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The study of acceleration waves for a rarefied
polyatomic gas is carried out in planar, cylindrical and
spherical geometry referring to the rational extended
thermodynamics theory with 14 moments. The case
of a rarefied monatomic gas is determined as a limit
case, and the role of geometry and molecular degrees
of freedom is investigated. In addition, the behaviour
of an acceleration wave travelling inside an oscillating
gas bubble is modelled by the 14-moment PDE system
under adiabatic condition. We show that dissipation
combined with hyperbolicity tends to inhibit shock
formation, and that the dynamic pressure cannot
be zero inside the oscillating bubble. This fact can
produce observable effects even in the Navier–Stokes
approximation, if the gas exhibits high bulk viscosity.

1. Introduction
The term acceleration wave (from now on AW) indicates
a propagating surface across which all the field variables
are continuous, while the first derivatives of at least one
field variable exhibit a jump [1–3]. Due to this property,
such waves are also called weak discontinuities. AWs can
be generated in different materials and a large literature
is devoted to this topic and to its application. For the
sake of brevity, we quote here only some works related to
gases [4–11] (and the references therein). In gases, AWs
are produced by a perturbation, which could be caused
for instance by a piston during its accelerated motion.
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In recent decades, the modelling of gas phenomena through hyperbolic PDE systems that
predict the presence of finite propagation velocities (unlike parabolic differential systems) is
increasingly frequent.

The analysis of the phenomena related to the acceleration waves reveals that together with
hyperbolicity, the presence of dissipative terms is also mandatory. In fact, it has been shown
that conservation laws provide for the transformation of an AW into a shock wave for any
value of the initial amplitude [3,7,12], in contrast to the experimental evidence [13]. In a better
model of balance laws, on the contrary, it is usually possible to identify a critical value of the
initial amplitude below which the acceleration wave does not turn into a shock [2–4,7–9]. This
modelling is consistent with experimental evidence if the threshold values for jump formation
are sufficiently high. In this respect, the AWs represent an important test bed for a gas theory.

Rational extended thermodynamics (RET) is a recent but now well-consolidated theory that
has already shown the ability to predict far-from-equilibrium phenomena and rapid changes
in gases. The theory was first introduced for monatomic gases with the pioneering works by
Müller, Ruggeri and other researchers [14] and then, more recently, it was extended to polyatomic
gases by Ruggeri et al. [15,16]. In all cases, this kind of model is based on the idea that the
independent field variables are both the usual equilibrium variables (mass density, momentum
and energy) and non-equilibrium quantities, such as stress tensor, dynamic pressure and heat
flux. The corresponding field equations turn out to be hyperbolic balance laws, compatible with
universal physical principles like entropy and relativity principles. Grad 13-moment theory can
be seen as a particular case of RET theories for monatomic gases. A good experimental agreement
has been obtained for several gas phenomena through RET models [14–16] and for this reason,
it is natural to think of applying it also to complex phenomena such as those we will face in the
second part of this paper.

The behaviour of planar AWs in monatomic rarefied gases described by RET was already
studied in many cases [8–11] and there is also a preliminary analysis for a polytropic gas described
by a RET system with only six fields [15]. All the results confirm that shock formation is physically
unlikely. The first aim of the present paper is to test the polyatomic RET theory with 14 moments
and study the evolution of AWs in different geometries and for different molecular degrees of
freedom.

Spherical AWs, travelling towards the centre, represent a special issue, as was already
observed by Lindsay & Straughan [5] and Greenspan & Nadim [17] for different sets of equations.
In particular, [17] is developed within the field of the oscillating gas bubbles and has inspired the
studies presented here. We realized that RET have never been tested in the complex framework of
the oscillating gas bubbles and the mixture of hyperbolicity and dissipation of such a theory could
make the difference. The aim of this paper is not to solve the well-known open questions related
to bubbles phenomena, but rather to approach this special world with RET in a preliminary,
elementary and simplified way.

A gas bubble within a liquid can be generated by mechanical, acoustic or optical devices. In
many cases, bubbles are not present as a single isolated object, but they appear in large numbers,
as for bubbles produced by ship propellers and studied by Lord Rayleigh, who investigated their
cavitation effect for the first time in 1917 [18]. Over the years, the behaviour of multi-bubble
structure driven by an acoustical field was the topic of several studies, due to the surprising
effects observed experimentally. As a matter of fact, bubbles react to a periodical acoustic signal
with nonlinear oscillations that can give rise to deterministic chaos and, under very specific
conditions, to light emission, the so called sonoluminescence (SL) effect. The description of bubble
dynamics involves different research fields, such as hydrodynamics, acoustics, heat and mass
transfer, chemistry and sonochemistry, dynamical systems and quantum physics. More recently,
different methods have been developed for generating a single bubble in a liquid, among which
we mention a focused laser radiation pulse and the irradiation with a standing acoustic wave
(acoustic trap, the very popular technique ensuring bubble stability). This fact has increased the
literature about bubble dynamics, cavitation and SL, and we are not able here to quote even a
fraction of all the books and papers published in the last 50 years on this topic, which turned
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out to be several thousands. We recall among others the review papers [19–28] and the references
therein, stressing the relevant application results, for example those related to sonochemistry [25]
and medicine [29].

The paper is organized as follows. In §2, we will introduce the main ideas of RET, while the AW
theory is presented in §3 and applied to RET theory with 14 moments in §4. In §5, we summarize
some results about oscillating gas bubbles and have a first look at the topic through RET. Sections
6 and 7 focus on AW travelling in oscillating bubbles filled with monatomic and polyatomic gases.
The results are analysed in §8 and some conclusions are presented in §9.

2. The balance laws of rational extended thermodynamics
RET theories for rarefied polyatomic gases were recently introduced following two different
approaches [15]. On the one hand, it is possible to construct a phenomenological model, as first
done by Arima et al. in [16] requiring the validity of universal physical principles, such as the
Galilean invariance and the entropy principle. On the other hand, the hyperbolic equations can be
derived referring to the kinetic theory [30] and imposing that the distribution function associated
with a polyatomic gas depends not only on time (t), space (z = (z1, z2, z3)) and microscopic velocity
(c = (c1, c2, c3)), but also on a continuous variable I (I ∈ [0, ∞)) that represents the internal modes
of the molecules. Such a function ( f = f (t, z, c, I)) satisfies a generalized Boltzmann equation that
exhibits the same form as the one for a monatomic gas [31]. The moment technique can be applied
successfully to this equation, deriving a double infinite hierarchy of balance laws, which involve
two species of moments [15]

∂tF + ∂jFj = 0,

↙
∂tFi1 + ∂jFji1 = 0,

↙
∂tFi1i2 + ∂jFji1i2 = Pi1i2 , ∂tGss + ∂jGssj = 0,

↙ ↙
∂tFi1i2i3 + ∂jFji1i2i3 = Pi1i2i3 , ∂tGssi1 + ∂jGssji1 = Qssi1 ,

...
...

∂tFi1i2...ih + ∂jFji1i2...ih = Pi1i2...ih , ∂tGssi1i2...ih + ∂jGssji1i2...ih = Qssi1i2...ih .

...
... (2.1)

where ∂t· = ∂ · /∂t and ∂j· = ∂ · /∂zj with j = 1, 2, 3, while the so-called momentum-like F moments
and the energy-like G moments are defined as

F = m
∫

R3

∫ +∞

0
fϕ(I)dI dc, Fi1i2...ih = m

∫
R3

∫ +∞

0
fci1 ci2 . . . cihϕ(I)dIdc

and

Gss = m
∫

R3

∫ +∞

0
f
(

c2 + 2I
m

)
ϕ(I)dIdc,

Gssi1...ih = m
∫

R3

∫ +∞

0
f
(

c2 + 2I
m

)
ci1 ci2 . . . cihϕ(I)dIdc,

if h ∈ N\{0}, ih = 1, 2, 3 and m denotes the mass of the gas molecule. The weighting measure ϕ(I)
is prescribed in order to set the equilibrium caloric equation of state for a polyatomic gas [15].
For a polytropic gas, the internal energy at equilibrium is given by ε = DkBT/(2m) (if kB denotes
the Boltzmann constant, T the temperature and D the degrees of freedom of a gas molecule) and
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it was proved that ϕ(I) = Ia with a = (D − 5)/2. In (2.1), Pi1...ih and Qssi1...ih are the productions
derived from the collisional term of the Boltzmann equation, through the moment technique.
Moreover, from now on repeated indexes imply their sum, so that for example

∑3
j=1 is omitted in

(2.1).
We recall that the first two equations of the momentum-hierarchy and the first scalar equation

of the energy-hierarchy coincide with the usual conservation laws of mass, momentum and
energy. In both hierarchies (2.1), it is also evident that the density component of one equation
coincides with the flux component of the previous one. The infinite set of PDEs (2.1) is then
truncated at some truncation indexes (N for the F-hierarchy and M for the G-hierarchy) and the
maximum entropy principle (MEP) is commonly employed in order to establish how to express
the last fluxes and production terms as functions of the independent field variables. Appendix
A contains a brief presentation of the truncation procedure and of the construction of an RET
theory with 14 moments, for more details, see [15]. The resulting equation system turns out to
be of hyperbolic type, and for a convenient choice of the independent field variables (main field
[32,33]), it could be written in a symmetric hyperbolic form with a convex entropy, so that the
well-posedness of the Cauchy problem is guaranteed.

