
28 June 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Mezzullo, M., Gambineri, A., Di Dalmazi, G., Fazzini, A., Magagnoli, M., Baccini, M., et al. (2021). Steroid
reference intervals in women: influence of menopause, age and metabolism. EUROPEAN JOURNAL OF
ENDOCRINOLOGY, 184(3), 395-407 [10.1530/EJE-20-1147].

Published Version:

Steroid reference intervals in women: influence of menopause, age and metabolism

Published:
DOI: http://doi.org/10.1530/EJE-20-1147

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/858738 since: 2022-02-15

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1530/EJE-20-1147
https://hdl.handle.net/11585/858738


This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/) 

When citing, please refer to the published version. 

 

This is the final peer-reviewed accepted manuscript of:  

 

Marco Mezzullo, Alessandra Gambineri, Guido Di Dalmazi, Alessia Fazzini, Matteo 

Magagnoli, Margherita Baccini, Valentina Vicennati, Carla Pelusi, Uberto Pagotto, 

Flaminia Fanelli, Steroid reference intervals in women: influence of menopause, age 

and metabolism, European Journal of Endocrinology, Volume 184, Issue 3, Mar 

2021, Pages 395–407 

 

The final published version is available online at:  https://doi.org/10.1530/EJE-20-

1147 

 

 

 

Rights / License: 

The terms and conditions for the reuse of this version of the manuscript are specified in the 
publishing policy. For all terms of use and more information see the publisher's website.   

 

https://cris.unibo.it/
https://doi.org/10.1530/EJE-20-1147
https://doi.org/10.1530/EJE-20-1147


1

Steroid reference intervals in women: influence of menopause, age and 
metabolism

Marco Mezzullo, Alessandra Gambineri, Guido Di Dalmazi, Alessia Fazzini, Matteo Magagnoli, 

Margherita Baccini, Valentina Vicennati, Carla Pelusi, Uberto Pagotto and Flaminia Fanelli

Affiliations: Unit of Endocrinology and of Prevention and Care of Diabetes, Center for Applied Biomedical 

Research, Department of Medical and Surgical Sciences, University of Bologna, S.Orsola Policlinic, via 

Massarenti 9, 40138 Bologna, Italy

Correspondence and reprint requests to: Flaminia Fanelli, Junior Assistant Professor, Department of 

Medical and Surgical Sciences S.Orsola Policlinic, Via Massarenti 9, 40138 Bologna, Italy. Tel and Fax: 

+39-051-2143902; E-mail: flaminia.fanelli2@unibo.it

Short title: LC-MS/MS steroid reference interval in women

Keywords: liquid chromatography tandem mass spectrometry (LC-MS/MS), steroid profile, reference 

intervals, obesity, dysmetabolism, menopause, menstrual phase

Word Count: 3501

Number of Tables and Figures: 6

Number of Supplemental files: 2

Page 1 of 27 Accepted Manuscript published as EJE-20-1147.R1. Accepted for publication: 12-Jan-2021

Copyright © 2019 European Society of EndocrinologyDownloaded from Bioscientifica.com at 01/28/2021 11:59:54AM
via Universita' di Bologna



2

Abstract 

Objective. To investigate the impact of age, obesity and metabolic parameters on thirteen circulating steroids 

in reproductive and menopausal age. To define reference intervals (RI). 

Design. Cross-sectional.

Methods. 325 drug-free, healthy and eumenorrheic women were selected from the general population. 

Independent relationships of LC-MS/MS-determined steroid levels with age, body mass index (BMI) and 

metabolic parameters were estimated. Reference sub-cohorts were defined for calculating upper and lower 

limits in reproductive age, menstrual phases and menopause, and these were compared with limits in 

dysmetabolic sub-cohorts.

Results. Lower androgens, pro-androgens and estrogens, but higher cortisol and metabolites were found in 

menopausal compared to reproductive age women. Androgens and precursors decreased during reproductive 

age (P<0.001–P=0.002) but not after menopause. 17OH-progesterone decreased with BMI (P=0.006) and 

glucocorticoids with waist circumference (P<0.001–P=0.002) in reproductive age, but increased with 

triglycerides (P=0.011-P=0.038) after menopause. Inverse associations of dihydrotestosterone with BMI 

(P=0.004) and HDL-cholesterol (P=0.010), estrone with total cholesterol (P=0.033) and estradiol with 

triglycerides (P=0.011) were found in reproductive age. After menopause, estrone increased with waist 

circumference (P<0.001) and decreased with insulin resistance (P=0.012). Ovarian steroid RI were estimated 

in menstrual phases and menopause. Age- and reproductive status-specific RI were generated for androgens, 

precursors and corticosteroids. Lower limits for reproductive age cortisol (P=0.020) and menopausal 11-

deoxycortisol (P=0.003) in dysmetabolic sub-cohorts were reduced and increased, respectively, compared to 

reference limits.

Conclusions: Obesity and dysmetabolism differently influence circulating steroids in reproductive and 

menopausal status. Age, menstrual and menopausal status-specific RI were provided by LC-MS/MS for a 

broad steroid panel.
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Introduction 

LC-MS/MS is used by an increasing number of clinical laboratories, providing reliable determinations of 

steroid hormones for the diagnosis and management of endocrine diseases [1; 2]. By enlarging the panel of 

measurable precursors and metabolites, LC-MS/MS is also boosting renewed interest in understanding the 

steroid system derangement in several conditions. However, translating research findings into clinical 

advancements requires the definition of pathophysiologic states influencing the circulating steroid levels, as 

well as of appropriate reference intervals (RI) allowing the effective interpretation of laboratory results [3].

Recently, LC-MS/MS has been applied to study the steroid profile of adrenal tumors [4], type I diabetes [5], 

or female hyperandrogenism [1; 6; 7; 8; 9]. In contrast, only a few studies were purposely designed to define 

steroid RI. Moreover, some studies relied on healthcare-seeking subjects. This represents an intrinsic bias for 

RI estimation, given the adaptive nature of steroid hormones to stressful or debilitating conditions. Other 

studies did not report an exhaustive characterization of subjects, for example aimed at detecting subtle 

hyperandrogenic states manifesting as menstrual irregularities or hirsutism, while others tolerated excess 

weight [10]. 

Overweight and obesity affect half of the female population [11; 12]. Steroids are involved in systemic and 

intracrine mechanisms that, once dysregulated, contribute to excess fat, mostly of abdominal type, 

hypertension, impaired glucose control and dyslipidaemia. However, the interplay among glucocorticoids, 

androgens and estrogens in such mechanisms varies with the menopausal transition [12; 13]. Androgen 

excess, ovarian dysfunction and metabolic impairment represent a vicious cycle in young women, however, a 

variegated spectrum of manifestations is observed, for which effective hormonal markers are yet undefined 

[14]. The androgen decline and the loss of ovarian hormones contribute to the central redistribution of body 

fat, the increased cardiometabolic risk, sarcopenia and bone frailty experienced after menopause. Besides, 

the modulation of adrenal function throughout women lifespan, and the interplay between the hypothalamus-

pituitary-adrenal (HPA) axis dysregulation and obesity before and after menopause were not elucidated [15; 

16].

