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The Effect of Sequentiality on Cooperation  
in Repeated Games†

By Riccardo Ghidoni and Sigrid Suetens*

Sequentiality of moves in an infinitely repeated prisoner’s dilemma 
does not change the conditions under which mutual cooperation can 
be supported in equilibrium relative to simultaneous decision-making. 
The nature of the interaction is different, however, given that sequen-
tial play reduces strategic uncertainty. We show in an experiment 
that this has large consequences for behavior. We find that with inter-
mediate incentives to cooperate, sequentiality increases the cooper-
ation rate by around 40 percentage points, whereas with very low or 
very high incentives to cooperate, cooperation rates are respectively 
very low or very high in both settings. (JEL C72, C73)

Folk theorems show that both opportunism and cooperation can be sustained in 
a prisoner’s dilemma game when the interaction is repeated and players are 

sufficiently patient (Fudenberg and Maskin 1986). A remarkable property of this 
setup is that whether players move simultaneously or sequentially in the stage game 
does not affect the conditions that support mutual cooperation in equilibrium.1 In 
both cases, mutual cooperation can be sustained if the discount factor is above a 

1 Sequential moves, whereby the first mover’s choice is revealed to the second mover before the latter makes 
a choice, are common in the context of trust (Kreps 1990), borrower-lender relations (Thomas and Worrall 1990; 
Kehoe and Levine 1993), employer-employee relations (Akerlof 1982; Fehr, Kirchsteiger, and Riedl 1993), and 
trade (Greif 1993; Brown, Falk, and Fehr 2004).
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threshold that depends on the parameters of the game (Wen 2002).2 Yet, given that 
sequentiality reduces strategic risk for the player who moves second, it creates a 
very different strategic environment. Specifically, by cooperating if and only if the 
first mover cooperates, the second mover can reap the benefits of cooperation and 
at the same time avoid being betrayed. If the first mover understands this, then the 
strategic risk he faces is also lower than that of a player in a simultaneous game. 
Consequently, one might plausibly expect that sequentiality is a key determinant of 
cooperation. This paper reports on a controlled experiment that studies whether and 
under what conditions sequentiality leads to more cooperation. The paper is rele-
vant for understanding cooperation across a wide range of applications (e.g., trade, 
employer-employee relations, borrower-lender relations) and contributes to the lit-
erature that investigates the determinants of cooperation.

Strategic uncertainty has been highlighted as a crucial determinant of behavior 
within the class of repeated simultaneous prisoner’s dilemmas (PDs). As summa-
rized by Dal Bó and Fréchette (2018), the more money a player might lose by coop-
erating, the less she is willing to cooperate.3 Two distinct but related approaches 
formalize the role of strategic uncertainty: Blonski, Ockenfels, and Spagnolo (2011) 
and Blonski and Spagnolo (2015), who apply the concept of risk dominance to the 
repeated PD, and Dal Bó and Fréchette (2011), who appeal to the basin of attraction 
of repeated-game strategies. These approaches help to formalize the intuition that 
sequentiality of moves may facilitate cooperation. A key element is that the second 
mover in a repeated sequential PD can, unlike a player in a repeated simultaneous 
PD, avoid ending up with the sucker payoff, by conditionally cooperating. This leads 
to the prediction that second movers conditionally cooperate and first movers coop-
erate whenever mutual cooperation is supported in equilibrium, and otherwise, they 
defect.4 In contrast, with simultaneous decision-making, the approaches predict a 
smooth relation between payoffs and the likelihood of cooperation, conditional on 
mutual cooperation being supported in equilibrium. In summary, if strategic uncer-
tainty is taken into account, the cooperation rate in sequential PDs is predicted to be 
(weakly) higher than that in simultaneous PDs in games in which mutual coopera-
tion is supported in equilibrium.

In our experiment, participants play a series of indefinitely repeated sequential 
or simultaneous PDs. In each round, players proceed to the next round with a con-
stant and known continuation probability ​δ​.5 The experiment covers six parameter 
configurations that vary between subjects, as in Dal Bó and Fréchette (2011). In one 
configuration, cooperation cannot be sustained in equilibrium because ​δ​ is below 

2 This builds on the use of the grim trigger strategy as a cooperative strategy (Friedman 1971). Since that 
strategy leads to minimax payoffs (equal to static Nash payoffs) independently of sequentiality, it is the harshest 
punishment strategy in both settings (Fudenberg and Maskin 1986).

3 Strategic uncertainty is also an important factor in finitely repeated PDs (Embrey, Fréchette, and Yuksel 2018), 
repeated entry games (Calford and Oprea 2017), and dynamic dilemma games (Vespa and Wilson 2019).

4 The prediction is reminiscent of a case discussed by Camera, Casari, and Bigoni (2013) in relation to a game 
where strangers decide whether to help one another in exchange for fiat money. In this case, the only two stable 
population configurations are a population of defectors and a population of conditional cooperators (traders), with 
basins of attraction depending on the parameters of the game.

5 Building upon the assumption that participants do not discount the future in the short period of time they are 
in the lab, ​δ​ has the same role as that of the rate at which risk-neutral players discount the future in an infinitely 
repeated game (Roth and Murnighan 1978).
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the threshold of the standard theory of infinitely repeated games, while in the other 
configurations, ​δ​ is above the theoretical threshold. We formulate predictions taking 
into account strategic uncertainty. In the treatment in which mutual cooperation 
cannot be sustained in equilibrium, no difference is predicted between the sequen-
tial and simultaneous versions. In the other treatments, sequentiality is predicted to 
(weakly) increase the cooperation rate to above that in the simultaneous equivalent, 
with the largest effect predicted for the games where ​δ​ is closest to the theoretical 
threshold. The reason for this is that strategic risk is largest in the simultaneous ver-
sion of the latter games.

The experimental results show strong support for these predictions. In the treat-
ments that are characterized by relatively high strategic risk in the simultaneous 
version, sequentiality increases the cooperation rate by 40 percentage points. In the 
treatments with relatively little strategic risk, sequentiality has no significant effect 
on the cooperation rate; the cooperation rate is close to 1 then when mutual cooper-
ation is sustainable, and close to 0 otherwise.