As in the case of monatomic gases, the moments truncated through the previous procedure are
usually approximated by a Taylor expansion in the neighbourhood of a local equilibrium. In the
present paper, we will focus on a linearized theory with respect to the non-equilibrium variables
(see appendix A for more details), usually [15] denoted by ET1

n,P, where the ‘1’ represents the first
order approximation, n is the number of scalar equations of the model and P indicates the fact
that we are dealing with a polyatomic gas. A vectorial concise notation frequently adopted in
RET indicates the density, the flux and the productions components as

F = (F, Fi1 , Fi1i2 , . . . Fi1i2...iN )T, Fj = (Fj, Fji1 , Fji1i2 , . . . Fji1i2...iN )T,

Gss = (Gss, Gssi1 , Gssi1i2 , . . . Gssi1i2...iM )T,

Gj
ss = (Gssj, Gssji1 , Gssji1i2 , . . . Gssji1i2...iM )T,

P = (0, 0i1 , Pi1i2 , . . . Pi1i2...iN )T, Q = (0, Qssi1 , Qssi1i2 , . . . Qssi1i2...iM ),

so that the closed truncated PDE system can be briefly written as

∂tF + ∂jF
j = P and ∂tGss + ∂j Gj

ss = Q. (2.2)

In what follows, we will analyse wave phenomena depending on a unique scalar space
variable, denoted by z = z1. In this case, if u indicates the vector of the field variables, system
(2.2) can be further rewritten as

C(u) ∂tu + D(u) ∂zu = T′, with C(u) = ∂u(F, Gss), D(u) = ∂u(F1, G1
ss), (2.3)

if T′ = (P, Q) and ∂z = ∂ · /∂z. One refers commonly to the material derivative
•∗ = ∂∗/∂t +

v(∂∗/∂z), where v is the gas velocity along the z-direction, and thanks to the hyperbolcity
properties it is possible to write down (2.3) as

∂tu + A(u)∂zu = T �⇒ •
u + B(u)∂zu = T, (2.4)

where A = C−1D, T = C−1T′ and B = A − vI, if I denotes an identity matrix of the same size as
the square matrix A. The characteristic velocities associated with the equation system can be
determined looking for the eigenvalues λ of A, and obviously the eigenvalues Λ of B and those
of A satisfy the relation λ = Λ + v. To determine the behaviour of the AWs, we will consider both
the characteristic velocities and the right and left eigenvectors associated with A.

For the sake of simplicity, here we will restrict our analysis to ideal polyatomic gases, which
present specific heat at constant volume cv = kBD/2m, D can be seen as the sum of translational
and internal degrees of freedom and it must hold D ≥ 3, where D = 3 corresponds to monatomic
molecules.
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One of the most popular theories derived through the RET procedures is the 14-moment
system ET1

14,P, in which together with mass density ρ, velocity v = (v1, v2, v3) and equilibrium
pressure p, also the deviatoric part of the viscous stress tensor σ〈ij〉, the dynamic pressure Π and
the heat flux q = (q1, q2, q3) are treated as independent field variables, so that

F = (F, Fk, Fkl), Fj = (Fj, Fjk, Fjkl), Gss = (Gss, Gssk), Gj
ss = (Gssj, Gssjk)

with F = ρ, Fk = ρvk, Fkl = ρvkvl + (p + Π )δkl − σ〈kl〉,

Fjkl = ρvjvkvl + (p + Π )(vjδkl + vkδjl + vlδjk) − σ〈jk〉vl − σ〈kl〉vj − σ〈jl〉vk

+ 2
D + 2

(qjδkl + qkδjl + qlδjk),

Gss = ρ|v|2 + 2ρε, Gssk = ρ|v|2vk + 2(ρε + p + Π )vk − 2σ〈ks〉vs + 2qk,

Gssjk = ρ|v|2vjvk + 2ρεvjvk + (p + Π )(|v|2δjk + 4vjvk) − σ〈jk〉|v|2 − 2σ〈jh〉vkvh

− 2σ〈kh〉vjvh + 2
D + 2

(2qhvhδjk + (D + 4)(qjvk + qkvj))

+ kBT
m

[(D + 2)p + (D + 4)Π ]δjk − kBT
m

(D + 4)σ〈jk〉, if i, j, k, l, s = 1, 2, 3. (2.5)

The monatomic RET theory with 13 moments (the well-known Grad’s one) can be derived
from ET1

14,P in the limit D → 3, neglecting the dynamic pressure, which does not play any role
in monatomic gases. Concerning the notation, we will denote Grad’s system by ET1

13 in order to
recall that it is a first-order theory in the non-equilibrium variables with 13 moments and it is
valid for a monatomic gas.

(a) Rational extended thermodynamics balance laws in different geometries
In the next sections, we are going to study planar, cylindrical and spherical AWs. In order to
describe their wave fronts through a one-dimensional space set of balance laws, it is convenient
to pass from Cartesian to curvilinear coordinates when a cylindrical or spherical geometry is
involved. Thus, together with the usual rectangular Cartesian coordinates (x1, x2, x3), we will refer
to cylindrical coordinates (r, ϑ , x3) (ϑ ∈ [0, 2π [) and spherical coordinates (r, ϑ , ϕ) (ϑ ∈ [0, 2π [ and
ϕ ∈ [0, π ]). In the following, instead of the usual contra- or co-variant components of vectors and
tensors, we will employ the physical components [34,35], so that, for example

q̄i =√
giiq

i, σ̄ 〈ij〉 =
√

giigjjσ
〈ij〉, with i, j, = 1, 2, 3,

where the repeated underlined indexes are not summed and gij represents the (ij) component of
the metric tensor.1 The bar denotes here the physical component, but in the following, we will
omit such a symbol for the sake of brevity. We preliminarily assume that the heat flux and the gas
velocity are parallel to the first component of the Cartesian space variables in the planar geometry
or they are parallel to the radial direction in the remaining cases. Hence, we impose that

v = (v, 0, 0) and q = (q, 0, 0), with v = v1, q = q1,

and, moreover,
σ 〈ij〉 = 0 when i = j.

We recall that, by definition, σ 〈ll〉 = 0. In planar or spherical geometry, this last relation and
a reasonable assumption of space homogeneity imply that σ 〈22〉 = σ 〈33〉 = −σ 〈11〉/2, but this
condition cannot be prescribed in cylindrical symmetry. Thus, in the following set of balance
laws, we have to include also the equation for σ 〈22〉. We write it in the last row, since it can be
omitted for planar or spherical AWs. In order to compact in a single set of equations the cases

1In cylindrical geometry, the metric tensor turns out to be diagonal with g11 = g33 = 1, g22 = r2, while in the spherical case the

non-vanishing components of the diagonal metric tensor are g11 = 1, g22 = r2 sin2 ϑ , g33 = r2.
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corresponding to different geometries, we introduce the parameter g with the following usual
convention: g = 0 corresponds to the planar case, g = 1 the cylindrical case, while for spherical
symmetry g = 2. Thus, the field equations become

•
ρ + ρ ∂zv = P1,

•
v − 1

ρ
∂zσ

〈11〉 + 1
ρ

∂zΠ + 1
ρ

∂zp = P2,

•
σ

〈11〉 + 7σ 〈11〉 − 4(p + Π )
3

∂zv − 8
3(D + 2)

∂zq = P3,

•
Π + [Π − 2(D − 3)(σ 11 − p)

3D
]∂zv + 4(D − 3)

3D(D + 2)
∂zq = P4,

•
p + [p + 2(p − σ 11)

D
]∂zv + 2

D
∂zq = P5,

•
q + p

2ρ2 [2σ 11 − (D + 2)(p − σ 11)]∂zρ + 2(D + 5)q
D + 2

∂zv − σ 11 + p
ρ

(∂zσ
〈11〉 − ∂zΠ )

+ (D + 2)(p − σ 11)
2ρ

∂zp = P6,

•
σ

〈22〉 +
[

2
3

(p + Π − σ 〈11〉) + σ 〈22〉
]

∂zv + 4
3(D + 2)

∂zq = P7,

(2.6)

where

P1 = −g
ρv

z
, P2 = g

(σ 〈11〉 − σ 〈22〉)
zρ

, P5 = −2g
q

Dz
− 2g

(p + Π − σ 〈22〉)v
Dz

− g
pv

z
,

P3 = −σ 〈11〉

τσ
− 4gq

3(D + 2)z
− gv

3z
[2(p + Π + σ 〈11〉 − 2σ 〈22〉) + g(σ 〈11〉 + 2σ 〈22〉)],

P4 = − Π

τΠ
− g

4(D − 3)q
3D(D + 2)z

− g
6(σ 〈22〉 − p − Π ) + D(−σ 〈11〉 − 4σ 〈22〉 + 5Π + 2p + g(σ 〈11〉 + 2σ 〈22〉))v

3Dz
,

P6 = − q
τq

− g
z

[
(σ 〈22〉 − σ 〈11〉)(p + σ 11)

ρ
+ (D + 4)qv

D + 2

]
,

P7 = −σ 〈22〉

τσ
− g

2(3g − 7)q
3(D + 2)z

− gv

3z
[8σ 〈22〉 − σ 〈11〉 − 7p − 7Π + g(3p + 3Π + σ 〈11〉 − σ 〈22〉)],

(2.7)

if τΠ , τσ and τq represent the relaxation times of dynamic pressure, stress tensor and heat flux,
related, respectively, to the bulk viscosity ν, the shear viscosity μv and the heat conductivity κ of
the gas [15,16] by

τσ = μv

p
, τq = 2κm

5kBp
, τΠ = 3Dν

2(D − 3)p
. (2.8)

Moreover, the (11)-component of the viscous tensor σ 11 = σ 〈11〉 − Π was introduced in (2.6) and
(2.7) to compress some expressions. We remark that only the production terms depend on the AW
geometry, while the PDEs structure remains unvaried when the parameter g is changed.

3. A brief presentation of the theory of acceleration waves
As recalled in the introduction, an AW indicates a propagating surface Γ across which all the
field variables are continuous, differently from the first derivatives of at least one field variable
that exhibit a jump. In particular, the derivative of the velocity could present a jump, hence the
name AW. The wavefront Γ can be seen as a surface that separates the space into two subspaces:
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in the subspace ahead the front the unperturbed field variables are known functions uu(z, t) of
the space and time variables z and t, while behind Γ the perturbed field variables u(z, t) are
usually unknown. If ϕ(z, t) = 0 represents the equation of the wavefront and the jump across Γ

is denoted by [[·]] = (·)ϕ=0− − (·)ϕ=0+ , the peculiarities of an AW are easily summarized as [[u]] = 0
and [[∂u/∂ϕ]] =A = 0.

As already mentioned, in the present paper, we will restrict our attention to planar weak
discontinuities and to cylindrical and spherical ones, which propagate along the radial direction.
Thanks to a suitable change in space coordinates it will always be possible to reduce the problem
to a one-dimensional study of AWs. In this manner, the field variables and the equation of
the wavefront will depend only on z (that plays the role of the first Cartesian coordinate for a
planar wave or the radial variable for cylindrical/spherical waves). For a one-dimensional weak
discontinuity, the well-established theory of AW [1–3] states that

— The normal velocity v = −ϕt/|∇ϕ| of the wavefront coincides with the characteristic speed
of the hyperbolic PDE system evaluated in the unperturbed field V = λ(uu).