In a recent study, we demonstrated that the circulating steroid profile in men is not only influenced by 

ageing, but also by obesity and metabolic derangement, and we provided age-specific RI estimated in 

appropriate reference cohorts [17]. In the present study, by using a similarly standardized procedural 
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approach, we aimed at describing the relationships of age, obesity and metabolic status with thirteen 

circulating steroids in women in reproductive and menopausal age. Based on the depicted associations, we 

generated age, menopause and menstrual phase specific RI in selected reference sub-cohorts, and 

investigated whether unrestricted inclusion criteria could bias steroid RI estimation.

Materials and methods 

Subjects 

Women aged 18–86 years were recruited from the general population [18]. The study was approved by the 

S.Orsola Policlinic ethical committee (85/2008/O/Tess). All women signed the informed consent before they 

were interviewed and examined by a trained endocrinologist, between 08:00 and 10:00 am. Waist 

circumference and body mass index (BMI) were recorded. Systolic (SBP) and diastolic (DBP) blood 

pressures were measured in supine position after 3 min rest. Inclusion criteria were: BMI ≥18.5 kg/m2, 

weight stability in previous 3 months and complete sexual development. Exclusion criteria included signs of 

clinical hyperandrogenism, history of menstrual irregularities, steroidal (including estro-progestogen) and 

non-steroidal drug assumption in previous 3 months (except antipyretic or non-steroidal anti-inflammatory 

compounds tolerated before the previous month, and thyroxine replacement in compensated 

hypothyroidism), present or past endocrine, hepatic, renal, oncologic, autoimmune, cardiovascular, 

hematologic, neurologic or psychiatric diseases, sleep disorders, shift working, frequent flying or allergies 

requiring treatment. Among 653 women examined, 328 were excluded because of present or previous 

diseases (n=32), irregular sleeping (n=80), glucose-lowering (n=3), cholesterol-lowering (n=111), anti-

hypertensive (n=171) and anti-depression (n=40) drug assumption. Therefore, 325 women were included in 

the present study.

Biochemical and hormonal evaluation 

Blood was withdrawn in overnight fasting condition in Vacuette Z serum beads clot activator tubes (Greiner 

Bio-One, Kremsmunster, Austria) after 10 min saline infusion for minimizing venepuncture stress. After 20 

min settling, tubes were centrifuged (2000 g, 10 min, room temperature) and serum for LC-MS/MS was 

Page 4 of 27Accepted Manuscript published as EJE-20-1147.R1. Accepted for publication: 12-Jan-2021

Copyright © 2019 European Society of EndocrinologyDownloaded from Bioscientifica.com at 01/28/2021 11:59:54AM
via Universita' di Bologna



5

stored at −80°C. Routine hormones and biochemicals were measured in fresh blood as previously reported 

[17]. The homeostatic model assessment-insulin resistance (HOMA-IR) was computed [19].

Steroid measurement by LC-MS/MS 

We applied two in-house LC-MS/MS assays (Supplemental Table 1) including 17-hydroxypregnenolone 

(17OHP5), dehydroepiadrosterone (DHEA), progesterone (P4), 17-hydroxyprogesterone (17OHP4), 11-

deoxycorticosterone (DOC), corticosterone (B), 11-deoxycortisol (11S), cortisol (F), androstenedione (A4), 

testosterone (T), dihydrotestosterone (DHT), estrone (E1) and estradiol (E2) [18; 20; 21]. 

Study design 

Women were classified in reproductive (regular menses, age 18-54 years; n=186) or menopausal 

(amenorrhea in previous 12 months or more, age 48-86 years; n=127) age, and further subdivided in normal 

weight (NW, 18.5<BMI≤25.0 kg/m2; n=123 and 63, respectively), overweight (OW, 25.0<BMI≤30.0 kg/m2; 

n=35 and 49, respectively) and obese (OB, BMI>30.0 kg/m2; n=28 and 15, respectively). Women in 

reproductive age were further stratified in early follicular (day 1-6; n=31), pre-ovulatory (day 9-13; n=30) 

and mid-luteal (day 18-24; n=33) menstrual phases. Perimenopausal women were also identified (<6 

menstrual bleedings in previous 6 months or more, age 48-54 years; n=12). Anthropometric, metabolic and 

steroid values were compared between reproductive and menopausal cohorts, among BMI classes and among 

menstrual phases. Afterward, we assessed the independent effect of age, BMI, waist circumference, SBP, 

DBP, HOMA-IR, total cholesterol, HDL-cholesterol and triglycerides on each steroid in reproductive and 

menopausal ages. According to the results, we defined steroid-specific reference sub-cohorts by excluding 

women displaying alterations in metabolic parameters influencing the steroid levels. Therefore, we identified 

subjects with normal (≤88 cm, norWC; n=216) or elevated (>88 cm, dysWC; n=106) waist circumference, 

normal (<2.5, norHOMA; n=194) or elevated (≥2.5, dysHOMA; n=36) HOMA-IR, normal (<5.17 mmol/L, 

norTC; n=194) or elevated (≥5.17 mmol/L, dysTC; n=123) total cholesterol, normal (≥1.29 mmol/L, 

norHDL; n=203) or reduced (<1.29 mmol/L, dysHDL; n=55) HDL-cholesterol, and normal (<1.69 mmol/L, 

norTG; n=302) or elevated (≥1.69 mmol/L, norTG; n=15) triglycerides. Lower (LRL) and upper (URL) 

reference limits defining the central 95% of steroid distribution were estimated in reference sub-cohorts. 

Age-specific LRL and URL were estimated when required. Finally, to evaluate whether altered metabolic 
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parameters could influence RI estimation, LRL and URL were compared with lower and upper limits 

calculated in dysmetabolic sub-cohorts including subjects with alterations in the parameters influencing that 

particular steroid, respectively.

Statistical analysis 

Box-Cox transformation was used for variables showing a significant skewness at the Kolmogorov–Smirnov 

test [22]. Far outliers at the Tukey’s test were removed [23]. Variables were compared between reproductive 

age and menopausal cohorts by T-test. The ANOVA trend test was used for comparing BMI classes (SPSS 

package v.20, IBM Co). Comparisons among menstrual phases were performed by one-way ANOVA. The 

stepwise multiple regression included age, BMI, waist circumference, SBP, DBP, HOMA-IR, total-

cholesterol, HDL-cholesterol and triglyceride levels as covariates, and each steroid as dependent variable. 

