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Abstract: This work presents a graph theoretic approach to the investigation of stability and
stabilizability of discrete-time structured linear systems – i.e., discrete-time dynamical systems
defined by linear maps whose entries are only known to be either zero or nonzero (unknown)
values. The main result consists in a necessary and sufficient condition for each element of
the family of systems represented by a given discrete-time structured linear system to be
asymptotically stable. In particular, under the stated condition, convergence to zero of the free
state evolution of each system of the family is shown to be achieved in a finite number of steps,
through what will be referred to as a dead-beat behavior. The notions of essential state feedback
and essential output injection are then introduced and a sufficient condition for stabilizability by
essential state feedback and by essential output injection, respectively, is given. An obstruction
to stabilizability by essential state feedback or by essential output injection, respectively, is also
pointed out.
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1. INTRODUCTION

Introduced in the mid seventies by Lin (1974) and ex-
tensively investigated in the following thirthy years (see,
e.g., Dion et al., 2003), structured linear systems are now
attracting renewed attention and a considerable deal of
research effort, as is documented, e.g., in (Ramos et al.,
2022). A main reason for this renovated interest lies in
the effectiveness of structured linear systems in modeling
and analyzing multiagent and networked systems and in
the ubiquitous role these latter have surged to (see, e.g.,
Commault, 2020; Commault et al., 2020; Zhang et al.,
2021; Jia et al., 2022).
Structured linear systems are dynamical systems whose
state-space description is given by linear maps whose en-
tries are only known to be either zero or nonzero (un-
known) values, where zero means that there is no connec-
tion between the related variables, while nonzero means
that there is a connection, but the corresponding value is
unknown. Thus, any structured linear system is represen-
tative of a whole family of linear systems in the usual sense.
In this framework, it is of interest to investigate properties
which are true for almost any value of the parameters and,
therefore, are said to be generic or structural (Dion et al.,
2003), or even for all values of the parameters.
Structured linear systems can be easily described by di-
rected graphs. Indeed, several classic analysis and syn-
thesis problems have been investigated in the context
of structured linear systems, often by graph theoretic
methods: notably, structural controllability and structural
observability (Lin, 1974); the generic structure at infinity

and the generic number of invariant zeros (or generic finite
structure) (van der Woude, 1991); noninteracting control
(Dion and Commault, 1993) and disturbance decoupling
(Commault et al., 1997).
The literature of the eighties and nineties was mainly
focused on structured systems as a means to ascertain
properties and solve control problems by exploiting the
poor information provided only by the location of the fixed
zero entries in the system matrices. Instead, as mentioned
above, the literature of the last two decades tends to
emphasize the efficacy of structured systems and of the
associated graphs for modeling and studying the interac-
tions between a plurality of agents in complex systems and,
more generally, in systems of systems (see, e.g., Rahmani
et al., 2009; Chapman and Mesbahi, 2013; Gao et al., 2014;
Monshizadeh et al., 2015; Harrison, 2016; Chen and Ren,
2021).
Indeed, a consolidated approach to the study of networks
of dynamical agents leverages on the network topology to
derive the network properties, while the behavior of each
agent is modelled by relatively simple dynamics. In this
topological perspective, multiagent networks are formal-
ized by graphs where agents are represented by nodes and
their mutual relations by edges (see, e.g., Mesbahi and
Egerstedt, 2010). In the simplest case (see, e.g., Commault
and Kibangou, 2020), each agent is described by a single
integrator, while the direct connections between agents are
only known to be either existent or nonexistent.
For the structured linear systems considered in this work,
it is assumed that the input distribution matrix has one
and only one nonzero entry in each of its columns, while
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the output distribution matrix has one and only one
nonzero entry in each of its rows. These assumptions
restrict the class of structured linear systems considered
herein with respect to that dealt with in (Dion et al., 2003).
However, this class, also considered, e.g., in (van Waarde
et al., 2020; Trefois and Delvenne, 2015; Monshizadeh
et al., 2014), has attracted noticeable interest since it can
be effectually used to model networks of agents (Mesbahi
and Egerstedt, 2010), quantum systems (Burgarth et al.,
2013) and biological systems (Califano et al., 2018).
This work deals with stability and stabilizability in the
discrete-time case, along the same lines of (Kirkoryan and
Belabbas, 2014), of the class of structured linear systems
defined above. The formal mathematical description of
this class of discrete-time structured linear systems and
the corresponding graphs are illustrated in Section 2. In
Section 3, the main contribution, which is a necessary
and sufficient condition for each element of the family
of linear systems represented by a given discrete-time
structured linear system to be asymptotically stable, is
presented (Theorem 1). In particular, it is shown that,
under the stated condition, convergence to zero of the free
state evolution of each system of the considered family is
achieved in a finite number of steps (dead-beat behavior).
Then, the notions of essential state feedback and essential
output injection are introduced. A sufficient condition for
stabilizability by essential state feedback and by essential
output injection, respectively, is given (Theorems 2 and
3). An obstruction to stabilizability by essential state feed-
back or by essential output injection, respectively, is also
pointed out (Proposition 1). Some illustrative examples
are worked out in Section 4. The conclusions are discussed
in Section 5.