— The jump vector A is proportional to the right eigenvectors corresponding to λ, evaluated
in uu, so that A=Ar(uu).

— The scalar amplitude A satisfies the Bernoulli equation

dA
dt

+ a(t)A2 + b(t)A= 0, (3.1)

if d/dt indicates the time derivative along the characteristic line (dx/dt = λ(uu)) and a(t)
and b(t) are suitable function of time.

In this way, the time dependence of the scalar amplitude is easily deduced if A(0) represents the
initial value of the scalar amplitude at time t = 0

A(t) = A(0)g1(t)
1 + A(0)g2(t)

with g1(t) = exp
(

−
∫ t

0
b(s) ds

)
and g2(t) =

∫ t

0
a(s)g1(s) ds. (3.2)

Concerning the calculation of Bernoulli’s coefficients a and b, for one-dimensional waves and
for a set of PDEs written as

∂tu + A(u, z, t)∂zu = T(u, z, t), (3.3)

in [3] it is shown that

a(t) = ϕz(t)(∇uλ · r)
∣∣∣
u

and b(t) =
{

r((∇ul)T − ∇ul) · du
dt

+ (∇uλ · r)(l · uz) − ∇u(l · T) · r + l · d̃r
dt

}∣∣∣∣∣
u

,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.4)

if wz = ∂w/∂z for any w and ∇u· = ∂ · /∂u. In addition, l(u, z, t) and r(u, z, t) denote respectively
the left and right eigenvector of A associated with the eigenvalue λ. For any function w of
the field variables we refer to the notation: w|u = w(uu), while d·/dt = ∂t· + λu∂z1 · and d̃·/dt =
(d·/dt)|u=const.

A brief comment should be added to the choice of the left and right eigenvectors, since in
principle they are both defined apart from an arbitrary factor. In what follows, we prescribe
the arbitrary factor of l requiring that l · r = 1 (this requirement is necessary to make valid the
previous points), while we can imagine that the arbitrary factor of the right eigenvector is
absorbed by the scalar amplitude A. However, for an AW propagating with a non-vanishing
λu = λ(uu) velocity, the arbitrary factor can be fixed referring to the Hadamard relation, obtaining
the time evolution equation for the acceleration jump G. In all the cases analysed in the present
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work the second component of u turns out to be the gas velocity v along the z-direction, so that
[[∂v/∂z]] =A2 =Ar2 and thanks to the Hadamard condition it must hold

G =
[[

∂v

∂t

]]
= −λu

[[
∂v

∂z1

]]
= −λuAr2(uu), hence G =A⇐⇒ r2(uu) = − 1

λu
.

Imposing this condition, the scalar amplitude A always coincides with G. The study of AWs is
often restricted to the fastest one. As a matter of fact, a hyperbolic system presents frequently
different characteristic velocities and consequently different AWs that propagate with various
speeds. So, if some waves are simultaneously present, only the fastest wave propagates into the
unperturbed solution u = uu.

Concerning the time dependence of A, it is well known [1–3] that for an AW that satisfies
the condition ∂λ/∂u · r = 0 and for any suitable initial values |A(0)| > |Acr|, there exists a critical
time tcr such that the solution diverges, due to the annulment of the denominator in (3.2):
1 + A(0)g2(tcr) = 0. Under this condition, the AW degenerates into a shock wave and the field
variables present jumps across Γ . Thanks to the monotonicity of g2, it is possible to prove that
Acr = − limt→∞ 1/g2(t).

As a final remark, we stress that the shock formation can be seen as a nonlinear stability
problem for the unperturbed field uu, as it was observed in [3]. In particular, the regular solution
uu is λ-stable if there exist suitable initial perturbation values A(0) such that A(t) exists for any
t ≥ 0 and it is bounded.

4. Acceleration waves in a polyatomic gas described byET1
14,P

To study the AWs predicted by ET1
14,P, we will follow the procedure described in §3, starting

from the characteristic polynomial, the characteristic velocities and the corresponding left and
right eigenvectors. Then, referring to (3.4), we determine analytically the coefficients of Bernoulli’s
equation (3.1), and the functions g1 and g2 from (3.2).

The characteristic velocities (λ = Λ + v) associated with system (2.6) are easily calculated [15]
looking for the roots of the corresponding characteristic polynomial

P(Λ) = 0 ⇐⇒ Λ3(p4Λ
4 + p2Λ

2 + p1Λ + p0) = 0

if p4 = D(D + 2)2ρ2, p2 = −2(D + 2)ρ(−(4 + 3D + 2D2)σ 11 + (7D + 2D2)p),

p1 = −12D(D + 5)qρ, p0 = 3D(D + 2)((4 + D)σ 112 − (4 + 2D)σ 11p + (D + 2)p2).

We take into account the unperturbed solution of a gas at rest and at equilibrium (vu = 0, Πu =
σ

〈11〉
u = σ

〈22〉
u = 0, qu = 0, ρu = ρ0, pu = p0), so that the velocities of the AWs propagating in the

unperturbed field λu = λ|u = Λ|u are given by

λ1,2|u = ±
√

L1 + √
L2

D + 2

√
p0

ρ0
, λ3,4|u = ±

√
L1 − √

L2

D + 2

√
p0

ρ0
, λ5,6,7|u = 0,

with L1 = 2D + 7 and L2 = D2 + 16D + 37. In what follows, we restrict our attention to non-
exceptional AWs propagating with non-zero velocity. We stress that the wave speed does not
depend on the wave front geometry, but rather on the degrees of freedom of the gas molecule.
The left and right eigenvectors associated with λ present a quite complicated structure and for
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the sake of simplicity, we report here only the expression of the right eigenvector when u = uu

(see §3):

r|u = (r1, r2, r3, r4, r5, r6, r7), if r2 = − 1
λu

, rd = −(D + 2)λ2
uρ0 + (D + 8)p0,

r1 = r2
ρ0

λu
, r3 = r2

3rdλu
(4(D + 2)p0(p0 − λ2

uρ0)),

r4 = − r2

3Drdλu
2(D − 3)(D + 2)p0(p0 − λ2

uρ0),

r5 = − r2

Drdλu
(D + 2)2p0(p0 − λ2

uρ0),

r6 = r2

rd
3(D + 2)p2

0, r7 = − r2

3rdλu
2(D + 2)p0(p0 − λ2

uρ0).

The equation of the wave front is determined recalling that λu is constant and imposing that
the AW front starts at z(t = 0) = z0

•
ϕ = ∂tϕ + λu∂zϕ = 0 ⇒ ϕ(t, z) = z − z0 − λut = 0 ⇒ z(t) = z0 + λut. (4.1)

Since the AW propagates in an unperturbed constant state where the gas is in equilibrium and
at rest, all the production terms in (2.6) vanish and the coefficients a and b are easily deduced by
(3.4)

a = 3(D + 2)p2
0(a1λ

2
uρ0 − a2p0)

D2λ3
uρ0rd((D + 2)λ2

uρ0 − (2D − 7)p0)
,

b = b(t) = bσ

τσ
+ bΠ

τΠ
+ bq

τq
+ bg

g
z(t)

= β + bg
g

z(t)
,

a1 = (D + 2)(2D2 + 11D − 4), a2 = (2D3 + 3D2 + 8D − 4),

bg = λu

2
, bσ = (D + 2)(λ2

uρ0 − p0)2

9p0((D + 5)λ2
uρ0 − (D − 1)p0)

,

bΠ = (D − 3)
2D

bσ , bq = 27λ2
up0ρ0

2(D + 2)(λ2
uρ0 − p0)2

bσ ,

(4.2)

where z(t) indicates the position of the AW front at instant t, determined in (4.1). We remark
that coefficient a is constant, regardless of the value of g; additionally, its expression includes the
monatomic case as a limit case when D → 3 . A comparison of a with calculations for monatomic
gases in [8,9] is not immediate, since there the right and left eigenvectors were differently
normalized. On the contrary, when D = 3 and planar geometry is taken into account (g = 0) the
expression of b coincides with the monatomic one derived in [8,9]. It is evident that coefficient b
contains terms that account for the AW geometry, as already observed by Lindsay & Straughan
[5] for a different model.

The calculation of g1(t) and g2(t) from (3.2) and (4.2) is carried out, recalling that (bgg/z(t) =
(g/2)(d ln(z(t))/dt) (see (4.1)). The final expression of the integral functions can be summarized as

if g = 0 and α ≶ 0 g1(t) = exp(−βt), g2(t) = a
β

(1 − exp(−βt)),

if g = 1 and α > 0 g1(t) = e−βt
√

1 + αt
, g2(t) = a

√
π

eβ/α

√
αβ

�erf(β, α, t),

if g = 1 and α < 0 g1(t) = e−βt
√

1 + αt
, g2(t) = −a

√
π

eβ/α

√−αβ
�erfi(β, α, t),

if g = 2 and α ≶ 0 g1(t) = e−βt

1 + αt
, g2(t) = a

α
eβ/α�Ei(β, α, t),
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if α = λu/z0 (α > 0 for an outgoing AW, while α < 0 for an incoming AW), and �erf, �erfi and
�Ei denote suitable differences of the well-known integral functions,

�erf(β, α, t) = erf

(√
β(1 + αt)

α

)
− erf

(√
β

α

)
, if erf(w) = 2√

π

∫ w

0
e−s2

ds,

�erfi(β, α, t) = erfi

⎛
⎝
√

β(1 + αt)
−α

⎞
⎠− erfi

(√
β

−α

)
, if erfi(w) = 2√

π

∫ w

0
es2

ds,

�Ei(β, α, t) = Ei
(

−β

α
(1 + αt)

)
− Ei

(
−β

α

)
, if Ei(w) = −

∫ ∞

−w

e−s

s
ds.

As already stated in §3, non-exceptional AWs present critical times tcr, which satisfy the equation
1 + A(0)g2(tcr) = 0. A necessary condition for shock formation is related to the sign of A(0) that
should be concordant with that of the characteristic velocity. Moreover, taking into account the
previous table, it is easily verified that only in the planar case critical time and critical amplitude
can be determined explicitly as tcr = −(1/β) ln(1 + (β/aA(0))), and Acr = −β/a.