The menstrual phase was added as cofactor for steroids varying with the menstrual cycle. The effect size (f2) 

was estimated as  , where  is the semipartial correlation coefficient for the predictor of 𝑓2 =
𝑠𝑟2

(1 ― 𝑅2𝑓𝑢𝑙𝑙) 𝑠𝑟2

interest and  is the full correlation coefficient obtained by the multiple regression model [24].𝑅

LRL and URL were estimated as the mean – and + (1.96×s.d.) of the transformed variables, respectively, 

then, values were back-transformed to the original unit [25]. Age-specific RI were estimated by modelling 

the transformed steroid variable on age distribution, according to the fractional polynomial regression by 

Royston and Wright [26]. Age (X) was transformed in order to stabilize the steroid variable (Y) for large 

values of X according to the formula: . Then, we selected the optimal model  𝑒𝑋 = exp
(log (0.01) × (𝑋 ― min (𝑋))

(max (𝑋) ― min (𝑋))

providing the lowest polynomial degree (parsimony) with maximum decrease in deviance (goodness of fit). 

Best-fit polynomial coefficients were selected by fp syntax, and RI were visually inspected by xrigls syntax 

in STATA (v.13.0, StataCorp LLC).

A large number of cases showed values below the sensitivity limit for DOC in the whole cohort (n=276 of 

325), and P4, DHT and E2 in menopausal cohort (n=90, 75 and 115 of 127, respectively) (Supplemental 

Table 1). Therefore, DOC comparisons were performed by Kruskal-Wallis and Mann-Whitney tests, while 

no multiple regression was performed for DOC and for P4, DHT and E2 in menopausal cohort. RI for DOC 

and P4, and menopausal RI for DHT and E2 were estimated as the 2.5–97.5 centiles of distribution. Lower 

and upper limits were compared between reference and dysmetabolic sub-cohorts by z distribution. Two-
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tailed P values <0.05 were considered significant. Data were analysed by MedCalc Software (v.18.2.1, 

Mariakerke, Belgium) except where specified.

Results 

Anthropometric, metabolic and hormonal features of the cohort

Table 1 reports the anthropometric, metabolic and hormonal features of our cohort. Compared to 

reproductive age, menopausal women showed worse BMI, waist circumference, SBP, DBP, glucose, total 

cholesterol, triglycerides (all P<0.001) and HOMA-IR (P=0.013),  lower 17OHP5 (-31.2%), DHEA (-

42.6%), P4 (-84.4%), 17OHP4 (-60.1%), A4 (-51.3%), T (-22.5%), DHT (-23.1%), E1 (-63.6%) and E2 (-

87.4%) (all P<0.001), but higher DOC (n.d., P=0.044), 11S (18.2%, P=0.029) and F (11.3%, P=0.007) 

(Table 1).

Worsening metabolic parameters at increasing BMI were observed both in reproductive age (min-max BMI: 

18.5-42.9 kg/m2) and menopausal women (min-max BMI: 18.9-41.2 kg/m2). In reproductive age, levels of B 

(P<0.001), F (P=0.008) and DHT (P=0.006) decreased with increasing BMI classes, with OB showing lower 

B, F and DHT compared to NW (P=0.002, P=0.023 and P=0.017) and lower B and F compared to OW (both 

P<0.001) women. In menopausal women, E1 levels increased with BMI classes (P=0.002), with both OW 

(P=0.046) and OB (P=0.007) displaying higher values than NW women (Table 1). Women in different 

menstrual phases displayed similar anthropometric and metabolic parameters, but different levels of P4, 

17OHP4, E1, E2 (all P<0.001), DOC (P=0.043) and 11S (P=0.048). In particular, women in mid-luteal 

phase had higher P4 and 17OHP4 as compared to early follicular and pre-ovulatory (all P<0.001), and higher 

DOC compared to pre-ovulatory (P=0.047) women. Moreover, lower E1 and E2 levels were found in early 

follicular compared to pre-ovulatory and mid-luteal phases (all P<0.001) (Supplemental Table 2).

Independent impact of age, anthropometric and metabolic parameters on steroid levels

Stepwise multiple regression results are detailed in Table 2. In women in reproductive age, 17OHP5, DHEA, 

A4, T (all P<0.001) and DHT (P=0.002) decreased with age, with a large effect size for A4 (f2=0.28), DHEA 

and T (both f2=0.22), and moderate for 17OHP5 (f2=0.12) and DHT (f2=0.11). DHT was also negatively 

associated with BMI (P=0.004, f2=0.09) and HDL-cholesterol (P=0.010, f2=0.08). 17OHP4 inversely 
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associated with BMI (P=0.006, f2=0.22), while B (P<0.001, f2=0.20), F (P<0.001, f2=0.17) and 11S 

(P=0.002, f2=0.09) inversely associated with waist circumference. Finally, E1 and E2 negatively associated 

with increasing total cholesterol (P=0.033, f2=0.10) and triglycerides (P=0.011, f2=0.15), respectively. In 

menopausal women, no age and BMI influence were detected on steroid levels. 17OHP4 (P=0.026, f2=0.06), 

11S (P=0.011, f2=0.07) and F (P=0.038, f2=0.05) directly associated with triglycerides. E1 directly associated 

with waist circumference (P<0.001, f2=0.16), and inversely associated with HOMA-IR (P=0.012, f2=0.08).

Steroid reference intervals 

Age- and menopause-specific RI were estimated for 17OHP5, DHEA, A4, T and DHT (Table 3). All women 

were included in the reference sub-cohort for 17OHP5, DHEA, A4 and T (n=325). For DHT, the reference 

sub-cohort included NW and norHDL women in reproductive age and all menopausal women (n=65 and 

n=127, respectively). Androgens and precursors peak around age 25 years and progressively decline. A 

reduction in LRL and URL was found for A4 (−83.2 and −57.5%, respectively), DHEA (−67.6 and −56.0%, 

respectively), 17OHP5 (−49.9 and −43.1%, respectively) and T (−24.9 and −17.2%, respectively), as well as 

in DHT URL (-56.3%) from age 25 to 65 years (Figure 1). 

Reproductive age RI were estimated in the whole cohort for DOC (n=186), and in norWC sub-cohort for B, 

11S and F (n=132). Menopausal RI were estimated in the whole cohort for DOC, B, P4 and E2 (n=127), in 

norTG sub-cohort for 17OHP4, 11S and F (n=112), and in women who were both norWC and norHOMA for 

E1 (n=50) (Table 4).

Finally, menstrual phase specific RI were estimated for P4, 17OHP4, E1 and E2 . Of 32 women in mid-luteal 

phase, 10 (age 39.2±10.3 years) exhibited P4 levels <10 nmol/L suggestive of incorrect classification or of 

anovulatory cycle [27], and were therefore excluded. The reference sub-cohorts for early follicular, pre-

ovulatory and mid-luteal phase included 31, 30 and 22 women for P4; 22, 26 and 17 NW women for 

17OHP4; 20, 25 and 17 norTC women for E1; and 25, 28 and 21 norTG women for E2, respectively (Table 

5).

