248 

treatments. Log-transformed variations of the target transcripts and log-transformed cAMP 249 

levels and PKA activities were used to calculate similarity matrices based on the Euclidean 250 

distance (999 permutations; P perm < 0.05).  251 

The Cu/OTC concentration-dependent trends of the biological endpoints were 252 

employed to calculate the Area Under the Curve (AUC) that gives a metric describing the 253 
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overall magnitude of cAMP, PKA, ABCB and hsp70 variations at the different 254 

temperatures. Values of AUC were computed by the trapezoidal formula (Fekedulegn et 255 

al., 2007) and using GraphPad Prism 8. Details for AUC calculation are reported by 256 

Franzellitti et al. (2018). 257 

 258 

3. RESULTS 259 

 260 

3.1. Variations of cAMP-related signaling parameters in gills of mussels exposed to Cu or 261 

OTC at increased seawater temperatures  262 

Results from PERMANOVA analyses demonstrated that temperature and OTC had 263 

an overall significant effect on both cAMP levels and PKA activity, while the effects of Cu 264 

on cAMP were statistically significant (P < 0.05; Table 1). PERMANOVA analysis also 265 

showed a significant interaction between each chemical and temperature (P < 0.05; Table 266 

1). 267 

Cu treatments at 16°C showed significant increases of cAMP levels and PKA 268 

activities up to 5 µg/L Cu, with values decreasing to control levels thereafter (Fig 3A,B). 269 

cAMP gill content increased both at 20°C and 24°C in 0 µg/L Cu samples (Fig 3A), while 270 

increasing (20°C) and decreasing (24°C) PKA activities compared to the reference 271 

condition (0 µg/L Cu at 16°C) were found (Fig 3B). Significant differences of tissue cAMP 272 

content between Cu-treated samples and the 0 µg/L Cu samples at the respective 273 

temperatures were significant at 2.5, 5.0 and 40 µg/L Cu (20°C), and at 40 µg/L Cu (24°C) 274 

(p < 0.05; Fig 3A). Significantly different PKA activity values compared to the 0 µg/L Cu 275 

samples at the respective temperatures were observed at 2.5 and 5 µg/L Cu (p < 0.05; Fig 276 

3B). 277 

OTC treatment at 16°C resulted in a bell-shape trend for both parameters, with 278 

values increasing up to 10 µg/L OTC and decreasing thereafter (Fig 4A,B). Mussels 279 
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acclimated at 20°C and 24°C showed no significant increase of cAMP levels compared to 280 

the 0 µg/L OTC samples at the respective temperatures (Fig 4A). For PKA, significant 281 

differences were observed at 1 to 1000 µg/L OTC (20°C) (p < 0.05; Fig 4B). 282 

Correlation plots reported in Fig 2C and Fig 3C show that values of PKA activities 283 

were significantly correlated with variation of cAMP tissue content across Cu or OTC 284 

treatments only at 16°C (p < 0.05). 285 

 286 

3.2. Variations of ABCB and hsp70 mRNA expressions in gills of mussels exposed to Cu 287 

or OTC at increased seawater temperatures 288 

Results from PERMANOVA analyses demonstrated that Cu and OTC had an 289 

overall significant effect on both ABCB and hsp70 expression, whereas temperature was 290 

effective on ABCB in the Cu treatment, while not in the OTC treatment (P < 0.05; Table 1). 291 

PERMANOVA analysis also showed a significant interaction between both chemicals and 292 

temperature (P < 0.05; Table 1). 293 

Levels of ABCB expression were significantly higher in gills of Cu-exposed mussels 294 

at 16°C (5 – 40 µg/L) (p < 0.05; Fig 5A and Fig 6A). Expression levels were significantly 295 

higher in 0 µg/L Cu samples at 20°C and 24°C (Fig 5A). Significant differences between 296 

Cu-treated samples and controls at the respective temperatures were observed at 2.5 and 297 

5 µg/L Cu (24°C) (Fig 4A). At 16°C, the hsp70 gene product was significantly up-regulated 298 

in samples exposed to 2.5, 5, and 40 µg/L Cu, while down-regulated at 20 µg/L Cu (p < 299 

0.05; Fig 5B). Expression levels were significantly increased in 0 µg/L Cu samples at 20°C 300 

and 24°C (Fig 5B), while significant differences between Cu-exposed samples and 301 

controls at the respective temperatures were observed at 40 µg/L Cu (24°C) (Fig 5B).  302 

At 16°C, ABCB up-regulation at 1 µg/L OTC and down-regulation at 100 and 1000 303 