Other experimental studies have compared sequential and simultaneous social 
dilemma games. Evidence from one-shot experiments, in which repeated-game 
incentives are absent, indicates that the effect of sequentiality on cooperation 
appears to depend on the game’s parameters and the subject pool (Ahn, Ostrom, 
and Walker 2003; Ahn et al. 2007; Khadjavi and Lange 2013). Oskamp (1974), who 
compares repeated sequential- and simultaneous-move PDs with different payoff 
levels but otherwise the same repeated-game incentives, finds evidence for an inter-
action between sequentiality of moves and payoff levels. In sequential-move games, 
cooperation rates tend to be less responsive to a change in the payoff level than in 
simultaneous-move games.6 Furthermore, there is a literature on leading-by-example 
where a leader is modeled as the first mover in a voluntary-contributions setting. 
For example, Potters, Sefton, and Vesterlund (2005) find that exogenously imposed 
sequentiality of moves increases contributions relative to a simultaneous-move set-
ting if the leader has private information about the game’s parameters. Yet, results are 
mixed in full information settings (for example, Andreoni, Brown, and Vesterlund 
2002; Güth et al. 2007).7 Finally, Kartal and Müller (2021) compare simultaneous 
and sequential infinitely repeated PDs in an experiment inspired by a model with 
heterogeneity in cooperation preferences and private information. They focus on a 
case in which cooperation cannot be sustained in equilibrium and find that sequenti-
ality increases the cooperation rate by about 20 percentage points.

The remainder of the paper is organized as follows. Section I provides the the-
oretical background. Section II includes the experimental design, procedures, and  
hypotheses. Section III presents the main results, and Section IV concludes.

6 In these experiments it was announced that the repeated game would last for 60 rounds but was actually ended 
after 50 to avoid end-game effects.

7 See also Clark and Sefton (2001), who study the effect of stakes and subject pool on the cooperation rate in 
one-shot sequential PDs; Engle-Warnick and Slonim (2006), who study behavior in infinitely repeated trust games; 
and Reuben and Suetens (2012), who elicit stage-game strategies of players in infinitely repeated sequential PDs in 
which players can condition their strategy on whether they are playing the last round.
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I.  Theoretical Background

In a repeated simultaneous PD with a stage game as shown in Table 1, the standard 
theory of infinitely repeated games prescribes that mutual cooperation can be sup-
ported as an equilibrium outcome if ​δ  ≥ ​ δ​​ ⁎​  ≡ ​ (t − c)​ / ​(t − d)​​ (see Proposition 4 
in Friedman 1971). Both players playing grim trigger (GT) strategies constitutes 
an equilibrium then.8 If the PD is played sequentially, then the theory predicts that 
mutual cooperation can be supported in equilibrium under the same condition as 
in the simultaneous PD, that is, if ​δ  ≥ ​ δ​​ ⁎​​. Likewise, GT leads to the harshest pos-
sible punishment and both players using a GT strategy constitutes an equilibrium 
(see online Appendix Section C.1 for calculations).9 In summary, according to stan-
dard game theory, cooperation rates should not be different in sequential PDs than 
in simultaneous ones: if ​δ  < ​ δ​​ ⁎​​, the only equilibrium is one in which both play-
ers defect, and if ​δ  ≥ ​ δ​​ ⁎​​, cooperative and noncooperative equilibria exist in both 
settings.

More precise predictions can be obtained by appealing to risk dominance (Blonski, 
Ockenfels, and Spagnolo 2011) or to the basin of attraction of repeated-game strat-
egies (Dal Bó and Fréchette 2011). These approaches help to identify under which 
conditions players are more likely to coordinate on a mutually cooperative equilib-
rium in games with ​δ  ≥ ​ δ​​ ⁎​​. A key element is that the relative cost of cooperating 
with a partner who defects becomes an important determinant of behavior for play-
ers who do not know with certainty whether their partner will defect. In particular, 
consider a simplification of the repeated game to a game in which players choose 
at the beginning of the repeated game between the always defect strategy (AD) and 
a conditionally cooperative strategy (CC) à la GT.10 We assume that the payoffs in 
the reduced game represent utilities and that they are common knowledge. The size 
of the basin of attraction of AD versus CC (referred to as SizeBAD) is defined as 
the maximum probability of the partner choosing CC such that playing AD is still a 
best response. SizeBAD turns out to be highly useful in understanding how behavior 
in sequential PDs might differ from that in simultaneous PDs. In what follows, we 

8 GT is defined as follows: start by cooperating and continue to do so if both players cooperate, and if one of the 
players defects, switch to defection forever.

9 For a second mover, GT is implemented as follows: cooperate if the first mover cooperates, and if one of the 
players defects, switch to defection forever.

10 Since players are assumed to choose their strategy at the beginning of the repeated game, tit-for-tat (TFT) or 
another conditionally cooperative strategy with limited punishment would also qualify as CC.

Table 1—Stage Game of a Simultaneous PD

Cooperate Defect

Cooperate ​c​, ​c​ ​s​, ​t​

Defect ​t​, ​s​ ​d​, ​d​

Note: ​t  >  c  >  d  >  s​ and ​2c  >  t + s​.
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explain the intuition. The detailed calculations are presented in online Appendix 
Section C.2.

Consider first a repeated simultaneous PD. If ​δ  ≥ ​ δ​​ ⁎​​, the reduced game in which 
players choose between AD and CC is a game with two pure-strategy equilibria: 
(AD, AD) and (CC, CC). Players are more likely to choose CC and thus to end 
up in equilibrium (CC, CC) if the expected payoff of CC exceeds that of AD. This 
holds true if they believe that their partner will choose CC with a sufficiently high 
probability, namely with a probability that exceeds ​​  d − s ________________  

c + d − t − s + ​ 
δ​(c − d)​

 _ 
1 − δ  ​

 ​  ≡ ​ p – ​​. The 

threshold belief ​​p – ​​, which we refer to as SizeBAD, depends on the game’s parame-
ters and decreases ceteris paribus as ​c​ or ​δ​ increases. Thus, it is predicted that for  
​δ  ≥ ​ δ​​ ⁎​​, the likelihood that participants cooperate depends on the game’s parame-
ters. It is predicted to be higher, the higher is ​c​ or ​δ​. For ​δ  < ​ δ​​ ⁎​​, the cooperation rate 
is predicted to be zero.