If g = 1, 2, the analytic calculation of both tcr and Acr is no longer possible, although such
values undoubtedly exist due to the monotonicity of functions g2(t). In such cases, the numerical
evaluation was performed by MATLAB.

For outgoing AWs (i.e. α > 0), it is rigorously shown that Acr|g=2 ≥Acr|g=1 ≥Acr|g=0 and that
in the limit (β/α) → ∞ the critical amplitude in spherical and cylindrical geometry converges to
the planar one.2 Thus, we conclude that a radial geometry has a stabilizing effect on the AW
behaviour.

In figure 1a, we present a qualitative sketch of A(t) behaviour as its initial value A(0) changes.
Figure 1 on the right shows a comparison of Acr as a function of D and for different wave
geometries. The plots focus on the fastest AW and are obtained assuming the same value of
temperature, molecular mass and relaxation times for any value of D (T = 300 K, m = 66.4 ×
10−27 Kg, τσ = τq = τΠ = 10−8s) and fixing r0 = 4 × 10−5 m. These unrealistic hypotheses were
introduced in order to highlight the role played by the geometry and by D in the determination of
critical amplitude values. When r0 ≥ 1 mm (i.e. more realistic physical situations) the value of Acr

in radial geometry converges to the corresponding one of a planar AW within the plot precision.
We stress that in all the cases Acr exceeds by some orders of magnitude a realistic physical value
of the initial scalar amplitude, making shock formation very unlikely. Moreover, the dependence
on D is not particularly pronounced and the minimum of Acr is observable for monatomic gases
(D = 3).

A final remark concerns the spherical or cylindrical incoming wave front z(t), which converges
to the centre after a time −1/α. Consequently, function g1(t) diverges for any initial scalar
amplitude in radial geometry. Surprisingly, in the spherical case also the term �Ei(β, α, t)
contained in g2 diverges when t → −1/α (see (4.1)). This peculiarity was already observed for
a different model by Lindsay & Straughan [5] and it was noted for an Euler gas in the special
case of bubble dynamics by Greenspan & Nadim [17]. In other words, ∀ A(0) < 0 a spherical AW
with negative velocity becomes a shock wave in a sufficiently small neighbourhood of the sphere
centre. This case will be the subject of the second part of the present work.

5. Rational extended thermodynamics in an oscillating bubble
In the previous sections, we studied physical systems that exhibit similar behaviours in the
presence of monatomic or polyatomic gases. Now, we are looking for a physical framework in
which differences between such gases can be observed experimentally and suitable for the study
of AWs. To this end, in what follows, we will consider gas bubbles oscillating within a liquid, due
to the presence of an external sound field. The bubble is commonly supposed to maintain a perfect

2The proof follows from the comparison of the integrand functions in (3.2)3 for planar, cylindrical and spherical geometry.
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Figure 1. (a) Qualitative behaviour of the AW scalar amplitude asA(0) changes. (b) Critical amplitude in planar, cylindrical and
spherical geometry of the outgoing fastest AW as a function of the molecular degrees of freedom. (Online version in colour.)

spherical form during its oscillation and its variable radius R = R(t) is described by a nonlinear
ordinary differential equation, the best-known is the Rayleigh–Plesset equation3 [21,22]:

RR̈ + 3
2

Ṙ2 = 1
ρf

(
Pg(R) − PE + Pa(t)

)
− 4ηṘ

ρf R
− 2ς

ρf R
+ R

ρf cf

d
dt

(Pg(R) + Pa(t)), (5.1)

where Pg denotes the pressure of the gas inside the bubble, Pa is the imposed sound field, cf is
the speed of sound in the fluid around the bubble, ρf indicates the mass density of such a fluid,
η and ς are, respectively, the shear viscosity coefficient of the fluid and the surface tension, PE is
the ambient atmospheric pressure, which coincides with the equilibrium pressure of the gas if ς

is neglected. The equation is derived through several simplifications: in particular, it is assumed
that the bubble wall moves slower than both liquid and gas sound speeds. However, in many
cases its validity is extended also to supersonic regimes when the velocity of the bubble wall
exceeds the sound velocity [20–23]. We recall that (5.1) usually is associated with the homobaric
hypothesis, i.e. assuming the gas pressure Pg inside the bubble to be spatially homogeneous. In
this regard, some studies have shown that in reality the gas pressure inside the bubble, although
not perfectly uniform (due to the acceleration of the bubble wall), can be considered as such, at
least as a first approximation during expansion and early stages of the contraction of the bubble
[36–38]. Moreover, concerning the final stages of a violent contraction of the bubble, the paper by
Lin, Storey and Szeri shows how the inevitable non-uniformity of the gas pressure is compatible
with the validity of the Rayleigh Plesset equation [24,39].

In the literature, the study about the bubble dynamics described by a Rayleigh–Plesset-type
equation is carried out using two different approaches [24]. On the one hand, it is possible to
express the gas pressure as a function of the radius of the bubble through some simplifying
hypotheses (isothermal or adiabatic assumptions). In this way, the Rayleigh Plesset equation is
closed and can be integrated as a stand-alone ODE in a very fast and simple way. An alternative
technique for studying the bubble radius dynamics is that undertaken by Wu and Roberts [40,41],
and then taken up by other authors, see for instance [36,37,42]: a Rayleigh Plesset-type equation is
coupled with the differential equations describing the dynamics of the gas inside the bubble, and
the resulting differential system is numerically integrated. This procedure could be much more
onerous, especially if the integration is carried out for all the phases of the bubble dynamics, but
it gives more accurate results. This second approach implies the problem of how to prescribe
in (5.1) the value of Pg at the bubble interface. Among several proposals presented in the last

3The Rayleigh–Plesset equation was modified by many researchers, in order to take into account several physical effects. Here,
we introduce one of its simplest forms, valid only when the system is far from van der Waals regime and the oscillations are
not too strong.
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Figure 2. The qualitative behaviour of the radius of an oscillating gas bubble, described by Rayleigh–Plesset equation in the
case of amonatomic gas. The green part of the plot represents the region taken into account in the presentwork. (Online version
in colour.)

decades, we mention, among the others, the idea followed by Wu and Roberts [40,41] who place
in the Rayleigh Lamb equation the value of the gas pressure at the bubble boundary r = R, the
suggestions put forward by Prosperetti [36] and those recently presented by Man & Tuijillo in
[38]. In this work, we refer to the first approach, postponing the second technique to a paper in
preparation.

The qualitative behaviour of the bubble radius is shown in figure 2, starting from the value
RE that corresponds to the radius of the bubble in equilibrium with the fluid, when no external
sound field is imposed. The bubble dynamics passes through different regimes in the presence
of a periodic sound field, like Pa = P′

a cos(ωat + φ): an expansion up to the maximum radius RM

is followed by a contraction of the bubble sphere that reaches the equilibrium radius and further
collapses to a minimum radius Rm < RE (in some cases, it could be of the magnitude order of the
van der Waals hard core radius). A bouncing behaviour comes next, after the collapse. During
the first phase of the contraction, when RM > R > RE, (5.1) is usually simplified, neglecting the
gas pressure Pg, the acoustic pressure Pa and their variations, the viscous term and the surface
tension, so that it is assumed [20–23]

1
2

R3Ṙ2 = PE(R3
M − R3)
3ρf

. (5.2)

In the present work, the analysis is restricted to this regime (where the gas can be modelled as a
perfect gas).

The radius of the bubble varies in time (R = R(t)) and so does the domain in which the AWs
propagate, i.e. the bubble sphere. To simplify the calculations, we consider the PDE model in
spherical coordinates (2.6) and introduce a transformation from the usual time-space variables
{t, r} (with r radial coordinate inside the bubble r ∈ [0, R(t)]), to the more comfortable {t′, x} if t′ = t
and x = r/R(t) with x ∈ [0, 1]. So that, if z = r denotes the radial variable, the PDE system (3.3) is
transformed as follows:

∂tu + A∂zu = T ⇒ ∂tu + 1
R(t)

[A − xṘ I]∂xu = T, (5.3)

with Ṙ = dR/dt. It is easily proved that the characteristic velocities (λ′) of the transformed system
(5.3)2 are related to those (λ) of the initial system (5.3)1 by λ′ = (λ − xṘ)/R(t). In addition to
the monatomic ET1

13 and polyatomic ET1
14,P equations, we introduce and analyse Euler’s model

(already employed within the bubble theory by several authors, see for example [17,40,41]).
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(a) The rational extended thermodynamics model with 14 moments
Referring to the PDE system (2.6), assuming the space homogeneity so that σ 〈22〉 = −σ 〈11〉/2 and
taking into account that we are dealing with a spherical geometry g = 2, the number of equations
reduces to six and the independent field variable vector becomes u = (ρ, v, σ , Π , p, q) if from
now on we denote σ 〈11〉 by σ . The transformation described in (5.3) is easily applied, obtaining
the final form of the PDE system

∂tρ + v − xṘ
R

∂xρ + ρ

R
∂xv = −2ρv

Rx
,

∂tv + v − xṘ
R

∂xv − 1
ρR

∂xσ + 1
ρR

∂xΠ + 1
ρR

∂xp = 3σ

ρRx
,

∂tσ + 7σ − 4(p + Π )
3R

∂xv + v − xṘ
R

∂xσ − 8
3(D + 2)R

∂xq

= − 8q
3(D + 2)Rx

− 4(p + Π + 2σ )v
3Rx

− σ

τσ
,

∂tΠ + 2(D − 3)(p − σ ) + (5D − 6)Π
3DR

∂xv + v − xṘ
R

∂xΠ + 4(D − 3)
3D(D + 2)R

∂xq

= − 8(D − 3)q
3D(D + 2)Rx

− 2[(D − 3)(2p + σ ) + (5D − 6)Π ]v
3DRx

− Π

τΠ
,

∂tp + (D + 2)p + 2Π − 2σ

DR
∂xv + v − xṘ

R
∂xp+ 2

DR
∂xq

= − 4q
DRx

− 2(D + 2)pv

DRx
− 4Πv

DRx
− 2σv

DRx
,

∂tq + p[−(D + 2)p + (D + 4)(σ − Π )]
2Rρ2 ∂xρ + 2(D + 5)q

(D + 2)R
∂xv − 2(p + σ − Π )

2Rρ
∂xσ

+ 2(p + σ − Π )
2Rρ

∂xΠ + (D + 2)(p + Π − σ )
2ρR

∂xp + v − xṘ
R

∂xq

= −2(D + 4)qv
(D + 2)Rx

+ 3(p + σ − Π )σ
ρRx

− q
τq

.