µg/L OTC was observed (p < 0.05; Fig 6A). Expression levels were significantly increased 304 

in 0 µg/L OTC at 20°C and 24°C (Fig 6A), while significant differences between OTC-305 
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treated samples and controls at the respective temperatures were observed at 0.1, 1, 10, 306 

1000 µg/L OTC (20°C), and 1000 µg/L OTC (24°C) (Fig 6A). At 16°C, the hsp70 gene 307 

product was significantly regulated in gills of OTC-exposed mussels, with down-regulation 308 

at 0.1 and 1 µg/L OTC, and up-regulation at 10 – 1000 µg/L OTC (p < 0.05; Fig 6B). 309 

Significantly different hsp70 expression levels (down-regulation) between OTC-treated 310 

samples and the 0 µg/L OTC samples at the respective temperatures were observed at 311 

0.1 – 100 µg/L OTC (20°C), and 1.0 -1000 µg/L OTC (24°C) (Fig 6B). Correlation plots 312 

reported in Fig 5C and Fig 6C show that both ABCB and hsp70 expressions were 313 

significantly correlated with variation of PKA activity across Cu treatments only at 16°C (p 314 

< 0.05). 315 

 316 

3.3. Analysis of temperature related trends of the biological responses to Cu and OTC  317 

Calculation of AUC was employed to address changes of cAMP, PKA, ABCB or 318 

hsp70 response to Cu or OTC at the different temperatures (Fig 7). cAMP and PKA 319 

showed a decreased response to both pollutants at increasing temperatures, whereas 320 

ABCB and hsp70 showed a decreasing trend towards Cu response and an increasing 321 

response to OTC (Fig 7). 322 

 323 

4. DISCUSSION 324 

Both Cu and OTC affected the mussel cAMP/PKA pathway with significant changes 325 

of cAMP levels and PKA activities in gills of in vivo exposed animals. These results are in 326 

line with previous reports showing that Cu is a modulator of the cAMP signaling in bivalves 327 

(Fabbri and Capuzzo, 2010). Specifically, in vitro treatment of mussel gill membranes with 328 

Cu2+ (10-10 – 10-5 M) induced a bell-shape modulation of adenylyl cyclase (AC) activity, 329 

suggesting a putative direct effect of the metal on the cAMP forming mechanism (Fabbri 330 

and Capuzzo, 2006). Although the mechanism of action of OTC is not directly related to 331 
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the cAMP pathway, tetracyclines are considered pluripotent drugs in mammals with proved 332 

non-antibacterial related effects on inflammation, cell proliferation, cell migration, and 333 

apoptosis (Bendeck et al., 2002; Ci et al., 2011). Together with previous data (Banni et al., 334 

2015), results of this study show that OTC in mussels may impair the cAMP signaling, an 335 

effect that is likely to broaden the spectrum of the physiological functions potentially 336 

impacted by the antibiotic in non-target marine species. Indeed, regulatory pathways 337 

mediated by cAMP underpin a variety of vital physiological processes in bivalves as well 338 

as in other aquatic species (Fabbri and Capuzzo, 2010; Fabbri and Moon, 2016). A 339 

correlation between Cu- or OTC- induced changes of PKA activity and expression of 340 

stress-related transcripts ABCB and hsp70 was observed, in agreement with the 341 

occurrence of a common cAMP/PKA regulatory pathway (Fig 1) and the finding that ABCB 342 

(P-gp) and hsp70 transcripts may be co-regulated as a generalized response to stress 343 

(Franzellitti et al., 2010; Luedeking and Koehler, 2004; Minier et al., 2000). 344 

Acclimation to increased seawater temperatures affected the response to Cu and 345 

OTC. AUC calculations showed that temperature reduced the magnitude of the cAMP and 346 

PKA responses to both pollutants. The response of cAMP is likely linked to the relatively 347 

higher tissue levels observed in Cu- or OTC- unexposed samples at the increased 348 

temperatures, whereas reduction of PKA activity at 24°C is accompanied by the abolished 349 

response to the chemicals; furthermore, a loss of PKA vs cAMP correlation is observed at 350 

increasing temperatures. cAMP is the direct activator of PKA, and the mechanism by 351 

which cAMP regulates PKA activity is conserved from bacteria to humans (Kim et al., 352 

2007). Inactive PKA is a tetrameric holoenzyme composed of two functionally distinct 353 

subunits: a dimeric regulatory subunit (R-subunit) and two monomeric catalytic subunits 354 