Consider next a repeated sequential PD. If ​δ  ≥ ​ δ​​ ⁎​​, the expected payoff for the 
second mover of choosing CC is (weakly) larger than that of choosing AD for all 
possible beliefs about the strategy of the first mover. This is because, in contrast 
to a player in a simultaneous PD, a second mover who uses CC avoids the sucker 
payoff. She prefers CC if the discounted payoff of CC is higher than that of AD, 
namely if ​δ  ≥ ​ δ​​ ⁎​​, and plays AD if ​δ  < ​ δ​​ ⁎​​.11 The first mover is not confronted with 
strategic uncertainty either, because he anticipates that the second mover will condi-
tionally cooperate (due to the assumption that the PD’s payoffs represent the utilities 
of the players and that is common knowledge). Therefore, the first mover imitates 
the strategy of the second mover and also plays CC if ​δ  ≥ ​ δ​​ ⁎​​ and AD if ​δ  < ​ δ​​ ⁎​​. 
Therefore, it is predicted that the cooperation rate will be equal to 100 percent if ​δ  ≥ ​
δ​​ ⁎​​ and 0 otherwise.12 In summary, the cooperation rate in a repeated sequential PD 
is predicted to be (weakly) higher than in the repeated simultaneous PD with corre-
sponding parameters. In Section II, we formulate more precise comparative-static 
predictions for the parameters used in the experiment.

Finally, allowing for heterogeneity of players, for example in terms of 
other-regarding preferences, does not change the core prediction that the coopera-
tion rate in a sequential PD is (weakly) higher than in the simultaneous version.13 
However, if players have heterogeneous preferences, then the threshold above which 
CC is preferred over AD is player-specific. For example, sufficiently prosocial play-
ers would prefer CC over AD in the role of second mover in a sequential PD even 
if ​δ  < ​ δ​​ ⁎​​, whereas relatively spiteful players would need a larger ​δ​ than ​​δ​​ ⁎​​ to prefer 
CC over AD. Thus, for a given distribution of selfish, prosocial, and spiteful players 
in the population, the cooperation rate depends on the parameters of the game, even 

11 She is indifferent if ​δ  =  ​δ​​ ⁎​​.
12 Notice that the same predictions hold in the limit of a quantal response equilibrium, as noise completely 

vanishes (Turocy 1995). If noise has not vanished, then a smooth relation is predicted between the parameters of 
the game and the cooperation rate, even in Seq if ​δ  >  ​δ​​ ⁎​​ (see online Appendix Section C.3 for predictions based 
on quantal responses). 

13 A large literature shows that players are heterogeneous in that at least some of them hold pro- or antisocial 
preferences (e.g., Levine 1998; Fehr and Schmidt 1999; Charness and Rabin 2002). For them, payoffs in PDs do 
not represent utilities. Ahn, Ostrom, and Walker (2003) and Ahn et al. (2007) illustrate how heterogeneity models 
help to understand cooperation in one-shot simultaneous and sequential PDs.
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in sequential PDs with ​δ  > ​ δ​​ ⁎​​. In online Appendix Section C.4, we illustrate the 
effect of heterogeneity using a Charness and Rabin (2002) utility function without a 
reciprocity component. A heterogeneity model with privately informed players can 
be found in Kartal and Müller (2021).

II.  The Experiment

A. Design and Procedures

Participants in the experiment play 50 repeated games. The number of periods in 
a repeated game (referred to as rounds) is stochastic and ex ante unknown to both 
the participants and the experimenter. In each round, the (known) probability that 
the game proceeds to the next round is ​δ​. At the beginning of each repeated game, 
participants are randomly divided into pairs within matching groups of ten. They 
remain matched with the same counterpart for all rounds of a repeated game. In the 
sequential PDs, participants are randomly allocated the role of first or second mover 
at the beginning of each repeated game. We expected that letting participants play 
in both roles helps them understand the strategic nature of the game.14 The software 
had a built-in history box that participants could use to review all previous actions 
in the current repeated game.

We use the same parameters and between-subjects treatment variations as in the 
simultaneous PD experiment conducted by Dal Bó and Fréchette (2011)—hence-
forth, DBF: ​d  =  25​, ​t  =  50​, ​s  =  12​; ​c  =  32​, ​c  =  40​ or ​c  =  48​; and ​δ  =  0.5​ 
or ​δ  =  0.75​. These parameters cover a variety of settings ranging (in expectation) 
from short games with low cooperation gains to longer games with high coopera-
tion gains. Table 2 presents an overview of the treatments, where Sim and Seq refer 
to the treatments with simultaneous and sequential moves, respectively. As can be 
seen from the table, both the average lengths of the repeated games and the share of 
repeated games that last just one round are in line with expectations.

The experiment was programmed with zTree (Fischbacher 2007) and conducted 
at the LINEEX lab in Valencia between July 2017 and April 2018. Sessions lasted 
106 minutes on average and participants earned on average €22.7. The procedures 
are described in more detail in online Appendix Section A, and an English transla-
tion of the instructions can be found in online Appendix Section B.15

B. Predictions

Table 3 provides an overview of the values of SizeBAD for all treatments based 
on the assumption that PD payoffs represent utilities. The larger the difference in 
SizeBAD between two particular treatments, the larger is the expected difference in 
cooperation between them. Taking into account that DBF have already shown that 

14 Reassigning roles at the beginning of each repeated game also ensures that contagion effects à la Kandori 
(1992) are constant across simultaneous and sequential treatments.

15 We also ran treatments in which the strategy method was used to elicit choices of second movers, and we plan 
to use these data in a future paper that compares hot and cold decision-making in sequential PDs.
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the cooperation rate is close to 1 in Sim with ​c  =  48, δ  =  0.75​, and close to 0 with ​
c  =  32, δ  =  0.5​, we can summarize the predictions as follows:

	 (i)	 The cooperation rate is expected to be close to 0 in Sim and Seq in treat-
ment ​c  =  32, δ  =  0.5​.

	 (ii)	 The cooperation rate is expected to be close to 1 in Sim and Seq in treat-
ment ​c  =  48, δ  =  0.75​.