Impact of metabolic risk factors on the estimation of reference limits 
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LRL and URL of steroids influenced by metabolic parameters were compared with lower and upper limits 

calculated in dysmetabolic subjects. Higher 11S values were found in the lower limit calculated in dysTG 

(n=10) compared to LRL in norTG (n=112) menopausal women (+0.343 nmol/L, +48.4%, P=0.003). At 

variance, reduced F values were found in lower limit in dysWC (n=52) compared with LRL in norWC 

(n=132) women in reproductive age (-35.5 nmol/L, -24.0%; P=0.020, respectively) (Table 4). 

Discussion

In the present study, to obtain RI as effective as possible when applied to the study of women health, we 

selected from the general population women who were drug- and disease-free and having no signs or 

symptoms of androgen excess. Nonetheless, our cohort included women with unmedicated excess weight, 

dyslipidaemia, impaired insulin sensitivity and hypertension, overall affecting a relevant portion of the 

general population.

Our results confirmed the dramatic decline in circulating estrogens, progestins, androgens and precursors 

with menopause [28]. No age dependency was detected for estrogen and progestin levels in reproductive age, 

therefore, the 60-90% hormone reduction observed after menopause could totally be attributed to ovarian 

senescence. At variance, the circulating androgens and precursors peaked around age 25 years and started a 

declining trend long before the menopausal transition. A steep decrease from age 25 to 65 years was 

observed for A4, DHEA 17OHP5, and DHT, ranging 40 to 85%, while a moderate 20% decrease was found 

for T, overall in good agreement with previous estimates [29; 30; 31; 32; 33; 34; 35; 36]. Given the relevance 

of peripheral androgen generation from adrenal precursors in females, this finding may be due to the 

combined effect of ovarian and adrenal senescence [30]. Interestingly, recent studies showed that zona 

reticularis, but not zona fasciculata, undergoes a large involution with ageing, thus explaining the 

impairment of pro-androgen secretion [33; 36].

In our cohort, corticosteroid levels were not influenced by age, however, in keeping with a recent study [33], 

DOC, 11S and F slightly increased after menopause. This is in contrast with studies reporting an age-

dependent reduction of glucocorticoids [31; 32]. The modulation of steroid metabolites we observed suggests 

an increased adrenal secretion with menopause rather than a peripheral reactivation of F [37], as supported 

by an elegant study demonstrating a slight increase in menopausal F secretion in response to ACTH [30]. 
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When we tried to disentangle which specific metabolic component related to a particular steroid level, we 

found a different network of relationships before and after menopause. Notably, in our non-hyperandrogenic 

women, no associations of androgens and precursors with metabolic parameters were found, except for DHT, 

inversely correlating with BMI and HDL-cholesterol in reproductive age. Unfortunately, the limited 

sensitivity of our assay prevented a similar DHT evaluation in menopausal women. The link between 

androgen levels and excess weight in women still has not been clarified. Indeed, a variegated combination of 

unchanged or reduced levels of DHEA, A4, T and DHT was associated with increasing adiposity in non-

PCOS women by studies using high-specificity MS-based assays [31; 33; 34; 36; 38, 39; 40; 41]. 

Interestingly, low plasma DHT was associated with increasing dimension and lipogenesis function of 

omental adipocytes [38]. Our findings, therefore, support the concept that, in obese women, low levels of the 

most active androgen associate with the lipid storage capacity of visceral depots.

Interestingly, increasing estrogen levels contributed to the healthy lipid profile of our young women, 

underlying the importance of a balanced orchestration among active sex steroids. Besides, after menopause, 

E1 inversely associated with insulin resistance and directly associated with waist circumference. While, on 

the one hand, this is consistent with adipose tissue being the predominant estrogen source after ovarian 

senescence [13; 28], on the other hand, it contrasts with the detrimental link between abdominal obesity and 

insulin resistance. The beneficial involvement of estrogens in energy metabolism and inflammatory response 

was widely described [28; 42], and is evidenced by the vicious circle among abdominal adiposity, systemic 

low-grade inflammation, insulin resistance and increasing cardiovascular risk occurring with menopause 

[12]. It is recognized that estrogen levels in menopause are proportional to body fat [13; 28], however, 

whether visceral or subcutaneous fat is the predominant source, and whether estrogens are associated with a 

favourable or unfavourable metabolic status in this life epoch, is still unclear. A study using LC-MS/MS 

found that visceral fat secreted E1 more than the subcutaneous fat in menopausal women, however, no 

correlations with the metabolic profile were performed [43]. Another study found stronger associations of 

plasma estrogens with total rather than abdominal adiposity; moreover, direct associations between estrogens 

and insulin resistance were found, but these depended on the amount of fat [39]. Given this scenario, our 

findings could be explained by the fact that, as we excluded medicated and diabetic subjects, our menopausal 

women are overall only mildly dysmetabolic. Unfortunately, in our population study we could not use 
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techniques such as computed tomography to distinguish between abdominal visceral and subcutaneous 

depots. Nonetheless, it is possible that fat amount reflected by waist circumference, be it subcutaneous or 

visceral, is prevalently metabolically healthy, so that the quantitative relationship between circulating E1, 

spilling-over from fat depots, and the beneficial result of its function in terms of insulin sensitivity, is still 

detectable. Unfortunately, due to the limited analytical sensitivity, we could not investigate the metabolic 

associations of E2 in menopausal age. 

Waist circumference was the only independent factor negatively affecting glucocorticoid levels in 

reproductive age. Moreover, menstrual phase-adjusted 17OHP4 levels, possibly reflecting its role as adrenal 

glucocorticoid precursor, diminished with increasing BMI, as reported in a recent study [31]. This may 

appear in contrast with the direct link expected between glucocorticoid tone and visceral obesity. 

Nonetheless, the dynamic of HPA axis in obesity is complex, and early morning F levels were previously 

found unchanged or inversely related with central adiposity, as in consequence of diminished ACTH-

sensitivity of the adrenal, of flattening of HPA circadian rhythmicity, or of increased F clearance [44; 45]. At 

variance, the positive association of glucocorticoids with triglycerides we found in menopausal women is in 

line with their role in the derangement of energy substrate utilization [46]. Notably, we demonstrated that 

even mild metabolic dysfunction, such as high waist circumference or triglycerides, can significantly alter 

the estimation of 11S and F limits, underlying the importance of a proper metabolic characterization when 

generating glucocorticoid RI.

Menstrual fluctuation challenges the definition of robust RI for ovarian steroids [47]. A limit of our study is 

that gonadotropins were not measured, and menstrual classification was performed according to the 

menstrual date, which may represent a source of bias. We could partially cope with this unpredictable bias in 

the mid-luteal phase, by excluding women showing P4 levels <10 nmol/L [27]. However, we could not 

assess whether these women were actually misclassified or they had an occasional anovulatory cycle. 