(C-subunits). The main function of the R-subunit is to lock the C-subunits in the inactive 355 

state through formation of the holoenzyme inhibitory complex. Binding of cAMP to the R-356 

subunit unleashes the C-subunits, thereby allowing phosphorylation of PKA substrates 357 
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(Kim et al., 2007). Several C-subunit isoforms and two distinct isoforms of the R-subunit 358 

have been identified in mussels ( ardales et al., 2008, 200 ;    az-Enrich et al., 2003), 359 

showing biochemical properties typical of mammalian type I and type II R-subunits, 360 

respectively. Furthermore, the known pharmacological modulators of PKA activity through 361 

cAMP in mammals are also effectives on the cAMP/PKA system of mussel haemocytes 362 

(Franzellitti and Fabbri, 2013), suggesting the conservation of the activation mechanism. 363 

An in vitro study showed no effects of temperature increases (up to 40°C) on the cAMP-364 

binding ability of PKA purified from the posterior adductor muscle and the mantle of M. 365 

galloprovincialis. This suggests that temperature does not affect conformation of R-366 

subunits of mussel PKAs, at least not at the cAMP-binding regions (Bardales et al., 2004). 367 

Nevertheless, the same temperature increase significantly modified the protein kinase 368 

activity at saturating concentrations of cAMP, when the holoenzyme was completely 369 

dissociated, indicating an effect on the conformation of the C-subunits (Bardales et al., 370 

2004). We may hypothesize that while OTC and Cu affected the pathway leading to 371 

modulation of PKA activation (i.e. rate of cAMP binding to the R-subunit), temperature may 372 

impair the catalytic activity (i.e. altered conformational stability of C-subunits), causing the 373 

observed reduced activities at 24°C, the loss of correlation with changes of cAMP levels, 374 

and the consequent reduced responsivity to the pollutants. This apparent uncoupling of 375 

the PKA activation mechanism from the enzyme catalytic activity may also explain the 376 

observed loss of correlation with ABCB/hsp70 expressions in response to the pollutants 377 

observed at 20°C and 24°C. AUC calculations also show that temperature reduced (Cu) or 378 

increased (OTC) the response of ABCB and hsp70. On the whole, these results indicate 379 

that when an increase of temperature disrupts the cAMP/PKA mediated pathway that 380 

normally contributes to ABCB and hsp70 transcription, Cu and OTC may act through 381 

alternative pathways on the onset of P-gp and HSP70 responses. Interestingly, an 382 

opposite temperature-related response between Cu and OTC was also observed on 383 
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survival, replication rate, and lysosomal membrane stability of the ciliated protozoa 384 

Euplotes crassus exposed to the chemicals under thermal stress (25-33 °C) (Gomiero and 385 

Viarengo, 2014). Those biological endpoints pointed to a reduced toxicity of OTC but an 386 

increased toxicity of Cu with temperature increases, likely stemming from decreased 387 

stability of the molecule or the production of less toxic metabolites (OTC), or increased 388 

accumulation due to temperature-enhanced feeding activity (Cu) (Gomiero and Viarengo, 389 

2014). 390 

A further event that may operate in limiting the induction of ABCB and hsp70 391 

transcription is the so-called constitutive gene frontloading (Barshis et al., 2013). ABCB 392 

and hsp70 up-regulation by Cu has been observed under in vivo exposure of oysters and 393 

mussels (Shi et al., 2015; Xu et al., 2018). Specifically, in gills of surviving oysters 394 

(Crassostrea angulata) exposed to high concentrations of Cu (30, 100, and 300 µg/L), 395 

abcb1 was continuously over-expressed likely to aid the transport of Cu out of the cell (Shi 396 

et al., 2015). Mussels (M. galloprovincialis) exposure to low and environmentally relevant 397 

Cu concentrations (2 and 8 µg/L) resulted in hsp70 over-expression which precedes Cu-398 

induced oxidative damage, as evidenced by the induction of antioxidant enzymes activities 399 

and increased DNA damage (Xu et al., 2018). These data demonstrate that those proteins 400 

are components of the molecular machinery that maintain cellular Cu homeostasis (ABCB) 401 

and prevent its proteotoxic effects (hsp70). Nevertheless, since mussels are used to thrive 402 

in extremely variable environments, they are well known to retain a minimal constitutive 403 

hsp70 expression that confers them enhanced physiological resilience by means of faster 404 

reaction at the protein level during transient stress events (Franzellitti and Fabbri, 2005). 405 