	 (iii)	 The cooperation rate is expected to be (weakly) higher in Seq than in Sim 
in the other treatments, and the difference in cooperation rate is expected to 
(weakly) increase with the difference in SizeBAD between Seq and Sim:​
c  =  32, δ  =  0.75  ≤  c  =  40, δ  =  0.5  ≤  c  =  48, δ  =  0.5  ≤  c  =  40,  
δ  =  0.75​.

Table 2—The Treatments

Sim Seq Total

​δ  =  0.5​ ​δ  =  0.75​ ​δ  =  0.5​ ​δ  =  0.75​

​c =​ 32 40 48 32 40 48 32 40 48 32 40 48

Number of  
  participants

30 30 30 30 30 30 60 60 60 60 60 60 540

Number of  
  matching groups

3 3 3 3 3 3 6 6 6 6 6 6 54

Number of  
  repeated games

50 50 50 50 50 50 50 50 50 50 50 50 600

Number of  
  rounds (mean)

1.8 1.9 1.9 4.1 4.1 4.1 1.8 1.8 1.8 4.3 4.3 3.3 –

One-round  
  games (share)

0.60 0.54 0.54 0.24 0.26 0.26 0.54 0.54 0.54 0.25 0.25 0.26 –

Notes: Sessions were conducted with 40, 50, or 60 participants and treatments were distributed across several 
sessions. Apart from one exception, matching groups in a session faced the same ​δ​ and the same style of 
decision-making but a different ​c​.

Table 3—SizeBAD by Treatment

Panel A. Sim Panel B. Seq
​c​ ​c​

32 40 48 32 40 48

​δ​ 0.5 1 0.72 0.38 ​δ​ 0.5 1 0 0
0.75 0.81 0.27 0.16 0.75 0 0 0

Notes: The table indicates the basin of attraction of AD (SizeBAD) in the different treatments. 
SizeBAD is defined as the maximal probability of the partner following a CC strategy that 
makes AD optimal.
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III.  Results

A. Effect of Sequentiality on Cooperation Rates

This section reports the treatment effects of sequentiality on cooperation rates. 
We focus on cooperation rates across first rounds because (i) repeated games may 
have different lengths and (ii) the adopted theoretical framework involves the choice 
of whether to use a cooperative or noncooperative strategy at the beginning of the 
repeated game.16 We first focus on comparative-static results after learning has 
taken place and then discuss dynamic patterns.

Figure 1 shows first-round cooperation rates across the last 20 repeated games. We 
find that the difference between Sim and Seq is small in the treatments with the low-
est or highest incentive to cooperate (​p  =  0.200​ and ​p  =  0.635​, respectively).17 
The cooperation rate is respectively close to 0 and close to 1 in these two treatments. 
In the Seq treatments with intermediate incentives to cooperate, the cooperation 
rate is substantially higher than in the corresponding Sim treatments. In particular, 
in treatments ​δ  =  0.5, c  =  40​; ​δ  =  0.5, c  =  48​; and ​δ  =  0.75, c  =  32​, 
sequentiality increases the post-learning cooperation rate by 38 to 41 percentage 
points (​p  <  0.001​, ​p  <  0.001,​ and ​p  =  0.015​, respectively). In the Seq treat-
ment with ​δ  =  0.75, c  =  40​, the cooperation rate is somewhat higher than in 
the corresponding Sim treatment but the difference is not statistically significant 
(​p  =  0.639​). Therefore, patterns of cooperation are overall closely in line with the 
SizeBAD predictions.18

The results are robust to controlling for individual-level variables, such as proxies 
for other-regarding preferences, risk preferences and proneness to mistakes, and 
experienced length of the first ten repeated games (see online Appendix Table F.2).19 
The results are also robust to a re-estimation of treatment effects on the basis of a 
dataset in which our data are merged with the data of DBF (see online Appendix 
Table F.3).

With respect to the effects of ​c​ and ​δ​ on the cooperation rate, Figure 1 shows 
that we have replicated the result of DBF that an increase in ​c​ or ​δ​ generally leads 
to an increase in the cooperation rate in Sim after learning. A similar effect is also 

16 Statistics and graphs based on all rounds are included in online Appendix Sections F and G, respectively. 
Patterns are generally very similar to those reported in the main text.

17 Unless otherwise mentioned, the statistics reported in the results section are based on pairwise treatment 
comparisons of behavior in the last 20 repeated games using probit regressions. The regressions take the choice 
to cooperate in the first round of a repeated game as the dependent variable and include a treatment dummy as an 
independent variable. Standard errors are clustered at the matching-group level. Estimated treatment effects on the 
cooperation rate are presented in detail in online Appendix Tables F.1 and F.4.

18 See online Appendix Figure G.1 for graphs that include predicted cooperation rates in Seq and cooperation 
rates observed in DBF’s simultaneous PDs (data provided in Dal Bó and Fréchette 2019). As can be seen, DBF 
cooperation rates generally fall within 95 percent confidence intervals of the cooperation rates in Sim in our exper-
iment, suggesting that the patterns are robust to changes in language, subject pool, and small differences in the 
procedures.	

19 Overall, we find a positive relation in the first rounds between prosociality and risk-loving on the one hand 
and cooperation on the other whereas our proxy for proneness to mistakes is less related to cooperation. We also find 
that, in line with, for example, Engle-Warnick and Slonim (2006) and Dal Bó and Fréchette (2018), the difference 
between expected and median realized length of the first ten repeated games has a positive effect on cooperation 
after learning.
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observed in Seq, even when focusing solely on the treatments with ​δ  > ​ δ​​ ⁎​​. In both 
Sim and Seq with ​δ  > ​ δ​​ ⁎​​, the effect of ​c​ and ​δ​ on cooperation is statistically sig-
nificant (​p  ≤  0.01​ in probit regressions; see online Appendix Table F.5). Although 
such an effect is not predicted in Seq among rational payoff-maximizing players, it 
is consistent with the notion that players make mistakes, as in a quantal response 
equilibrium. It is also consistent with players being heterogeneous, for example in 
terms of social preferences, as outlined at the end of Section I.