Similarly, we cannot exclude that misclassification or anovulatory cycles were affecting women in early 

follicular and pre-ovulatory phases. Therefore, our menstrual phase RI are to be interpreted with cautions, 

and need to be refined in future studies including gonadotropin evaluation. Nonetheless, values we observed 

in early follicular phase are in reasonable agreement with previous reports [27; 31; 48]. Androgen fluctuation 

throughout the menstrual cycle is still debated. Skiba et al. found slightly higher T and A4 in mid-cycle and 
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luteal compared to follicular phase [34]. Bui et al. observed minimal T fluctuation, with increasing values at 

mid-cycle in some women [49]. We did not detect any androgen fluctuation, however, we found small but 

significant variations in DOC and 11S levels among menstrual phases. A proper exploration of this 

phenomenon would require repeated intra-subject evaluation across the menstrual cycle. Even though data 

are still inconclusive, we recommend to standardize the menstrual phase when studying the steroid dynamics 

in young women for clinical or research purposes.

Our steroid values are generally lower compared to other LC-MS/MS studies, except 17OHP5 and DHEA 

values which are higher, [27; 31; 32; 34; 35; 48; 50; 51; 52]. Differences in analytical methods, sampling 

procedures, cohort selection and study design may account for variabilities in steroid levels and relationships 

with women’s metabolic health. Time of sampling [52] as well as needle stress [53; 54] represent non-

negligible sources of variability. In addition, though harmonization of LC-MS/MS measures seems an 

affordable goal, collective strategies are still awaited in this direction. 

In conclusion, our study focusing on a carefully selected female cohort highlighted a different network of 

relationships between circulating steroid profile, obesity and metabolic status of women in reproductive and 

menopausal age. RI specific for age, reproductive and menstrual status were generated that will be useful for 

the effective interpretation of the steroid involvement in women’s health and disease.
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Figure Legend

Figure 1. Distribution of steroid hormone serum levels by age.

Continuous lines: lower and upper reference limits; dashed lines: 90% confidence intervals.
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Table 1. Anthropometric, metabolic and hormonal features of the cohort. Data are expressed as mean±SD, except 11-deoxycorticosterone where median (75th centile) are shown. 
Mean values are back transformed means of the transformed variables. Blood was withdrawn between 8:00–10:00 am after overnight fasting.

Women in reproductive age Women in menopausal age P†

All Normal weight Overweight Obese ANOVA
trend, P

All Normal weight Overweight Obese ANOVA
trend, P

n 186 123 35 28 127 63 49 15

Age, years 38.2±8.4 37.1±8.6 40.4±8.0 41.0±6.8 0.186 60.0±7.8 58.2±7.4 62.4±8.2 59.4±6.9 0.515 <0.001

Body mass index, kg/m2 21.8±5.3 20.4±1.7 25.8±1.4a 33.8±3.7a,b <0.001 23.4±3.9 21.6±1.4 25.8±1.4a 32.2±3.4a,b <0.001 <0.001

Waist circumference, cm 81.1±12.8 75.8±6.7 88.2±8.8a 104.7±9.2a,b <0.001 86.8±9.8 81.5±7.1 90.0±5.6a 104.7±8.2a,b <0.001 <0.001

Systolic blood pressure, mmHg 117.5±14.8 112.5±10.6 125.6±17.2a 124.6±15.3a <0.001 130.7±17.6 129.1±15.1 129.7±17.7 140.7±22.2 0.027 <0.001

Diastolic blood pressure, mmHg 77.5±8.6 74.9±8.1 81.7±7.9c 80.7±8.5a <0.001 82.8±8.3 81.7±7.0 81.7±7.8 88.8±11.2c,d 0.003 <0.001

Glucose, mmol/L 4.53±0.73 4.42±0.67 4.45±0.75 5.11±0.74,d <0.001 4.87±0.80 4.72±0.79 4.93±0.77 5.08±0.88 0.114 <0.001

Insulin, µU/mL 6.2±4.0 5.1±2.4 7.1±3.2a 10.0±5.3a,e <0.001 7.1±4.1 5.9±2.5 7.7±4.3c 9.5±5.3a <0.001 0.052

HOMA-IR 1.29±0.95 1.04±0.55 1.34±0.68a 2.24±1.24a,b <0.001 1.55±1.12 1.27±0.65 1.67±1.19f 2.14±1.50c <0.001 0.013

Total cholesterol, mmol/L 4.52±0.82 4.41±0.80 4.79±0.92 4.67±0.73 0.133 5.39±0.84 5.30±0.95 5.50±0.76 5.37±0.58 0.677 <0.001

HDL-cholesterol, mmol/L 1.50±0.37 1.57±0.35 1.51±0.31 1.31±0.44a,d <0.001 1.57±0.39 1.65±0.40 1.53±0.39 1.46±0.31 0.089 0.117

Triglycerides, mmol/L 0.70±0.34 0.64±0.22 0.80±0.38a 0.86±0.53a <0.001 0.94±0.47 0.81±0.40 1.10±0.53 0.97±0.30 0.253 <0.001

17-Hydroxypregnenolone (17OHP5), nmol/L 5.51±7.22 5.64±7.31 6.97±8.13 3.84±4.97 0.087 3.79±3.77 3.51±2.77 4.38±4.72 3.35±3.48 0.815 <0.001

Dehydroepiandrosterone (DHEA), nmol/L 15.50±14.60 15.64±14.20 17.11±14.52 13.16±16.65 0.324 8.90±6.35 8.94±5.30 9.09±7.42 8.19±6.83 0.644 <0.001

Progesterone (P4), nmol/L 1.93±0.91 1.91±16.81 2.02±13.23 1.87±11.52 0.364 0.17±0.07 0.17±0.04 0.22±0.03 0.21±0.01 0.067 <0.001§

17-Hydroxyprogesterone (17OHP4), nmol/L 1.776±1.887 1.873±2.039 1.834±1.566 1.362±1.393 0.142 0.710±0.466 0.631±0.391 0.856±0.541 0.635±0.339 0.968 <0.001

11-Deoxycorticosterone (DOC), nmol/L <0.236 (<0.236) <0.236 (<0.236) <0.236 (<0.236) <0.236 (<0.236) 0.133# <0.236 (<0.236) <0.236 (<0.236) <0.236 (<0.236) <0.236 (<0.236) 0.550# 0.044§

Corticosterone (B), nmol/L 8.15±9.56 8.94±9.74 8.61±10.50 5.07±5.83b,c <0.001 8.49±7.14 7.79±7.29 10.31±7.29 6.35±4.16 0.313 0.662

11-Deoxycortisol (11S), nmol/L 0.755±0.710 0.743±0.743 0.956±0.689 0.608±0.517 0.338 0.892±0.605 0.817±0.559 1.002±0.655 0.892±0.592 0.613 0.029

Cortisol (F), nmol/L 286.4±105.8 296.3±102.2 292.3±118.7 241.1±94.7b,f 0.008 318.9±101.9 302.3±93.7 351.5±104.2 283.5±104.8 0.469 0.007

Androstenedione (A4), nmol/L 2.34±1.09 2.40±1.09 2.48±1.21 1.96±0.85 0.369 1.14±0.54 1.06±0.50 1.21±0.53 1.27±0.67 0.165 <0.001