(5.4)

We remark once again that system (5.4) reduces to the model of ET1
13 theory for a monatomic gas

if one imposes D = 3 and neglects equation (5.4)4, assuming Π = 0.

(b) The Euler model
The simplest RET theory used in the present physical framework is ET5,P, universally
known as the Euler system. It can be obtained from the 14-moment model neglecting all
the non-equilibrium field variables (stress tensor, dynamic pressure and heat flux) and their
corresponding field equations. Referring to (5.4), the equations for an Euler gas reduce to

∂tρ + v − xṘ
R

∂xρ + ρ

R
∂xv = −2ρv

Rx
,

∂tv + v − xṘ
R

∂xv + 1
ρR

∂xp = 0,

∂tp + (D + 2)p
DR

∂xv + v − xṘ
R

∂xp = −2(D + 2)pv

DRx
.

(5.5)

The model is valid both for monatomic (D = 3) and for polyatomic gases D > 3.
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(c) Preliminary assumptions
In what follows, we consider an AW generated by the bubble wall oscillation, acting as a piston
on the gas. To deal with analytical or semi-analytical expression of Bernoulli’s coefficients and
AW amplitude equation, we introduce some further simplifications. First of all, we restrict the
analysis to a linear time-dependence of the bubble radius

R(t) = R0(1 + μt), (5.6)

where R0 is the initial bubble radius, while μ > 0 represents the case of bubble expansion and
μ < 0 the linear contraction of the bubble. Due to this assumption, the analysis will be valid only
for small time intervals. We postpone to the next paper the more realistic, but also more complex,
nonlinear case.

In addition, we restrict our attention to unperturbed adiabatic solutions (i.e. q = 0) and impose
that the unperturbed gas velocity presents a linear behaviour, that is v = xṘ (in some sense, the
velocity of the gas is seen as a ‘dragging’ velocity caused by the bubble wall motion). Finally, the
unperturbed stress tensor is supposed to be zero, in accordance with the unperturbed solution
of the Euler system and also with the Navier–Stokes (NS) Fourier approximations, already
employed by several authors (see for example [17,40–42]) for a gas confined in an oscillating
bubble. To sum up, we consider an unperturbed solution (uu) that satisfies the conditions

vu = xṘ, qu = 0, σu = 0. (5.7)

The simplifying assumptions (5.6) and (5.7) imply the space uniformity of mass density,
temperature, equilibrium and dynamic pressure, and allow an analytical description of the AW.

The unperturbed solution depends on some suitable integration constants: we have chosen to
prescribe the initial values of equilibrium pressure p0 and of mass density ρ0 for both monatomic
and polyatomic gases. We remark that ET1

14,P theory requires the assignment of an additional
quantity, such as Π0 (initial dynamic pressure). Hereafter, the initial temperature T0 is determined
thanks to the ideal gas condition: T0 = p0m/(kBρ0). Finally, we introduce a further simplifying
hypothesis: the relaxation times τσ , τq and τΠ are constant quantities, determined from (2.8) at
established values of temperature and pressure.

(d) Notation
In what follows, we study first the AWs propagating in a bubble filled with a monatomic gas
described by ET1

13 or Euler PDEs system. Then, we focus on the case of a polyatomic gas modelled
by ET1

14,P and Euler equations. To distinguish the quantities that refer to these theories, we
introduce the following notation. A generic quantity w is written as: w̃ if it refers to the Euler
model ET5 with D = 3; ˜̃w if it corresponds to the Euler model ET5,P when D > 3; ŵ if it is described
by ET1

13; w̌ if it is associated with ET1
14,P model.

6. Acceleration waves propagating in an oscillating bubble filled with a
monatomic rarefied gas

The behaviour of the monatomic gas within the bubble is firstly described by the popular Grad’s
theory. Imposing conditions (5.7), system (5.4) reduces to the following set of PDEs and the
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unperturbed fields are easily determined

∂tρ = −3ρṘ
R

,

∂xp = 0,

∂tp = −5pṘ
R

,

p
ρ

∂xρ − ∂xp = 0.

�⇒
ρ̂u = ρ0

(1 + μt)3

p̂u = p0

(1 + μt)5

(6.1)

The dependence of the temperature field on the bubble radius turns out to be

T̂u = mp̂u

kBρ̂u
= T0R2

0
R2(t)

.

The characteristic velocities λ̂′ = Λ̂ + (v − xṘ)/R associated with ET1
13 can be determined from the

knowledge of the roots Λ̂ of the characteristic polynomial

P̂(Λ̂) = 0 ⇐⇒ Λ̂
(

75ρ2R4Λ̂4 + Λ̂2(310σ − 390p)ρR2 − 288Λ̂ρRq + (225p2 − 450pσ + 315σ 2)
)

= 0.

Thus, the characteristic speed of the fastest incoming wave propagating in the unperturbed
solution is4

λ̂u = − 1
R

√√√√(13 + √
94

5

)
p̂u

ρ̂u
=
(

R0

R(t)

)2
�̂u, with �̂u = −

√√√√(13 + √
94

5

)
p0

ρ0R2
0

. (6.2)

and the corresponding right eigenvector associated with this system is given by r̂u =
(r̂1, r̂2, r̂3, r̂4, r̂5) with r̂2 = −1/λ̂u (see §3) and

r̂1 = r̂2ρu

λ̂uR
, r̂3 = 20r̂2(p2

u − puλ̂2
uρuR2)

λ̂uR(15λ̂2
uρuR2 − 33pu)

, r̂4 = 25r̂2(puλ̂2
uρuR2 − p2

u)

λ̂uR(15λ̂2
uρuR2 − 33pu)

, r̂5 = r̂245p2
u

15λ̂2
uρuR2 − 33pu

.

The AW front is described, as usual, by the equation ϕ̂(x, t) = 0, which can be explicitly determined
thanks to the linear time-dependence of the bubble radius (5.6). Recalling (6.2) and imposing that
the wave front starts from the bubble wall at x = 1, we have

•
ϕ̂ = ∂tϕ̂ + λ̂u∂xϕ̂ = 0 �⇒ ϕ̂(x, t) = x − 1 − �̂ut

(1 + μt)
. (6.3)

Multiplying ϕ̂(x, t) by the expression of R(t) in (5.6), we get Φ̂ = 0, i.e. the wave front equation in
the original variables {t, r}:

Φ̂(t, r) = R(t)x − R(t) − R0�̂ut = r − R0 − R0(μ + �̂u)t.

Hence, the AW propagates linearly inside the monatomic gas bubble with a speed that is equal to
the sum of wall and characteristic velocities. This property holds for a monatomic Euler gas too.
Bernoulli’s coefficients are calculated from (3.4). Denoting by θ0 = kBT0/m, they become

â(t) = −5Rθ0(−101θ0 + 235�̂2
uR2

0)

6R4
0�̂

3
u(34θ0 + 5�̂2

uR2
0)

� 1.46776(1 + μt)√
θ0

,

b̂(t) = ν1Ṙ
R

+ ν2

τσ
+ ν3

τq
+ λ̂u

x
� 2Ṙ

R
+ 0.202793

τσ
+ 0.198429

τq
− 2.13051R0

√
θ0

R(t)2x

with ν1 = 2, ν2 = 5(−θ0 + �̂2
uR2

0)2

θ0(−18θ0 + 72�̂2
uR2

0)
, ν3 = 3�̂uR2

0

−4θ0 + 16�̂2
uR2

0

.

4Here, we focus on the AW with the fastest characteristic velocity, but the following results are valid in general for the waves
propagating with non-zero characteristic velocities.
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Recalling (3.2) and (6.3) and denoting by c1 = (ν2/τσ ) + (ν3/τq), it is easily verified that

ĝ1(t) = exp(−c1t)

(1 + μt)(1 + (μ + �̂u)t)

and

ĝ2(t) = â

μ + �̂u
ec1/(μ+�u)�Ei(c1, �̂u + μ, t) with â = −5θ0(−101θ0 + 235�̂2

uR2
0)

6�̂3
uR3

0(34θ0 + 5�̂2
uR2

0)
.

As mentioned before, the Euler system was already employed to describe the AW in an oscillating
gas bubble. Here, we briefly summarize the main steps necessary to determine the AW amplitude
described by ET5, seen as a comparison term of the Grad’s model. Concerning the unperturbed
solution, under assumptions (5.7), the equations of the ET1

13 (6.1)1,2,3 are valid also for an Euler
gas. Since (6.1)4 cannot be deduced from the ET5 theory, the space dependence of ρ turns out
to be arbitrary. However, the aim of this analysis is a comparison with the 13-moment system,
so it is natural to impose ρ̃u = ρ̂u, fulfilling a space uniformity requirement. In this way, one
obtains identical unperturbed solutions of Euler’s and Grad’s models. In order to study the
behaviour of the Euler AWs travelling inside the bubble, it is necessary to determine firstly
the characteristic velocities λ̃′ = Λ̃ + (v − xṘ)/R associated with this model. Λ̃ is a root of the
characteristic polynomial P̃(Λ̃) = −Λ̃(−5p + 3Λ̃2ρR(t)2), so that for ET5 the characteristic speed
of the fastest incoming AW and its value in the unperturbed solution are

λ̃ = − 1
R

√
5
3

p
ρ

+ v − xṘ
R

, λ̃u = − 1
R(t)

√
5
3

p̃u

ρ̃u
=
(

R0

R(t)

)2
�̃u with �̃u = −

√
5p0

3ρ0R2
0

.