We now turn to the learning dynamics. Figure 2 illustrates how first-round coop-
eration rates evolve across the fifty repeated games for each treatment. The graphs 
show that some learning is necessary before the treatment effects reported above 
set in. In the treatment with ​δ  =  0.5, c  =  32​, in which cooperation cannot be sus-
tained in equilibrium, the cooperation rate is first well above 0 and then sharply 
declines to a rate close to 0, whereas in the treatments in which SizeBAD predicts 
a cooperation rate of 1, the cooperation rate increases across games. In Sim, the 
cooperation rate increases substantially only in treatments ​δ  =  0.75, c  =  40​ 
and ​δ  =  0.75, c  =  48​, which are both characterized by a low SizeBAD, and shows 
a decaying trend in the treatments with a higher SizeBAD.20

20 Probit regressions with standard errors clustered at the matching-group level corroborate the result. For 
each treatment, we regress the first-round cooperation choice on a time trend. In Seq, the average marginal 
effect is positive and statistically significant for ​δ  >  ​δ​​ ⁎​​ ( ​p  ≤  0.021​) and negative and significant for ​δ  <  ​δ​​ ⁎​​ 
( ​p  <  0.001​). In Sim, a positive and significant effect is obtained for ​δ  =  0.75, c  =  40​ and ​δ  =  0.75, c  =  48​ 
( ​p  =  0.021​ and ​p  <  0.001​, respectively), while the effect is negative and significant for ​δ  =  0.5, c  =  32​ 
and ​δ  =  0.5, c  =  40​ ( ​p  <  0.001​ and ​p  <  0.001​, respectively). The effect is not statistically significant 
for ​δ  =  0.5, c  =  48​ and ​δ  =  0.75, c  =  32​ ( ​p  =  0.182​ and ​p  =  0.748​, respectively). Patterns by matching 
group are shown in online Appendix Figure G.3.

Figure 1. Cooperation Rates

Notes: The graph shows first-round cooperation rates and 95 percent confidence intervals based on predictions from 
probit regressions ran on treatment indicators with clustered standard errors at the matching-group level. Based on 
the last 20 repeated games.
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B. Cooperation Rates by Role in the Sequential PDs

In this section, we further study what drives cooperation in the sequential PDs 
after learning. Figure 3 splits up the cooperation rate in Seq by role according to 
the first-mover cooperation rate, the second-mover cooperation rate conditional on 
cooperation by the first mover (which we shall refer to as the conditional coop-
eration rate), and the second-mover cooperation rate conditional on defection by 
the first mover. The first observation is that the conditional cooperation rate among 
second movers ranges from 43.9 to 95.4 percent depending on the treatment, and 
it is in all treatments significantly higher than the cooperation rate conditional on 
the first mover defecting (​p  <  0.001​). Overall, second movers rarely cooperate if 
the matched first mover defects. This provides support for our focus on conditional 
cooperation as the most important cooperative strategy for second movers.

The second observation is that in the three treatments in which the difference 
in SizeBAD between Seq and Sim is highest, the first-mover cooperation rate 
and the second-mover conditional cooperation rate in Seq are both higher than 
the cooperation rate in Sim (​p  ≤  0.007​ and ​p  <  0.001​, respectively). This sup-
ports a key feature of the SizeBAD predictions, namely that sequentiality does not 
just reduce strategic uncertainty for second movers relative to players who move 
simultaneously, but also for first movers. Such an effect is not observed in treat-
ments ​δ  =  0.75, c  =  48​ and ​δ  =  0.75, c  =  40​, in which differences in SizeBAD 
between Sim and Seq are low (​p  ≥  0.357​ for first movers and ​p  ≥  0.320​ for 
second movers). In treatment ​δ  =  0.5, c  =  32​, in which cooperation cannot be 
supported in equilibrium, the second-mover conditional cooperation rate is substan-
tially higher than the cooperation rate in Sim (​p  <  0.001​), while the first-mover 
cooperation rate is only weakly higher (​p  =  0.079​).
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Figure 2. Evolution of Cooperation Rates

Note: The graphs show cooperation rates across first rounds of repeated games by treatment.
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The third observation, also in line with the SizeBAD predictions, is that both the 
first-mover cooperation rate and the second-mover conditional cooperation rate are 
higher in the treatments with ​δ  > ​ δ​​ ⁎​​ than in the treatment with ​δ  < ​ δ​​ ⁎​​ (​p  <  0.001​ 
and ​p  <  0.001​, respectively).21

If we focus on whether first- and second-mover choices are aligned, then three  
other noteworthy patterns emerge from Figure  3. First, in treatment ​δ  =  0.5,  
c  =  32​, the conditional cooperation rate of second movers is well above the coop-
eration rate of first movers (​p  <  0.001​). Second, in the treatments with ​δ  > ​ δ​​ ⁎​​, 
the first-mover cooperation rate and the second-mover conditional cooperation rate 
are relatively well aligned.22 Third, both cooperation rates are positively related to ​c​ 
and ​δ​, even for ​δ  > ​ δ​​ ⁎​​ ( ​p  ≤  0.012​ for both ​c​ and ​δ​ in probit regressions excluding 
the treatment ​δ  =  0.5, c  =  32​). These patterns cannot be explained based on a 
strict interpretation of the SizeBAD predictions, but are consistent with a quantal 
response explanation or with the notion that players are heterogeneous. In the next 
section, we examine the results more closely at the individual and matching-group 
level and provide evidence that supports a heterogeneity interpretation.

21 If we compare ​δ  =  0.5, c  =  32​ to ​δ  =  0.5, c  =  40​, then we get respectively ​p  <  0.001​ and 
​p  =  0.014​, while if we compare ​δ  =  0.5, c  =  32​ to ​δ  =  0.75, c  =  32​, we get ​p  <  0.001​ and ​p  =  0.001​. 
For an overview of the statistical test results of treatment comparisons, see online Appendix Table F.4. Moreover, 
as shown in online Appendix Figure  G.5, with ​δ  <  ​δ​​ ⁎​​ the first-mover cooperation rate tends to decrease over 
time (negative linear trend with ​p  =  0.004​) while the second-mover conditional cooperation rate shows no 
trend ( ​p  =  0.980​), whereas with ​δ  >  ​δ​​ ⁎​​, both cooperation rates increase over time (positive linear trend with  
​p  ≤  0.054​ and ​p  ≤  0.029​, respectively).