Testosterone (T), nmol/L 0.768±0.328 0.790±0.326 0.730±0.325 0.717±0.342 0.154 0.596±0.309 0.552±0.256 0.684±0.368 0.524±0.219 0.700 <0.001

Dihydrotestosterone (DHT), nmol/L 0.183±0.128 0.193±0.124 0.191±0.155 0.151±0.079f 0.006 0.140±0.080 0.142±0.063 0.139±0.076 0.139±0.154 0.597 <0.001

Estrone (E1), nmol/L 0.212±0.116 0.216±0.118 0.201±0.122 0.209±0.099 0.319 0.077±0.037 0.069±0.032 0.083±0.038f 0.098±0.044c 0.002 <0.001

Estradiol (E2), nmol/L 0.292±0.277 0.323±0.274 0.238±0.300 0.251±0.246 0.334 0.037±0.022 0.037±0.028 0.036±0.008 0.038±0.023 0.640 <0.001

HOMA-IR: homeostatic model assessment insulin resistance; HDL: high density lipoprotein. a vs NW, P<0.001; b vs OW, P<0.001; c vs NW, P<0.010; d vs OW, P<0.050; e vs OW P<0.010; f vs 

NW, P<0.050; # Kruskal-Wallis test. § Mann-Whitney test; †Reproductive vs Menopausal by T=test
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Table 2. Impact of age, anthropometric and metabolic parameters on steroid circulating levels in women in 
reproductive and menopausal status. Data are shown as Cohen’s effect size for multiple linear regression (f2) and 
P value resulting from the stepwise multiple regression. The negative (−) or positive (+) nature of the relationship 
is reported.

Status Age BMI WC HOMA-IR TC HDL-C TG
f2 P f2 P f2 P f2 P f2 P f2 P f2 P

17OHP5
Reproductive 0.12 <0.001 (-) NS NS NS NS NS NS
Menopausal NS NS NS NS NS NS NS

DHEA
Reproductive 0.22 <0.001 (-) NS NS NS NS NS NS
Menopausal NS NS NS NS NS NS NS

P4
Reproductive* NS NS NS NS NS NS NS

 17OHP4
Reproductive* NS 0.22 0.006 (-) NS NS NS NS NS
Menopausal NS NS NS NS NS NS 0.06 0.026 (+)

B
Reproductive NS NS 0.20 <0.001 (-) NS NS NS NS
Menopausal NS NS NS NS NS NS NS

11S
Reproductive NS NS 0.09 0.002 (-) NS NS NS NS
Menopausal NS NS NS NS NS NS 0.07 0.011 (+)

 F
Reproductive NS NS 0.17 <0.001 (-) NS NS NS NS
Menopausal NS NS NS NS NS NS 0.05 0.038 (+)

A4
Reproductive 0.28 <0.001 (-) NS NS NS NS NS NS
Menopausal NS NS NS NS NS NS NS

TS
Reproductive 0.22 <0.001 (-) NS NS NS NS NS NS
Menopausal NS NS NS NS NS NS NS

DHT
Reproductive 0.11 0.002 (-) 0.09 0.004 (-) NS NS NS 0.08 0.010 (-) NS

 E1
Reproductive* NS NS NS NS 0.10 0.033 (-) NS NS
Menopausal NS NS 0.16 <0.001 (+) 0.08 0.012 (-) NS NS NS

 E2
Reproductive* NS NS NS NS NS NS 0.15 0.011 (-)

BMI: body mass index; HOMA-IR: homeostatic model assessment insulin resistance; HDL: high density lipoprotein; NS, not 

significant. *data adjusted by the menstrual phase.

17OHP5, 17-Hydroxypregnenolone; DHEA, Dehydroepiandrosterone; P4, Progesterone; 17OHP4, 17-Hydroxyprogesterone; B, Corticosterone; 11S, 11-
Deoxycortisol; F, Cortisol; A4, Androstenedione; TS, testoseterone; DHT, Dihydrotestosterone; E1, Estrone; E2, Estradiol; WC, waist circumference; TC, total 
cholesterol; HDL-C, HDL cholesterol; TG, triglycerides
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Table 3. Reference intervals of serum androgens and pro-androgens according to age- and menopausal status.

Age (y) /Status 17-Hydroxypregnenolone Dehydroepiandrosterone Androstenedione Testosterone Dihydrotestosterone

(17OHP5) (DHEA) (A4) (T) (DHT)

LRL (90CI) URL (90CI) LRL (90CI) URL (90CI) LRL (90CI) URL (90CI) LRL (90CI) URL (90CI) LRL URL (90CI)

20 2.33 (1.65-3.21) 27.65 (17.63-51.44) 8.5 (6.2-11.0) 59.8 (44.8-92.8) 1.29 (1.06-1.50) 4.91 (4.38-5.69) 0.324 (0.234-0.392) 1.646 (1.418-2.086) ND ND

25 1.92 (1.57-2.30) 30.09 (22.51-44.45) 6.6 (5.5-7.7) 60.3 (49.2-81.5) 1.54 (1.36-1.71) 5.66 (5.09-6.48) 0.315 (0.257-0.357) 1.664 (1.514-1.894) ≤0.135 0.535 (0.463-0.604)

30 1.68 (1.46-1.90) 29.96 (24.07-39.28) 5.5 (4.8-6.1) 57.1 (48.4-71.5) 1.37 (1.23-1.51) 5.28 (4.78-5.92) 0.308 (0.268-0.339) 1.664 (1.549-1.816) ≤0.135 0.508 (0.453-0.575)

35 1.51 (1.35-1.67) 28.59 (23.88-35.50) 4.6 (4.1-5.1) 52.5 (45.5-62.8) 1.12 (1.01-1.22) 4.64 (4.27-5.10) 0.301 (0.271-0.327) 1.652 (1.546-1.790) ≤0.135 0.472 (0.423-0.539)

40 1.38 (1.24-1.52) 26.70 (22.74-32.58) 4.0 (3.6-4.4) 47.5 (41.9-55.4) 0.88 (0.80-0.95) 4.03 (3.76-4.37) 0.294 (0.267-0.316) 1.630 (1.523-1.773) ≤0.135 0.434 (0.391-0.496)

45 1.27 (1.13-1.41) 24.65 (21.11-30.00) 3.5 (3.1-3.9) 42.6 (37.9-48.9) 0.69 (0.62-0.75) 3.52 (3.31-3.79) 0.285 (0.259-0.307) 1.597 (1.485-1.747) ≤0.135 0.396 (0.358-0.449)

50 1.18 (1.03-1.32) 22.59 (19.30-27.76) 3.1 (2.7-3.5) 38.0 (33.9-43.3) 0.54 (0.46-0.60) 3.12 (2.92-3.36) 0.275 (0.247-0.298) 1.556 (1.430-1.712) ≤0.135 0.357 (0.325-0.406)