Although hsp70 gene frontloading is largely acknowledged in marine intertidal 406 

invertebrates (Barshis et al., 2013; Fabbri et al., 2008; Morris et al., 2013), our data 407 

suggest also that the mussel ABCB may also display a frontloading behavior. For both 408 

transcripts, mussel acclimation to increased temperatures promoted increased basal 409 
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expression that limited the need for further induction due to Cu treatment. Apparently, 410 

constitutive gene frontloading was not effective enough to limit the need for further 411 

hsp70/ABCB mRNAs in OTC-exposed mussels, suggesting that OTC may affect gene 412 

transcription through mechanisms that are not biased by or not related to the stress 413 

response, which lead to overall independent effects between thermal stress and exposure 414 

to the antibiotic.  415 

 416 

5. CONCLUSION 417 

Results of this study show that temperature may change the outcome of the mussel 418 

cAMP/PKA signaling response to inorganic and organic chemicals, in turn altering the 419 

molecular mediators of physiological plasticity and environmental acclimatization, such as 420 

HSP70s and P-gp. However, the general consideration that temperature prevails over 421 

chemical stressors in eliciting physiological responses in marine organisms (Sokolova and 422 

Lannig, 2008) is not fully supported by our results, since a signature for the chemical 423 

effects can be observed at hyperthermic conditions. We further hypothesized that the 424 

temperature-related loss of correlation between changes in cAMP/PKA signaling and 425 

ABCB/hsp70 transcriptional profiles may be due to the uncoupling of the PKA activation 426 

mechanism and the enzyme catalytic activity. Considering the key role of the cAMP/PKA 427 

pathway in mussel physiology (Fabbri and Capuzzo, 2010), this finding highlights the 428 

importance of considering the regulatory pathways upstream stress response processes 429 

when addressing the complex patterns of interactions in multiple stressor scenarios. 430 
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Table 1. Two-way PERMANOVA results on the effects of oxytetracycline (OTC) or 669 

copper (Cu) in vivo exposure on cAMP levels, PKA activities, ABCB and HSP70 670 

expressions in gills of mussels at different temperatures (T) (998 permutations). 671 

 672 

 
df 

cAMP PKA ABCB HSP70 

Pseudo-F P(perm) Pseudo-F P(perm) Pseudo-F P(perm) Pseudo-F P(perm) 

Cu treatment  

Cu 5 13.85 0.001 1.27 0.288 19.12 0.001 25.30 0.001 

T 2 8.02 0.002 58.66 0.001 23.16 0.001 65.17 0.001 

Cu x T 10 6.50 0.001 4.53 0.001 7.35 0.001 4.31 0.002 

          
OTC treatment        

OTC 5 4.02 0.002 16.08 0.001 24.99 0.001 8.46 0.001 

T 2 17.19 0.001 95.54 0.001 0.60 0.513 12.02 0.001 

OTC x T 10 2.18 0.029 2.68 0.006 17.03 0.001 4.40 0.003 

df: degree of freedom; Pseudo-F: F value by permutation (Anderson et al., 2008); P(perm): 673 

probability of pseudo-F.  674 

 675 
 676 
 677 
 678 
 679 
 680 
  681 
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Figure legends   682 
 683 

Fig. 1. Schematic representation of the known cAMP/PKA signaling pathway 684 

upstream HSP70 and P-gp expression. (1) Transcriptional control: PKA-mediated 685 

regulation of several transcription factors (CRF) that initiate HSP70/ABCB (P-gp) 686 

transcription (Franzellitti and Fabbri, 2013; Murshid et al., 2010). (2) Post-transcriptional 687 

control: PKA-mediated phosphorylation of target HSP70/P-gp protein residues resulting in 688 

either protein activation (HSP70, P-gp) or inhibition (HSP70) (Arana and Altenberg, 2019; 689 

Nitika and Truman, 2017). GCPR, G-protein coupled receptor; G, G-protein; AC, adenylyl 690 

cyclase; cAMP, cyclic-AMP; PKA(i), inactive cAMP-dependent protein kinase (PKA; 691 

holoenzyme); PKA(a), active PKA (catalytic subunit); CRF, cAMP-responsive factors 692 

(amongst others: AP-1, CRE-BP Sp1, HSF1). Colored figure is intended only for the 693 

online and PDF version. 694 

 695 

Fig. 2. Schematic flowchart of the experimental setup for the impact of thermal 696 

stress on the mussel responses to copper (Cu) or oxytetracycline (OTC). The aquaria 697 

represent the replicates for each condition (N = 4). Colored figure is intended only for 698 

the online and PDF version. 699 

 700 

Fig. 3. Changes of cAMP/PKA signaling in gills of Cu-exposed mussels at different 701 

temperatures. Bar plots report mean  SEM values for (A) cAMP tissue levels and (B) 702 