22 Specifically, ​p  =  0.013​ in ​δ  =  0.5, c  =  40​, ​p  =  0.516​ in ​δ  =  0.5, c  =  48​, ​p  =  0.017​ 
in ​δ  =  0.75, c  =  32​, ​p  =  0.850​ in ​δ  =  0.75, c  =  40​, and ​p  =  0.816​ in ​δ  =  0.75, c  =  48​.

Sim Seq, P1 Seq, P2 if P1 cooperated Seq, P2 if P1 defected

0

0.2

0.4

0.6

0.8

1

C
oo

pe
ra

tio
n 

ra
te

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SizeBAD in Sim

δ = 0.75
c = 48

δ = 0.75
c = 40

δ = 0.5
c = 48

δ = 0.5
c = 40

δ = 0.75
c = 32

δ = 0.5
c = 32

Figure 3. Cooperation Rates by Role

Notes: The graph shows first-round cooperation rates of P1, cooperation rates of P2 conditional on P1 defecting 
or cooperating, and cooperation rates in Sim, and 95 percent confidence intervals based on predictions from probit 
regressions ran on treatment and role indicators with clustered standard errors at the matching group level. Based 
on the last 20 repeated games.
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C. Disaggregated Analysis

Second Movers.—We have shown that the conditional cooperation rate of 
second movers is well above 0 in treatment ​δ  =  0.5, c  =  32​ (with ​δ  < ​ δ​​ ⁎​​)  
and well below 1 in treatments ​δ  =  0.5, c  =  40​ and ​δ  =  0.75, c  =  32​ (with  
​δ  > ​ δ​​ ⁎​​). This implies either that some second movers often behave differently than 
a rational payoff-maximizer (consistent with a heterogeneity interpretation) or that 
most second movers sometimes behave differently than a rational payoff-maximizer 
(consistent with quantal response behavior). In order to differentiate between these 
two explanations, we examine the frequency with which each subject cooperates in 
the role of second mover, conditional on the first mover cooperating. If second mov-
ers are homogeneous in the extent to which they deviate from the predicted choice, 
as is the case in representative-player models like the quantal response model, then 
the share of conditionally cooperative choices should be similar across subjects in a 
given treatment. Alternatively, if second movers are heterogeneous in the sense that 
some of them systematically deviate from the rational payoff-maximizing bench-
mark, then the share of conditionally cooperative choices should differ across sub-
jects in a given treatment.

As can be seen in Figure 4, most of the conditional cooperation choices in treat-
ment ​δ  =  0.5, c  =  32​ can be attributed to just a few subjects.23 These subjects 
can be viewed as conditional cooperation types; subjects who conditionally cooper-
ate because they have a preference to do so. In the treatments with ​δ  > ​ δ​​ ⁎​​, where 
conditional cooperation types cannot be identified because they pool with payoff 
maximizers, many more subjects always or almost always conditionally cooperate.

Moreover, Figure  4 shows that the opposite pattern emerges in treat-
ments ​δ  =  0.75, c  =  48​; ​δ  =  0.5, c  =  48​; and ​δ  =  0.75, c  =  40​. Here, very 
few subjects are responsible for the majority of defection choices. Given that in 
these treatments, the decision to defect is more costly for second movers than in the 
other treatments, these subjects seem to have a strong taste for defection. We con-
clude therefore that a representative-player model does not suffice to explain disag-
gregated patterns of behavior of second movers. Instead, it appears to be necessary 
to allow for heterogeneity. This is further backed up by an analysis which statisti-
cally compares distributions of observed choices shown in Figure 4 to i.i.d. choices 
(see online Appendix Section D for details). Overall, the findings closely align with 
the notion that second movers are heterogeneous with respect to their cooperation 
preference. This is illustrated in online Appendix Section C.4, in which we show 
that the data are well represented by a heterogeneity model with payoff-maximizing, 
prosocial, and spiteful types.

First Movers.—Building on the insight that second movers come in types, we 
now focus more closely on behavior of first movers. Although the theoretical frame-
work we use to formulate hypotheses builds on common knowledge of utilities, 
this assumption seems unrealistic if players are heterogeneous, especially in the 

23 For identification purposes, all analyses reported in this section include data from the first rounds of all the 
repeated games. Focusing on the last 20 repeated games would leave little power to perform disaggregated analyses.
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anonymous context of a lab experiment. We therefore assume that participants learn 
the distribution of second-mover types in their matching group during the course of 
the experiment, but do not know the specific type of their game partner (as in Kartal 
and Müller 2021).24 With this in mind, we can compare observed choices of first 
movers to choices that expected-payoff maximizers would make if they were faced 
with the same second-mover choices.

For each first mover, we first compute the conditional cooperation rate she 
encountered in her matching group across first rounds of all repeated games. Panel 
A of Figure 5 shows these encountered conditional cooperation rates by treatment 
and matching group. The dashed horizontal lines refer to the conditional coopera-
tion rate that leaves an expected-payoff-maximizing first mover indifferent between 
a conditionally cooperative strategy and always defect. As can be seen, there is sub-
stantial variation across matching groups and treatments in the extent to which the 
conditional cooperation rate encountered by first movers deviates from the indif-
ference threshold. Taking the encountered conditional cooperation rate as given, 
we calculate for each first mover the (normalized) difference between the expected 
payoff of the cooperative strategy and that of the defection strategy. A risk-neutral 
first mover is better off cooperating (defecting) when the difference is positive (neg-
ative) and is indifferent when the difference is zero. We then plot the first-mover 
cooperation rates aggregated by matching group as a function of the (normalized) 

24 Recall that at the start of each repeated game, participants are randomly allocated partners within matching 
groups and randomly assigned roles. Thus, in a sense, each matching group constitutes a different “population” of 
players.
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payoff difference. If all first movers would be expected-payoff maximizers, then 
their cooperation rates would jump straight to one when the indifference threshold is 
crossed. Panel B of Figure 5 shows that the cooperation rate of first movers is close 
to 0 in matching groups where the payoff difference is negative (in four of the six 
matching groups in treatment ​δ  =  0.5, c  =  32​) and that it increases as the payoff 
difference increases. Once cooperation is much more profitable than defection, then 