55 1.10 (0.94-1.25) 20.64 (17.41-25.59) 2.7 (2.3-3.1) 33.8 (30.1-38.7) 0.42 (0.33-0.50) 2.81 (2.59-3.05) 0.264 (0.232-0.290) 1.505 (1.357-1.679) ≤0.135 0.317 (0.288-0.371)

60 1.03 (0.87-1.18) 18.81 (15.54-23.64) 2.4 (2.0-2.8) 30.0 (26.5-34.5) 0.33 (0.22-0.41) 2.58 (2.31-2.85) 0.251 (0.214-0.284) 1.446 (1.269-1.649) ≤0.135 0.277 (0.245-0.342)

65 0.96 (0.80-1.12) 17.14 (13.87-21.86) 2.1 (1.8-2.6) 26.5 (23.2-31.1) 0.26 (0.15-0.34) 2.41 (2.08-2.74) 0.236 (0.191-0.277) 1.377 (1.168-1.614) ≤0.135 0.234 (0.194-0.312)

70 0.90 (0.74-1.07) 15.61 (12.38-20.18) 1.9 (1.5-2.3) 23.5 (20.1-27.9) 0.20 (0.09-0.29) 2.29 (1.90-2.69) 0.221 (0.168-0.272) 1.301 (1.055-1.576) ≤0.135 0.189 (0.135-0.281)

75 0.85 (0.68-1.02) 14.22 (11.05-18.71) 1.7 (1.3-2.1) 20.8 (17.5-25.2) 0.15 (0.05-0.25) 2.22 (1.74-2.71) 0.203 (0.144-0.266) 1.217 (0.938-1.544) ≤0.135 0.141 (0.070-0.247)

Menopausal 1.15 (0.99-1.33) 16.06 (13.15-19.69) 2.7 (2.3-3.2) 27.8 (24.0-32.1) 0.39 (0.32-0.46) 2.45 (2.25-2.66) 0.248 (0.222-0.276) 1.444 (1.280-1.629) ≤0.135* 0.462*

LRL: lower reference limit; 90CI: 90% confidence interval; URL: upper reference limit; ND: not determined because of insufficient data points. Data are reported in nmol/L. LRL and URL 

were calculated as the mean - 1.96xSD and mean + 1.96xSD of hormone distribution, respectively, according to the fractional polynomial regression by Royston and Wright. * LRL and 

URL calculated as the 2.5th and 97.5th of hormone distribution, respectively.
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Table 4. Reference intervals of age-independent steroid circulating levels in the reference sub-cohorts, and comparison with limits in dysmetabolic sub-cohorts.

Steroid hormone Status Reference sub-cohort Dysmetabolic sub-cohort

Features n LRL (90CI)
(nmol/L)

URL (90CI)
(nmol/L)

Features n LL (90CI)
(nmol/L)

P value§ UL (90CI)
(nmol/L)

P value#

11-Deoxycorticosterone (DOC)* Reproductive all 186 <0.236 (<0.236) 0.404 (0.352-0.747)

Menopausal all 127 <0.236 (<0.236) 0.308

Corticosterone (B) Reproductive norWC 132 1.99 (1.65-2.40) 41.87 (34.31-51.14) dysWC 52 1.39 (1.03-1.89) 0.102 31.16 (22.52-43.21) 0.204

Menopausal all 127 1.78 (1.40-2.25) 30.42 (26.28-35.09)

11-Deoxycortisol (11S) Reproductive norWC 132 0.197 (0.168-0.231) 3.277 (2.681-4.020) dysWC 52 0.212 (0.168-0.269) 0.667 2.891 (2.153-3.911) 0.568

Menopausal norTG 112 0.231 (0.186-0.284) 2.679 (2.334-3.065) dysTG 10 0.574 (0.370-0.862) 0.003 2.666 (1.919-3.635) 0.981

Cortisol (F) Reproductive norWC 132 148.2 (135.3-162.2) 566.1 (521.6-611.8) dysWC 52 112.7 (94.8-133.5) 0.020 539.6 (465.1-624.9) 0.640

Menopausal norTG 112 158.7 (142.3-176.2) 548.9 (511.7-587.8) dysTG 10 199.3 (137.4-276.9) 0.319 649.7 (510.9-811.0) 0.261

Dihydrotestosterone (DHT) Reproductive NW and norHDL 65 0.107 (0.093-0.123) 0.618 (0.513-0.749) OW/OB or dysHDL 76 0.093 (0.081-0.106) 0.235 0.553 (0.461-0.666) 0.484

OW/OB only 40 0.087 (0.072-0.107) 0.178 0.553 (0.426-0.727) 0.578

Progesterone (P4)* Menopausal all 127 <0.16 0.28

17-Hydroxyprogesterone (17OHP4) Menopausal norTG 112 0.243 (0.204-0.287) 1.937 (1.711-2.186) dysTG 10 0.301 (0.150-0.564) 0.613 3.001 (1.862-4.677) 0.141

Estrone (E1) Menopausal norWC and norHOMA 50 0.032 (0.027-0.038) 0.162 (0.137-0.192) dysWC or dysHOMA 54 0.039 (0.033-0.045) 0.201 0.193 (0.164-0.227) 0.220

dysWC only 29 0.039 (0.031-0.050) 0.279 0.225 (0.177-0.286) 0.066

Estradiol (E2)* Menopausal all 127 <0.036 (<0.036) 0.088 (0.037-0.252)

LRL: lower reference limit; 90CI: 90% confidence interval; URL: upper reference limit; norWC: waist circumference ≤88 cm; dysWC: waist circumference >88cm; norTG: triglyceride level 

<1.69 mmol/L; dysTG: triglyceride level ≥1.69 mmol/L; NW: normal weight; norHDL: high density lipoprotein cholesterol level ≥1.29 mmol/L; OW/OB: overweight/obese; dysHDL: high 

density lipoprotein cholesterol level <1.29 mmol/L; norHOMA: homeostatic model assessment insulin resistance <2.5; dysHOMA: homeostatic model assessment insulin resistance ≥2.5. LRL 

and URL were calculated as the mean - 1.96xSD and mean + 1.96xSD of hormone distribution, respectively. * LRL and URL calculated as the 2.5th and 97.5th of hormone distribution, respectively.

P values refer to Z-test comparison of LRL (§) and URL (#) between dysmetabolic and reference subgroups.
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Table 5. Upper and lower reference limits of serum steroid levels varying with the menstrual phase.