PKA activities (N = 4). *p<0.05 vs samples at 0 Cu and at 16°C; ap<0.05 vs sample group 703 

at 0 Cu within the 16°C group; bp<0.05 vs sample group at 0 Cu within the 20°C treatment 704 

groups; cp<0.05 vs sample group at 0 Cu within the 24°C treatment groups. (C) Correlation 705 

plots show the relationships between cAMP levels and PKA activities at the different 706 

temperatures. Correlation analyses are based on data from individual mussels (N = 24 707 
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within each temperature). Average values for each data point have been used only for the 708 

graphic representation. Only significant Spearman correlations (*p<0.05) are reported in 709 

the graphs. Shaded areas show the 95% confidence intervals. Colored figure is intended 710 

only for the online and PDF version. 711 

 712 

Fig. 4. Changes of cAMP/PKA signaling in gills of OTC- exposed mussels at 713 

different temperatures. Bar plots report mean  SEM values for (A) cAMP tissue levels 714 

and (B) PKA activities (N = 4). *p<0.05 vs samples at 0 OTC and at 16°C; ap<0.05 vs 715 

sample group at 0 OTC within the 16°C group; bp<0.05 vs sample group at 0 OTC within 716 

the 20°C treatment groups; cp<0.05 vs sample group at 0 OTC within the 24°C treatment 717 

groups. (C) Correlation plots show the relationships between cAMP levels and PKA 718 

activities at the different temperatures. Correlation analyses are based on data from 719 

individual mussels (N = 24 within each temperature). Average values for each data point 720 

have been used only for the graphic representation. Only significant Spearman 721 

correlations (*p<0.05) are reported in the graphs. Shaded areas show the 95% confidence 722 

intervals. Colored figure is intended only for the online and PDF version. 723 

 724 

Fig. 5. ABCB (A) and hsp70 (B) expressions in gills of Cu-exposed mussels 725 

acclimatized at different temperatures. Bar plots report mean  SEM values of fold 726 

change variations. **p<0.05 vs samples at 0 Cu and at 16°C; ap<0.05 vs sample group at 727 

0 Cu within the 16°C group; bp<0.05 vs sample group at 0 Cu within the 20°C treatment 728 

groups; cp<0.05 vs sample group at 0 Cu within the 24°C treatment groups. (C,D) 729 

Correlation plots show the relationships between PKA activity and ABCB/hsp70 730 

expression at the different temperatures. Correlation analyses are based on data from 731 

individual mussels (N = 24 within each temperature). Average values for each data point 732 

have been used only for the graphic representation. Only significant Spearman 733 
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correlations (*p<0.05) are reported in the graphs. Shaded areas show the 95% confidence 734 

intervals. Colored figure is intended only for the online and PDF version. 735 

 736 

Fig. 6. ABCB (A) and hsp70 (B) expressions in gills of OTC-exposed mussels 737 

acclimatized at different temperatures. Bar plots report mean  SEM values of fold 738 

change variations. **p<0.05 vs samples at 0 OTC and at 16°C; ap<0.05 vs sample group 739 

at 0 OTC within the 16°C group; bp<0.05 vs sample group at 0 OTC within the 20°C 740 

treatment groups; cp<0.05 vs sample group at 0 OTC within the 24°C treatment groups. 741 

(C,D) Correlation plots show the relationships between PKA activity and ABCB/hsp70 742 

expression at the different temperatures. Correlation analyses are based on data from 743 

individual mussels (N = 24 within each temperature). Average values for each data point 744 

have been used only for the graphic representation. Only significant Spearman 745 

correlations (*p<0.05) are reported in the graphs. Shaded areas show the 95% confidence 746 

intervals. Colored figure is intended only for the online and PDF version. 747 

 748 

Fig. 7. Temperature related trends of AUC (Area Under the Curve) values. For each 749 

biological endpoint, Cu or OTC concentration-related variation at each temperature is 750 

expressed by the Area Under the Curve (AUC) according to Franzellitti et al. (2018). 751 

Colored figure is intended only for the online and PDF version. 752 

  753 
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Fig 2 766 
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Fig 3 777 
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Fig 4 797 
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Fig 5 815 
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Fig 6 835 
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Fig 7 855 
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