The unperturbed right eigenvector (denoted by r̃u = (r̃1, r̃2, r̃3)) associated with the characteristic
velocity of the incoming AW is defined as r̃1 = r̃2ρ̃u/(λ̃uR(t)), r̃3 = 5r̃2p̃u/(3λ̃uR(t)) where r̃2 =
−1/λ̃u. The explicit expression of the AW front equation ϕ̃(t, x) = 0 presents the same form as the
one of ET13 (6.3), with �̃u in place of �̂u. From (3.4), Bernoulli’s coefficients can be easily deduced

ã(t) = − 4

3λ̃uR(t)
= −4(1 + μt)

3�̃uR0
, b̃(t) = 2Ṙ

R(t)
+ λ̃u

x
= 2

d ln(R(t))
dt

+ d ln(x(t))
dt

.

and taking into account (3.2), we get

g̃1(t) = 1
x(t)(1 + μt)2 and g̃2(t) = −4(ln(1 + (�̃u + μ)t))

3R0�̃u(μ + �̃u)
.

7. Acceleration waves propagating in an oscillating bubble filled with a
polyatomic rarefied gas

In the case of an oscillating bubble filled with a polyatomic gas, described by the model in (5.4)
and under conditions (5.7), the PDE system of the unperturbed fields becomes (we omit for
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simplicity the identity relation corresponding to the equation (5.4)3)

∂tρ = −3ρṘ
R

,

1
ρR

∂x(p + Π ) = 0,

∂tΠ = − (2(D − 3)p + (5D − 6)Π )Ṙ
DR

− Π

τΠ
,

∂tp = −3(D + 2)
DR

pṘ − 6Π Ṙ
DR

,

[(D + 2)p + (D + 4)Π ]
ρ

∂xρ

− Dp + (D + 4)Π
p

∂xΠ = 0,

�⇒

ρ̌u = h(x)

(
R0

R(t)

)3

,

P̌u = p̌u + Π̌u = P0H(t),

∂tΠ̌u = − (2(D − 3)p̌u + (5D − 6)Π̌u)Ṙ
DR

− Π̌u

τΠ
,

∂tp̌u = −3(D + 2)
DR

p̌uṘ − 6Π̌uṘ
DR

,

∂xρ̌u = ∂xp̌u = ∂xΠ̌u = 0,

(7.1)

where h(x) and H(t) are suitable functions of x and t, respectively. We stress that a zero dynamic
pressure is incompatible with the previous equations, unless Ṙ = 0. This fact constitutes a relevant
difference with respect to the monatomic case, but it is not very surprising. Even in the NS
approximation the expected relation between Π and the gas velocity in spherical symmetry
sounds [15]

ΠNS = −ν
∂vk

∂zk
= −3ν

Ṙ
R

. (7.2)

In one word, the oscillating bubble is a natural habitat for the dynamic pressure, even if we
consider an oversimplified situation.

Through compatibility conditions (∂xtp̌u = −∂xtΠ̌u, under the assumption of C2 regularity
of functions p̌u(x, t) and Π̌u(x, t)) it is possible to prove from (7.1) that ∂xΠ = ∂xp = 0 and
consequently also ∂xρ = 0. Hence, conditions (5.6) and (5.7) imply space uniformity for ET1

14,P
unperturbed solution, in complete accordance with the results of ET1

13 for a monatomic gas. After
some calculations, relations (7.1) can be rewritten as

ρ̌u = ρ0

(1 + μt)3 , p̌u = p0F(t), Π̌u = Π0G(t), P̌u = p̌u + Π̌u,

Π0G(t) = −DRp0

6Ṙ
∂tF(t) − (D + 2)p0

2
F(t),

∂2
t F(t) +

[
9Ṙ
R

+ 1
τΠ

]
∂tF(t) +

[
15Ṙ2

R2 + 3(D + 2)Ṙ
DR

]
F(t) = 0.

To obtain an analytical solution, from now on we will focus on the case D = 6, so that the
unperturbed total pressure P̌u and the unperturbed dynamic pressure Π̌u turn out to be

P̌u = e−(t/τΠ )(č1 + μ(t + 2τΠ )č1 − et/τΠ μτ 2
Π (−1 − μt + 2μτΠ )č2)

μ(1 + μt)5τΠ

and Π̌u = e−(t/τΠ )(č1 + μ(t + τΠ )č1 − et/τΠ μ2τ 3
Π č2)

μ(1 + μt)5τΠ

,

(7.3)

where č1 and č2 are two suitable integration constants, which can be prescribed by the condition
P(t = 0) = P0 and Π (t = 0) = Π0. The approximated relation (7.2) is employed to assign the
uncontrollable value of the initial dynamic pressure as a function of the measurable total pressure
(Π0 = −(μτΠ P0)/(1 − μτΠ ) with D = 6). So that it can be imposed

č1 = P0(μτΠ )3

1 − μτΠ
and č2 = P0(1 + μτΠ + μ2τ 2

Π )
τΠ (−1 + μτΠ )

.
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The expression of the unperturbed temperature field is deduced from (7.3), recalling that we deal
with an ideal gas

Ťu = T0

[
e−(t/τΠ ) μ3τ 3

Π

(1 + μt)2 + (1 + μt − μτΠ )(1 + μτΠ + μ2τ 2
Π )

(1 + μt)2

]
with T0 = mP0

kBρ0(1 − μτΠ )
.

The characteristic velocities λ̌′ = Λ̌ + (v − xṘ)/R of the ET1
14,P are determined thanks to the

characteristic polynomial equation

Λ̌2[48Λ̌4ρ2R4 − 4Λ̌2ρR2(57p + 47(Π − σ )) − 99Λ̌qρR + 36(4p2 + 8p(Π − σ ) + 5(Π − σ )2)] = 0.

Thus, the unperturbed speed of the fastest AW travelling towards the centre of the bubble
described by ET1

14,P turns out to be

λ̌u = −

√√√√57p̌u + 47Π̌u +
√

1521p̌2
u + 1902p̌uΠ̌u + 49Π̌2

u

24ρ̌uR2 ,

and the corresponding unperturbed right eigenvector is given by

řu = (ř1, ř2, ř3, ř4, ř5), ř1 = ρ̌ur2

Rλ̌u
, ř2 = − 1

λ̌u
,

ř3 = ř2
4(4P̌2

u + Π̌2
u − 4λ̌2

uP̌uρ̌uR2)

λ̌2
uRδ1

,

ř4 = −ř2
4P̌2

u + P̌u(21Π̌ − 4λ̌2
uρ̌uR2) − 3Π̌u(3Π̌u + 4λ̌2

uρ̌uR2)

λ̌uRδ1
,

ř5 = −ř2
16P̌2

u + 2Π̌u(7Π̌u + 6λ̌2
uρ̌uR2) − P̌u(21Π̌u + 16λ̌2

uρ̌uR2)

λ̌uRδ1
,

ř6 = ř2
4(9P̌2

u − 10P̌uΠ̌u − 3Π̌2
u )

δ1
, with δ1 = 12λ̌2

uρ̌uR2 − 21P̌u + 10Π̌u.

(7.4)

In this case, the equation of the AW front cannot be determined analytically

•
ϕ̌ = ∂xϕ̌ + λ̌u∂tϕ̌ = 0 so that ∂xϕ̌ = 1 and x(t) = 1 +

∫ t

0
λ̌u(s) ds, (7.5)

and one seeks help from a numerical procedure. After several calculations, Bernoulli’s coefficients
can be written as

ǎ = −4λ̌2
uρ̌uR2(2412P̌2

u − 1355P̌uΠ̌u − 447Π̌2
u ) − 9(584P̌3

u − 60P̌2
uΠ̌u + 83P̌uΠ̌2

u + 15Π̌3
u )

3λ̌3
uρ̌uR3δ1δ2

,

b̌ = ν̌1Ṙ
R

+ ν̌2

τσ
+ ν̌3

τq
+ ν̌4

τΠ
+ λ̌u

x
, with ν̌1 = λ̌2

uδ3 + δ4

2λ̌2
uρ̌uR2δ1δ2�̌2

,

ν̌2 = 8(3P̌u + 2Π̌u − 3λ̌2
uρ̌uR2)(4P̌2

u + Π̌2
u − 4λ̌2

uP̌uρ̌uR2)

9�̌
,

ν̌3 = 2λ̌2
u(9P̌2

u108P̌uΠ̌u − 4Π̌2
u )ρ̌uR2

�̌
, ν̌4 = λ̌2

uδ5 + δ6

4λ̌2
uρ̌uR2δ1δ2�̌

,

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

14
 N

ov
em

be
r 

20
22

 



19

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20220246

..........................................................

where δ1 is introduced in (7.4) and

�̌ = 4(33P̌2
u − 10P̌uΠ̌u − 6Π̌2

u )λ̌2
uρ̌uR2 − 5(3P̌u + 2Π̌u)(4P̌2

u + Π̌2
u ), δ2 = 24λ̌2

uR2ρ̌u − 57P̌u + 10Π̌u,

δ3 = 1195807941P̌8
u − 2230441866P̌7

uΠ̌u + 507998223P̌6
uΠ̌2

u + 762308496P̌5
uΠ̌3

u

− 124802457P̌4
uΠ̌4

u − 113828422P̌3
uΠ̌5

u − 5412915P̌2
uΠ̌6

u + 3241188P̌uΠ̌7
u + 331668Π̌8

u ,

δ4 = −9(4P̌2
u + Π̌2

u )(24867657P̌7
u − 39919740P̌6

uΠ̌u + 1959970P̌5
uΠ̌2

u + 14213273P̌4
uΠ̌3

u

+ 506396P̌3
uΠ̌4

u − 1530052P̌2
uΠ̌5

u − 272928P̌uΠ̌6
u − 7968Π̌7

u ),

δ5 = 12(10362P̌5
u − 25873P̌4

uΠ̌u + 42328P̌3
uΠ̌2

u − 16424P̌2
uΠ̌3

u − 7524P̌uΠ̌4
u + 810Π̌5

u )ρ̌uR2,

δ6 = −(4P̌2
u + Π̌2

u )(23256P̌4
u − 48570P̌3

uΠ̌u + 75826P̌2
uΠ̌2

u − 14145P̌uΠ̌3
u − 20286Π̌4

u ).