Steroid hormone Reference Early follicular (day 1-6) Pre-ovulatory (day 9-13) Mid-luteal (day 18-24)#

cohort features n LRL (90CI) URL (90CI) n LRL (90CI) URL (90CI) n LRL (90CI) URL (90CI)

Progesterone (P4)* all 31 <0.16 1.41 30 <0.16 7.66 22 13.09 82.14
17-Hydroxyprogesterone (17OHP4) NW 22 0.405 (0.301-0.538) 2.336 (1.788-3.042) 26 0.447 (0.334-0.608) 5.403 (3.536-8.501) 17 2.855 (2.028-3.693) 7.612 (6.742-8.488)
Estrone (E1) norTC 20 0.069 (0.057-0.086) 0.367 (0.256-0.556) 25 0.091 (0.021-0.158) 0.516 (0.456-0.576) 17 0.131 (0.088-0.182) 0.523 (0.433-0.622)
Estradiol (E2) norTG 25 0.046 (0.032-0.065) 0.751 (0.464-1.254) 28 0.074 (0.010 -0.171) 1.273 (1.048-1.513) 21 0.198 (0.132-0.274) 0.827 (0.701-0.961)

LRL: lower reference limit; 90CI: 90% confidence interval; URL: upper reference limit. Data are reported in nmol/L. NW: normal weight; norTC: total cholesterol levels <5.17 mmol/L; norTG: 

triglyceride level <5.17 mmol/L. LRL and URL were calculated as the mean - 1.96xSD and mean + 1.96xSD of hormone distribution, respectively. # Women showing P4 levels <10 nmol/L were 

excluded. * LRL and URL calculated as the 2.5th and 97.5th of hormone distribution, respectively.
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Figure 1. Distribution of steroid hormone serum levels by age.

Continuous lines: lower and upper reference limits; dashed lines: 90% confidence intervals.
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Supplemental Table 1. Functional sensitivity limits by the LC-MS/MS assays used in the present study.

Steroid analyte Abbreviation Sensitivity 
limit 

(nmol/L)

Intra-
assay 
CV%

Inter-
assay 
CV%

Trueness 
%

Accuracy vs 
certified 

QC*

Assay Ref.

17-Hydroxypregnenolone 17OHP5 0.117 3 – 4 7 – 9 89 – 114 2 21
Dehydroepiadrosterone DHEA 2.71 7 – 8 8 – 10 95 – 102 1 18
Progesterone P4 0.156 5 – 8 6 – 11 84 – 92 1 18
17-Hydroxyprogesterone 17OHP4 0.236 4 – 5 5 – 9 101 – 104 1 18
11-Deoxycorticosterone DOC 0.236 5 – 6 6 – 9 100 – 104 1 18
Corticosterone B 0.903 2 – 6 5 – 10 92 – 98 1 18
11-Deoxycortisol 11S 0.226 3 – 8 2 – 8 99 – 106 1 18
Cortisol F 0.673 2 – 3 5 – 8 94 – 104 1 18
Androstenedione A4 0.136 7 – 10 10 – 11 86 – 101 1 18
Testosterone T 0.066 3 – 4 4 – 7 97 – 100 1 18
Dihydrotestosterone DHT 0.134 4 – 6 3 – 9 81 – 112 2 21
Estrone E1 0.018 2 – 3 3 – 9 83 – 111 2 21
Estradiol E2 0.036 3 – 6 5 – 7 84 – 113 92 – 108 2 21

* Quality control materials provided the Reference Institute for Bioanalytics.

The absence of interference was evaluated from prednisone, prednisolone, triamcinolone acetonide, methylprednisolone, 
dexamethasone, betamethasone, cortisone, 21-deoxycortisol, 20α-dihydrocortisone, 20β-dihydrocortisone, 
epitestosterone, DHEA-sulfate, 16-hydroxyprogesterone, 11-hydroxyprogesterone, 17-hydroxypregnenolone and 
pregnenolone for assay 1, and from cortisol, DHEA, testosterone, epitestosterone, pregnenolone, progesterone, 17-
hydroxyprogesterone and androstenedione for assay 2.
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Supplemental Table 2. Anthropometric, metabolic and hormonal features of women sub-classified according 

to the menstrual phase.

Data are presented as the back-transformed means of the transformed variables ± SD, except 11-deoxycorticosterone 

which is shown as median (75° centile). Blood was withdrawn between 8:00–10:00 am after overnight fasting. HOMA-

IR: homeostatic model assessment insulin resistance; HDL: high density lipoprotein. a vs follicular phase, P<0.001; b vs 

pre-ovulatory phase, P<0.001; c vs pre-ovulatory phase, P<0.050. # Kruskal-Wallis test.

Early follicular
(n=31)

Pre-ovulatory
(n=30)

Mid-luteal
(n=33)

ANOVA,
P Value*

Age, years 39.8±8.7 39.2±8.2 38.7±8.3 0.845
Body mass index, kg/m2 22.8±4.2 22.2±2.4 23.7±6.1 0.217
Waist circumference, cm 80.7±10.4 78.0±8.9 80.5±13.4 0.516
Systolic blood pressure, mmHg 116.3±12.1 112.2±9.0 116.4±19.4 0.497
Diastolic blood pressure, mmHg 77.5±8.0 77.0±7.7 78.0±9.5 0.956
Glucose, mmol/L 4.48±0.83 4.36±0.74 4.57±0.51 0.601
Insulin, µU/mL 5.4±2.9 5.0±2.2 6.4±3.6 0.176
HOMA-IR 1.07±0.76 0.99±0.51 1.34±0.82 0.122
Total cholesterol, mmol/L 4.70±0.89 4.34±0.68 4.60±0.76 0.165
HDL-cholesterol, mmol/L 1.51±0.42 1.60±0.28 1.47±0.30 0.453
Triglycerides, mmol/L 0.70±0.38 0.60±0.26 0.69±0.33 0.150
17-Hydroxypregnenolone (17OHP5), nmol/L 6.51±9.30 4.89±9.15 6.16±5.52 0.302
Dehydroepiandrosterone (DHEA), nmol/L 18.2±12.2 13.7±12.6 16.0±10.1 0.178
Progesterone (P4), nmol/L 0.36±0.30 0.44±1.65 11.67±19.23a,b <0.001
17-Hydroxyprogesterone (17OHP4), nmol/L 0.998±0.661 1.356±1.101 3.126±1.967a,b <0.001
11-Deoxycorticosterone (DOC), nmol/L <0.236 (<0.236) <0.236 (<0.236) <0.236 (<0.236)c 0.043#

Corticosterone (B), nmol/L 8.99±9.89 6.19±9.65 8.92±11.59 0.135
11-Deoxycortisol (11S), nmol/L 0.821±0.736 0.591±0.555 0.878±0.774 0.048
Cortisol (F), nmol/L 300.3±101.7 253.6±107.9 292.3±115.6 0.167
Androstenedione (A4), nmol/L 2.25±1.45 2.22±0.73 2.44±0.95 0.585
Testosterone (T), nmol/L 0.691±0.330 0.755±0.279 0.741±0.334 0.659
Dihydrotestosterone (DHT), nmol/L 0.149±0.131 0.147±0.132 0.135±0.113 0.487
Estrone (E1), nmol/L 0.149±0.062 0.264±0.119a 0.238±0.119a <0.001
Estradiol (E2), nmol/L 0.179±0.180 0.482±0.310a 0.373±0.269a <0.001
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