0

0.2

0.4

0.6

0.8

1
C

on
di

tio
na

l c
oo

pe
ra

tio
n 

ra
te

 P
2

0

0.2

0.4

0.6

0.8

1

C
oo

pe
ra

tio
n 

ra
te

 P
1

−0.2 0 0.2 0.4 0.6 0.8 1

Payoff difference cooperative versus defection strategy

Panel B. First-mover cooperation rates

Panel A. Encountered conditional cooperation rates

δ = 0.75
c = 48

δ = 0.75
c = 40

δ = 0.5
c = 48

δ = 0.5
c = 40

δ = 0.75
c = 32

δ = 0.5
c = 32

δ = 0.5, c = 32

δ = 0.5, c = 40

δ = 0.5, c = 48

δ = 0.75, c = 32

δ = 0.75, c = 40

δ = 0.75, c = 48

Figure 5. Cooperation Rates by Matching Groups

Notes: Panel  A shows the conditional cooperation rates encountered by first movers across first rounds of all 
repeated games by treatment and matching group. The horizontal lines represent the conditional cooperation rate 
that leaves a payoff-maximizing first mover indifferent between defection and cooperation. Treatments are ordered 
by the SizeBAD in Sim. Panel B shows first-mover cooperation rates across first rounds of all repeated games as 
a function of the normalized difference between the expected payoffs from cooperation and defection, given the 
encountered conditional cooperation rate. Each dot in the graph corresponds to a matching group, and the 6 differ-
ent shapes correspond to the 6 parametrizations in the experiment.



72	 AMERICAN ECONOMIC JOURNAL: MICROECONOMICS� NOVEMBER 2022

the cooperation rate stays close to 1. We conjecture that the lack of a sudden jump 
at the threshold in Panel B is due to heterogeneity of first movers. For example, the 
pattern is consistent with a substantial fraction of first movers being averse to disad-
vantageous inequality (see online Appendix Section C.4).

Within-Subject Analysis.—Given that subjects make choices in both roles, addi-
tional insights related to heterogeneity can be obtained by investigating choice pat-
terns of subjects across the two roles. We focus on the correlation between their 
conditional cooperation rate as a second mover and the extent to which their coop-
eration rate as a first mover differs from their personal optimal choice. We calculate 
this optimal choice as the choice that maximizes the expected payoff taking into 
account the conditional cooperation rate encountered in first rounds in one’s match-
ing group, as introduced in the previous paragraph. In most cases, the optimal choice 
is to defect in ​δ  =  0.5, c  =  32,​ and to cooperate in the other treatments. Scatter 
plots by treatment are shown in online Appendix Figure G.6.

The first finding is that in the treatments with ​δ  > ​ δ​​ ⁎​​, the correlation is overall 
positive and strong (​p  ≤  0.018​). Players thus tend to cooperate as a first mover 
to almost the same extent as they conditionally cooperate as a second mover. We 
conjecture that this result is largely due to payoff maximizers having an incen-
tive to cooperate in both roles, which makes them behave similarly to conditional 
cooperation types. The second finding is that no positive correlation is detected in 
treatment ​δ  =  0.5, c  =  32​, in which ​δ  < ​ δ​​ ⁎​​. This result is consistent with the 
fact that payoff maximizers now have no incentive to conditionally cooperate as 
a second mover, nor to cooperate as a first mover. Any choice other than defection 
in ​δ  =  0.5, c  =  32​ can thus be attributed to behavior that differs from rational 
payoff maximization (such as, for example, other-regarding behavior or quantal 
responses). Given that as a first mover one is faced with higher strategic risk than as 
a second mover, there is no reason to expect that players who prefer to conditionally 
cooperate in ​δ  =  0.5, c  =  32​ as a second mover also prefer to cooperate as a first 
mover.

To further illustrate how players in ​δ  =  0.5, c  =  32​ make choices in different 
roles, we split up conditional cooperation types according to their behavior as a first 
mover. For simplicity, players are defined as conditional cooperation types if they con-
ditionally cooperate more than half of the time when encountering cooperation from 
the matched first mover. We find that 78 percent of them (14 out of 18) cooperate less 
frequently as a first mover than what is optimal and 17 percent (3 out of 18) cooperate 
more frequently than what is optimal. Among the other players, the percentages are 
53 percent (19 out of 36) and 42 percent (15 out of 36), respectively, indicating a more 
balanced distribution. Although power is too low to provide conclusive statistical sup-
port, these findings suggest that conditional cooperation types tend to be more averse 
to disadvantageous inequality (or more risk-averse) than other players.

IV.  Conclusion

Failure to coordinate on efficient outcomes is largely due to individuals avoid-
ing strategic risk (Van  Huyck, Battalio, and  Beil 1990, 1991). A similar logic 
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applies with respect to cooperation in repeated games. Cooperation rates are high-
est in games where conditionally cooperative strategies involve little risk (Blonski, 
Ockenfels, and Spagnolo 2011; Dal Bó and Fréchette 2011). We use this insight to 
predict that introducing sequentiality in games that are characterized by substantial 
strategic risk may facilitate cooperation by reducing that risk. The experiment we 
carry out shows that the prediction is borne out by the data. In games where it is 
difficult for players to achieve mutual cooperation—even though it can be supported 
in equilibrium—introducing sequentiality increases the cooperation rate by around 
40 percentage points. In games where cooperation is not supported in equilibrium or 
where it is supported but strategic risk is particularly low, cooperation rates are close 
to 0 or 100 percent respectively, independent of sequentiality. We thus conclude that 
individuals strongly react to sequentiality in environments with coordination prob-
lems that are the result of substantial strategic risk.