In the case of ET1
14,P also the expressions of ǧ1 and ǧ2 cannot be determined analytically and are

evaluated numerically.
The polyatomic gas could also be modelled by Euler conservation laws, neglecting a priori heat

flux, stress tensor and dynamic pressure. The unperturbed field variables ˜̃uu = ( ˜̃ρu, xṘ, ˜̃pu) must
satisfy equations (7.1)1,2,4 with null Π , and we impose space uniformity, as for Euler monatomic
gases, so that, if D = 6

˜̃ρu = ρ0

(1 + μt)6 , ˜̃pu = p0

(1 + μt)4 , ˜̃Tu = m ˜̃pu

kB ˜̃ρu
= T0

(1 + μt)
.

When D = 6, the characteristic velocity of the incoming AW propagating in the unperturbed

gas turns out to be ˜̃
λu = 2

√
θ0/(

√
3R0(1 + μt)3/2) = ˜̃

�u/(1 + μt)3/2 and the unperturbed right

eigenvector (˜̃ru = (− ˜̃ρu/( ˜̃λ2
uR(t)), −1/

˜̃
λu, −4 ˜̃pu/(3 ˜̃

λ2
uR(t))).

The equation of the wavefront becomes

x(t) − 1 − 2
˜̃
�u

μ
+ 2

˜̃
�u

μ
√

1 + μt
= 0.

The corresponding coefficients of Bernoulli’s equation are

˜̃au = −7(1 + μt)1/2

6R0
˜̃
�u

and ˜̃bu = 7Ṙ
4R

+
˜̃
λu

x(t)
,

and they can be easily integrated in order to obtain an analytical expression of g1 and g2

˜̃g1(t) = 1
(1 + μt)7/4x(t)

, γ1 = 2 ˜̃
�2

u + ˜̃
�uμ, γ2 = 2 ˜̃

�2
u

and

˜̃g2(t) = 14
3R0

√
γ1γ2

[
ln

(√
γ1(1 + μt)1/4 + √

γ2√
γ1(1 + μt)1/4 − √

γ2

)
− ln

(√
γ1 + √

γ2√
γ1 − √

γ2

)]
.

The AW amplitude as a function of time is calculated in both models thanks to (3.2).

8. Analysis of the results and physical considerations
In §§6 and 7, we have already determined the equations of the AWs propagating in a contracting
gas bubble modelled by RET theories. In what follows we will study some particular cases,
comparing the predictions of different field equations, the results known in the literature and
the effects due to different gas properties.

It was already stressed that the AW amplitude exhibits a peculiar mathematical singularity
when x(t) = 0, which is to say when the wave front reaches the bubble centre. This fact would
imply the shock formation of any AW with initial amplitude A(0) < 0. However, a continuum
theory is certainly not capable of predicting phenomena that take place at a spatial scale
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comparable to a kinetic diameter d, or even less. In fact, from a physical standpoint the AW
could bounce off and travel backwards before the radius of the wave front reaches d. To our
knowledge, a theory capable of describing the AW behaviour in that framework is still lacking.
In the following presentation, we will introduce the idea of a ‘special’ critical amplitude A∗

cr that
corresponds to the largest negative value of A(0) that gives rise to shock formation for x(t) ≥ d/R0,
where R0 is the initial radius of the spherical AW. Referring to (3.2), it is easily shown that

∃t∗ ∈ R+ : x(t∗) = d

R0
and A∗

cr = − 1
g2(t∗)

.

Some of these critical values are presented in the next figures in order to investigate which are
the physical conditions that support the appearance of a shock (we have chosen as sample value
d � 2 × 10−10 m, similar to the kinetic diameter of some common gas molecules).

The examples taken into account here are obtained imposing the following conditions.
AW propagation: the incoming AW starts from the bubble’s wall when the radius of the bubble

is R0 (RM ≥ R0 ≥ RE), and temperature and pressure of the gas inside the bubble are T0 and P0.
Bubble’s parameters: the bubble is supposed to be initially in balance with the liquid with RE =

8.5 × 10−6 m, PE = 105 Pa, TE = 300 K. Afterwards, a sound field activates the bubble’s oscillation,
giving rise to an expansion up to radius R(1)

M = 10RE (case 1, compatible with SL) or R(2)
M = 3.5RE

(case 2, incompatible with SL). The present data are in agreement with those already known in the
literature (e.g. [21,22]). The bubble velocity Ṙ and μ = Ṙ/R0 in (5.6) are supposed to be constant
during the AW propagation, and they are evaluated by (5.2) setting R = R0.

Gas parameters: heat conductivity, shear viscosity and bulk viscosity are supposed to be linear
functions of the temperature (interpolation functions of data deduced from [43–45]), but during
the AW propagation toward the centre of the sphere these parameters are kept constant (at the
initial temperature T0), so that the relaxation times are constant too. The gas inside the bubble is a
polyatomic one and the molecular degrees of freedom are prescribed to be D = 3 in the monatomic
case and, for convenience, D = 6 in the polyatomic one. We remark that at room temperature D
should be 5 for biatomic molecules and close to 7 for other polyatomic molecules.

Bubble’s expansion and contraction: the preliminary bubble expansion (from RE to RM) is slow
and commonly assumed to be isothermal [20–23]. Thus, when the bubble radius reaches RM the
gas temperature is TM = TE and the gas pressure is given by PM = PE(RE/RM)3 (in accordance
with mass conservation). In case 1, if R0 � RM, the corresponding pressure turns out to be very
small P0 � 100 ÷ 200 Pa, i.e. we are dealing with a very highly rarefied gas or, it is the same, a very
large Knudsen number. That case would be better described by kinetic theory or at least by an RET
theory with many moments, rather than ET1

13, ET1
14 or Euler systems. Concerning the subsequent

contraction, it would be intermediate between an isothermal and an adiabatic transformation [21–
23]. In the following analysis, we will suppose that the contraction is isothermal until the bubble
radius reaches an assigned value Ra (RM ≥ Ra ≥ RE) with temperature Ta = TM = TE and pressure
Pa = PE(RE/Ra)3; then we pass to an adiabatic regime (compatible with the calculations of the
present work). In this regard, we have analysed two different scenarios. In scenario A Ra � RM: in
this case, the isothermal condition is commonly prescribed, but the unperturbed solution shows
small variation of the gas temperature and, so, adiabatic and isothermal behaviour are close to
each other. On the contrary, scenario B focuses on the case in which Ra is close to RE: the adiabatic
hypothesis is physically more realistic under this condition [21–23], since the bubble wall moves
faster.

With regard to the homobaric assumption described in §5, it is evident that the description
of an AW travelling inside the bubble is incompatible with the hypothesis of a uniform gas
pressure. However, from §3, it should be noted that the jump in the pressure derivative is Ar̂4
in the monatomic case (see §6) or Ař5 (see §7) for a polyatomic gas. It is easily verified that these
quantities remain small if the speed of the bubble wall is not too high. It has also been observed
that during the bubble contraction the role of Pg in (5.1) can be neglected (see (5.2)) and we believe
this is also the case for AW propagation. Moreover, we remark that the wave propagation time
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of the acceleration of the bubble wall estimated through (5.2). (Online version in colour.)
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of the acceleration of the bubble wall estimated through (5.2). (Online version in colour.)

is very small by comparison with the oscillation time of the bubble, due to the high speed of
the AW.

Figures 3 and 4 present the values of |A∗
cr| for an oscillating bubble containing a monatomic

gas, described by ET5 and ET1
13, in case 1 and 2, respectively. The figures on the left are obtained in

scenario A, while scenario B is taken into account in the figures on the right. Three different noble
gases (helium, argon and xenon) are examined and compared. In all the figures, the absolute value
of A∗

cr increases evidently passing from Euler’s to Grad’s predictions. Moreover, A∗
cr associated

with ET1
13 differs by several orders of magnitude from the bubble wall acceleration, while in

case 1 the Euler’s special critical amplitude for Ar and Xe turns out to be substantially less
than the estimated bubble wall acceleration (black line) when R0 � RE. Thus, shock formation
seems compatible with Euler’s model, but not with ET1

13 theory. A final remark concerns the
comparison of different gases: the smaller the atomic mass of the gas the higher the Aw velocity
and consequently the values of −A∗

cr determined by Euler’s system. This is not always the case
with the Grad’s prediction since a slower propagation could give enough time to the dissipation
to act, at least when the gas is not too much rarefied. To this end, we recall that mXe � 33mHe while
mAr � 10mHe.
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The examples of a bubble filled with a polyatomic gas are analysed in figures 5 and 6, where
the results by ET5,P and ET1

14,P are compared for different gases (hydrogen, water vapour and
ethane).5 The plots suggest similar considerations as in the presence of a monatomic gas, although
the relaxation times turn out to be shorter with respect to those of the monatomic gases, yielding
sometimes slightly different effects. In general, if the dissipation is taken into account, the critical
amplitude differs by some or even several orders of magnitude from the values determined by
ET5,P and from the typical accelerations of the bubble wall.

Hence, we conclude that in both monatomic and polyatomic cases, shock formation becomes
very unlikely and, accordingly, the unperturbed solutions tends to be stable, if one refers to RET
models with dissipation.

The case of a bubble containing CO2 gas has to be treated separately, due to the peculiarities
of such a material. In the literature, the bulk viscosity ν of the carbon dioxide gas at room
temperature is still a topic of debate. The values reported in [15,44,45,47–50] belong to a range of
about [0.5μv , 5000μv]. The present physical framework is particularly sensitive to ν because of two
different reasons connected with relaxation time and dynamic pressure. Firstly, different values
of relaxation times correspond to different values of A∗

cr, due to the combination of hyperbolicity

5The unperturbed solutions turn out to be always compatible with the hyperbolicity region of ET1
14,P [46].
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Figure 8. A rough sketch of a possible effect of dynamic pressure on the bubble radius dynamics R(t) for a polyatomic gas with
very high bulk viscosity. (Online version in colour.)

and dissipation. We do not present here the A∗
cr values, since they could be inconsistent with the

approximations used in the present work. As a matter of fact, even if we prescribe isothermal
conditions and NS approximation (7.2), as in figure 7, high values of the bulk viscosity give rise
to uncontrollable very high values of the dynamic pressure in both case 1 and 2. Thus, Π is no
more negligible with respect to PE in (5.2) approximation, and one should take account of this
quantity in Rayleigh–Plesset equation (5.1), as well. Physically, the possible high values of Π

should oppose the bubble contraction and this effect could be observed in an experiment, giving
an indirect measure of the bulk viscosity. A first oversimplified attempt to take into account the
effect due to dynamic pressure in the Rayleigh–Plesset equation is presented in figure 8, where
we have considered Π described by the NS approximation (7.2), for constant values of ν. The plot
gives a rough qualitative idea of the phenomenon that could take place in a bubble entirely filled
with a polyatomic gas that presents high bulk viscosity.

In addition, experimental data show that the presence of CO2 gas inside the bubble inhibits the
SL effect [51] and, in general, SL is less remarkable in bubbles containing polyatomic gases
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[21,23]. Perhaps, besides other physical effects, there exists a correlation between SL and dynamic
pressure.

Furthermore, it was already proved that dynamic pressure could give rise to observable effects
in heat transfer [52] that takes place in spherical domains, and, therefore, it might not be neglected
in bubble dynamics.

9. Conclusion and final remarks
In the present paper, we studied the behaviour of AWs propagating in a monatomic and a
polyatomic gas, described by ET1

13 and ET1
14,P theories. The role of wavefront geometry and the

effect of the parameter D are presented here for the first time in the framework of RET. Section
4 can be seen as an extension of the results by Ruggeri & Seccia [8] in the case of a planar AW
described by ET1

13 theory, and those by Lindsay & Straughan [5] obtained in several geometries
with a rather different model. As a particular application of the AW theory, we focused on the
case of a wave propagating inside an oscillating gas bubble within a liquid. In the last century,
the phenomena occurring inside this type of bubbles have been extensively studied, both from
theoretical and experimental standpoints. This peculiar physical framework presents extreme
conditions, reached in very small space and time scales. Therefore, it constitutes a perfect test-
bed for the AW studies and RET theory. In the past, several authors, starting from Greenspan and
Nadim [17], have suggested that the AWs could play a special role in the SL formation. In this
regard, we mention the work by Wu and Roberts [40,41] that represents a point of reference in the
study of SL and was taken up by other authors. Other researchers, such as Vuong and Szeri, have
subsequently questioned the shock formation and the possibility that SL is due to the conversion
of an AW into a shock wave (e.g. [24,26,42,53,54]).

We believe that the results obtained through an RET model advance understanding of the
processes occurring inside a gas bubble, even in SL conditions. In spite of the oversimplification
of our first analysis, we have shown that hyperbolicity and dissipation make the conversion to
shock wave much more difficult, also if the accelerations at stake are very high. In the scale range
of validity of a continuum theory, we show that only a very large unrealistic initial amplitude of
the AW can yield shock wave formation. Besides, this outcome was obtained under the adiabatic
assumption, which is known to promote shock formation.

These analytical results highlight the fundamental role played by dissipation in the dynamics
of the gas bubble. It is mathematically verifiable that thermal conductivity, shear and bulk
viscosity prevent or slow down the transformation of the AWs into shock waves, so that one
can speak of a stabilizing effect. More generally, the same phenomena could be observed in the
eventual formation of shocks in the final stages of the gas bubble contraction. This question has
already been dealt with by several authors, but without unanimity in the literature. Moreover,
from the mathematical-physical standpoint, thanks to the hyperbolicity of RET equations,
dissipation can take on a different role even than that predicted by the NS models. We are
convinced that further comparisons should be carried on in the future.

The unperturbed solution presents unlike behaviours for monatomic and polyatomic gases,
since Π = 0 is not compatible with this problem, also in the case of isothermal NS approximation.
Under particular conditions of polyatomic gases with high bulk viscosity, the dynamic pressure
could be an inhibiting factor of the bubble expansion during forced oscillation, interfering with
SL as well. This could be the case of CO2 gas. The effect has never been studied before, but it
certainly deserves attention.

Regarding a possible comparison with experimental data, we start by saying that the available
data refer to the analysis of the bubble radius during oscillations (see for instance [26]),
and to measurements of the characteristics of the flash in the SL (e.g. [24]). Unfortunately,
the experiments could lend themselves to different interpretations and a direct quantitative
comparison turns out to be very difficult. However, it will be the subject of our planned research.

We stress that all the results were determined analytically or in a semi-analytical way and that
graphics and numerical calculations were performed by MATLAB.
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The possible extension of the present approach to more realistic and complex phenomena
inside the oscillating gas bubbles will be the topic of our next paper, now in preparation.
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Appendix A. Rational extended thermodynamics theory: truncation and closure
of the equation system
As already mentioned in §2, the infinite hierarchies of balance laws obtained from the Boltzmann
equation are commonly truncated at some truncation index (N for the F-series and M for the G-
series) [15,55]. The truncation of the infinite sets of equations entails the question about how to
express the last fluxes and the production terms as functions of the densities (seen as independent
field variables): the so-called closure problem, whose solution comes from the MEP [15,56]. First of
all through MEP, it is possible determine the equilibrium distribution function f (E) that maximizes
the entropy

h = −kB

∫
R3

∫ ∞

0
f ln fIadIdc, (A 1)

with the requirement that the hydrodynamic variables (mass density, momentum and energy:
ρ, ρvk, ρv2 + 2ρε) are expressed as moments of f (E). One refers to the Lagrange multipliers method
and introduces the multipliers (u, uk, u′) (also called main field [14,15]) and the functional

LE = −kB

∫
R3

∫ ∞

0
f log f Ia dIdc + u

(
ρ −

∫
R3

∫ ∞

0
mfIadIdc

)

+ uk

(
ρvk −

∫
R3

∫ ∞

0
mfckIadIdc

)
+ u′

(
ρv2 + 2ρε −

∫
R3

∫ ∞

0
mf
(

c2 + 2
I
m

)
IadIdc

)
.

in the maximization of the functional with respect to f the same results are obtained referring to

L′
E =

∫
R3

∫ ∞

0

[
−kB log f − m

[
u + ukck + u′

(
c2 + 2

I
m

)]]
fIa dIdc.

Through the Euler–Lagrange equation δL′
E/δf = 0, the equilibrium distribution function and the

multipliers are easily determined

f (E) = ρ

mA(T)

(
m

2πkBT

)3/2
exp

[
− m

kBT

(
C2

2
+ I

m

)]
with Ck = ck − vk, k = 1, 2, 3 (A 2)

and

u(E) = 1
T

(
−g + v2

2

)
, u(E)

k = −vk

T
, u′,(E) = 1

2T
, A(T) =

∫ ∞

0
exp

(
− I

kBT

)
IadI, (A 3)

where g denotes the chemical potential. In what follows, we will focus on the ET14,P theory
used in the present paper. Following the MEP procedure, it is possible to determine the correct
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distribution function f corresponding to the 14-moment theory. Such a function maximizes the
entropy (A 1) under the constraints that the moments FA and GllA′ are assigned as

F =
∫

R3

∫ ∞

0
mfIa dIdc, Fk =

∫
R3

∫ ∞

0
mfckIa dIdc, Fkj =

∫
R3

∫ ∞

0
mfckcjI

a dIdc

and

Gss =
∫

R3

∫ ∞

0
mf
(

c2 + 2I
m

)
Ia dIdc, Gssk =

∫
R3

∫ ∞

0
mf
(

c2 + 2I
m

)
ckIa dIdc j, k = 1, 2, 3.

Hence, the functional to be maximized can be written as

L=
∫

R3

∫ ∞

0

[
−kB log f − m

(
u + ukck + ukjckcj + (u′ + u′

kck)(c2 + 2
2I
m

)
)]

fIadIdc,

where u, uk, ukj, u′, u′
k are the Lagrange multipliers associated with F− and G− moments.

Due the validity of the Galilean principle, one can refer equivalently to the following
functional:

L=
∫

R3

∫ ∞

0

[
−kB log f − m

(
ˆ̂u + ˆ̂ukCk + ˆ̂ukjCkCj +

(
ˆ̂u′ + ˆ̂u′

kCk

(
C2 + 2

2I
m

)))]
fIadIdC,

from now on the symbol ˆ̂. denotes non-convective quantities (i.e. field variables evaluated when
v = 0). After some calculations, the distribution function is given by

f = exp(−1 − χ/kB), with χ = ˆ̂u + ˆ̂ukCk + ˆ̂ukjCkCj + ( ˆ̂u′ + ˆ̂u′
kCk)

(
C2 + 2

I
m

)
. (A 4)

The function f is usually approximated through the Taylor expansion of order α > 0 (α ∈ N) in the
neighbourhood of a local equilibrium [15]

f (α) = f (E)

[
1 − m

kB
¯̄χ + m2

2k2
B

¯̄χ2 + · · · + (−1)α
mα

α!kα
B

¯̄χα

]
, (A 5)

where

¯̄χ = χ − χ (E) = ¯̄u + ¯̄ukCk + ¯̄ukjCkCj + ( ¯̄u′ + ¯̄u′
kCk)

(
C2 + 2

I
m

)

ū = ˆ̂u − ˆ̂u(E), ¯̄u′
k = ˆ̂u′

k − ˆ̂u′(E)
k , ¯̄u′

kj = ˆ̂u′
kj − ˆ̂u′(E)

kj , ¯̄u′ = ˆ̂u′ − ˆ̂u′(E), ¯̄u′
k = ˆ̂u′ − ˆ̂u′(E)

k ,

and a quantity with apex (E) is evaluated at equilibrium. If we consider ET1
14,P theory, prescribing

α = 1, the non-convective multipliers turn out to be [15]

ˆ̂u = 1
T

(−g), ˆ̂uk = kBρ

mp2 qk, ˆ̂ukj = − kBρ

2mp2

[
−σjk + D

D − 3
Πδkj

]

and
ˆ̂u′ = 1

2T
+ 3kBρ

2(D − 3)mp2 Π , ˆ̂u′
k = − kBρ2

(D + 2)p3 qk,

and the last non-convective flux components (those not present in the list of the densities) are
explicitly determined

ˆ̂Fjkl = D + 2
2

(qjδkl + qkδjl + qlδjk), ˆ̂Gssjk = D + 2
2

p2

ρ
δjk − D + 4

2
p
ρ

(Πδjk − σ〈jk〉).

The convective components of the last fluxes are then determined through the Galilean invariance
[57], obtaining (2.5).
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