When  modeling decision-making it is not always clear whether a simultaneous- 
move setting or a sequential-move setting is most appropriate. We show that behav-
ior strongly depends on the setting, implying that possible policy implications  
may strongly depend on whether a simultaneous-move or sequential-move setting 
is ultimately chosen. The results also have implications for behavioral mechanism 
design. If a designer’s goal is to achieve and sustain high efficiency levels, it is opti-
mal that players decide sequentially and that second movers have information about 
the decision of the first mover. Consider, for instance, the issue of climate change, 
in which long-run incentives are arguably large enough for it to be optimal that 
countries engage in a cooperative mitigation of greenhouse gas emissions (Dutta 
and Radner 2004; Calzolari, Casari, and Ghidoni 2018). If a country commits to 
a policy of reducing emissions in anticipation that other countries will follow suit, 
then those other countries will indeed have an increased incentive to do so because 
the risk of free-riding has been reduced. This may be good news for environmental 
policymakers because convincing one country or even a small group of countries 
to commit to environmentally-friendly actions is arguably easier to achieve than 
convincing all countries. Sequentiality might therefore help countries coordinate to 
achieve socially optimal outcomes. The same is true for other contexts, such as trade 
and employer-employee relations. Nevertheless, it is an open question as to whether 
the strong efficiency-enhancing effect of sequentiality is also achieved if the game’s 
parameters are uncertain, which is a more realistic assumption in most applications. 
The result of Wilson and Vespa (2020), that cooperation does not predominate in a 
sequential-move setting with asymmetric information about payoffs, suggests that 
this is not necessarily the case.

An alternative instrument that can in principle reduce strategic uncertainty is 
pre-play communication (see, for example, Arechar et al. 2017) and it appears that 
sequentiality can overcome some of the disadvantages associated with communica-
tion. First, given that communication is not consequential for monetary payoffs, it 
has no effect on predictions based on equilibrium refinements or on concepts such as 
the basin of attraction of a particular strategy (Crawford 1998). In contrast, sequen-
tiality does affect monetary payoffs because it allows the second mover to avoid 
the sucker payoff. Second, the efficacy of communication in increasing coordina-
tion appears to be quite sensitive to the communication protocol, which makes its 
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implementation less straightforward than introducing sequentiality (see, for exam-
ple, Cooper et al. 1992; Andersson and Wengström 2012, for evidence from simple 
coordination games).25

Our results have implications for the interpretation of behavior in PD games 
played in (quasi-)continuous time (see, for example, Friedman and  Oprea 2012; 
Bigoni et al. 2015). Cooperation rates in (quasi-)continuous time are typically very 
high but the reasons are not entirely understood. These games differ in at least 
three respects from discrete-time simultaneous PDs: (i) the frequency of the (albeit 
shorter) interactions is higher in each repeated game; (ii) players move de facto 
sequentially, i.e.,  they observe the partner’s choice before making a choice; and  
(iii) players choose the timing of their moves. Friedman and Oprea (2012) show 
that frequency of interaction increases the cooperation rate in discrete-time PDs. 
However, our experiment shows that sequentiality may on its own lead to a sub-
stantial increase in cooperation, provided that cooperation is sustainable in equi-
librium. The sequential-move nature of games played in (quasi-)continuous time 
may thus be one of the structural characteristics that leads to the higher cooperation 
rate. This is consistent with the results of an experiment in which strategic uncer-
tainty is removed by freezing choices for a few seconds, which is shown to increase 
cooperation (Calford and Oprea 2017). Strategically, a sequential PD is similar to a 
simultaneous PD in which the choice of one of the players is frozen for one period.

Our analysis builds on a framework in which it is assumed that  
payoff-maximizing players choose between always defecting and conditional coop-
eration under common knowledge. This makes it possible to construct a simple 
measure of the degree of strategic uncertainty and helps to formalize the difference 
between sequential-move and simultaneous-move PDs. Thus, the approach is not 
meant to provide an accurate description of how individuals play. There are at least 
two ways in which behavior can be plausibly expected to deviate from the assump-
tions. First, players may follow strategies other than always defect or conditional 
cooperation. Results of strategy estimations show that by far the majority of the 
cooperative strategies involve conditional cooperation à la grim trigger or tit-for-tat 
(see online Appendix Section E).26 This, and the fact that we are dealing with rela-
tively short games, gives us confidence that the simplification of the repeated games 
to binary-choice games is not overly simplistic.27

25 That said, it also holds that pre-play communication can trigger behavioral responses that go beyond remov-
ing strategic uncertainty and can foster cooperation even if this is not an equilibrium outcome, for example by 
appealing to honesty (Gneezy 2005) or inducing guilt aversion (Charness and Dufwenberg 2006). To illustrate, 
pre-play chat has been shown to increase cooperation in one-shot interactions (see Balliet 2010, for a meta-analysis) 
or in repeated simultaneous games in which cooperation cannot be sustained in equilibrium (Kartal and Müller 
2021).

26 An exception is the strategy to first defect and then switch to tit-for-tat (D-TFT), which is particularly pop-
ular among first movers and to some extent in the case of simultaneous moves, in the game in which cooperation 
cannot be sustained in equilibrium. We speculate that this may have to do with the fact that D-TFT protects a player 
from the sucker payoff if matched with a defecting partner and at the same time achieves mutual cooperation if the 
partner is lenient.

27 Notice that if the second mover believes that the first mover either always defects or always cooperates, then 
it would be optimal for her to always defect, even if ​δ  >  ​δ​​ ⁎​​, and this may explain why the conditional coopera-
tion rate is well below 1 in the treatments with intermediate gains from cooperation. However, given that in these 
treatments less than 2 percent of the first movers are estimated to always cooperate, holding such a belief would be 
largely irrational. We therefore feel that this is not a sufficient explanation.
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Second, players may not all be perfect payoff maximizers with common knowl-
edge. We have shown that some form of heterogeneity is needed in order to explain 
all aspects of the data. To do so, we have used an example on other-regarding pref-
erences but a similar intuition holds if there is heterogeneity in risk preferences 
or in the strength of quantal responses.28 A key element is that the heterogeneity 
introduces individual-specific trade-offs between a conditional cooperation strategy 
and an always-defect strategy, which leads to smoothness into the aggregate effect 
of a game’s parameters on the cooperation rate, even in sequential-move games 
with ​δ  > ​ δ​​ ⁎​​. A promising model that incorporates strategic risk and at the same 
time predicts smoothness is that of Kartal and Müller (2021). The model provides a 
microeconomic foundation for strategic uncertainty by assuming that players have 
heterogeneous and unobservable tastes.
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