2. STRUCTURED LINEAR SYSTEMS AND GRAPHS

Structured linear systems are dynamical objects defined
(in the discrete time) by equations of the form

Σ ≡
{
x(t+ 1) = Ax(t) +B u(t),

y(t) = C x(t),
(1)

where t∈N is the discrete-time variable, x∈Rn the state,
u∈Rm the input and y ∈Rp the output. The matrices

A= [aij ]i=1,...,n
j=1,...,n

, B= [bij ] i=1,...,n
j=1,...,m

, C = [cij ] i=1,...,p
j=1,...,n

,

have entries which are either 0 or real, mutually indepen-
dent, nonzero parameters. Moreover, it is assumed herein
that B and C have one single element different from 0
in each column and, respectively, in each row. This means
that each input variable appears in only one state equation
and, likewise, each output variable coincides, except for a
possible scale factor, with one state variable.
Structured linear systems can be used to model families of
linear systems whose elements are characterized by specific
values of the parameters appearing in (1) or uncertain
systems where the parameters describe unknown relations
between variables. Consequently, the variables x, u, y
represent the state, the input and the output, respectively,
of each single system in the family or of the uncertain
system. The structured system captures the dynamical
features that are common to all the members of the family
of systems or that are independent of the variation of the
uncertain parameters.
From another point of view, structured systems can be

x1

x2

x3

x4 x5

Fig. 1. A directed graph with Gin = {x1, x2}, Gout = {x5}

used to model specific aspects of the overall dynamics of
a network of dynamical agents or of a complex system of
systems. Hence, the component xi of x gives a description
of the status of the i-th agent in the network or of the i-th
system. Agents or systems mutually influence each other
and exchange information with the external environment
through communication lines whose weights are expressed,
respectively, by the parameters in the matrices A, B, C.
The structured system captures the dynamical features of
the mutual interaction between the agents or the systems
and between them and the external environment, provided
that these mutual interactions depend on the topology of
the network and not on the values of the weights.
Structured systems can be conveniently represented by
graphs whose vertices are associated to the components of
x and whose edges are associated to the nonzero elements
of A, B, C. More precisely, given a structured linear
system Σ of the form (1), let us consider a directed graph
(G, E), without multiple edges, where G= {x1, . . . , xn} is
the set of the vertices, while the set of the edges E ⊆G×G
is defined by

E = {(xj , xi)∈G×G such that aij �=0}.
Namely, (xj , xi)∈E means that the edge with the tail in
xj and the head in xi belongs to E . Moreover, let us define
the two subsets of vertices Gin ⊆G and Gout ⊆G by

Gin = {xi1 , . . . , xim ∈G, such that xih =xi and bih �=0}
Gout = {xj1 , . . . , xjp ∈G, such that xjh =xj and chj �=0}
Hence, the triple ((G, E), Gin, Gout)), which contains the
same information of the parametric state-space represen-
tation (1), can be graphically represented by the directed
graph (G, E) in which the elements of Gin are marked by
ingoing arrows and the element of Gout are marked by
outgoing arrows (see, e.g., Fig. 1). In light of the corre-
spondence between the parametric state-space representa-
tion (1) and the graph representation ((G, E), Gin, Gout),
the notation Σ((G, E), Gin, Gout) will be used henceforth
to indicate the given structured linear system in either
form. Also, the specification of the triplet may be dropped
if it is clear from the context.
It is worth stressing that, through the graph representa-
tion, it is possible to relate dynamical properties of inter-
est to graph theoretical ones, thus gaining in simplicity
and understanding. The graph essentially captures the
dynamical properties that do not depend on the specific
values of the parameters appearing in the state space
representation. These properties are generally referred to
as structural properties .
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3. MAIN RESULTS

The one-dimensional structured system with state-space
parametric representation Σ≡{x(t+1)= ax(t) shows
that, in general, the stability of the elements of the family
of systems described by a structured system depends on
the actual values of the parameters. However, it is interest-
ing to investigate conditions under which all the elements,
or, possibly, almost all, are asymptotically stable. To state
the following result, which is a contribution in this direc-
tion, it is worth recalling that a discrete-time system Σ has
a dead-beat behavior if, starting from any initial condition,
the free state evolution reaches 0 in a finite number of time
units and this is no greater than the system’s dimension.

Theorem 1. Given a structured linear system Σ with
state-space parametric representation (1) or, equivalently,
with graph representation ((G, E), Gin, Gout), the follow-
ing properties are equivalent:

i) there are no loops in ((G, E), Gin, Gout);
ii) all the elements of the family of systems described

by (1) have a dead-beat behavior;
iii) all the elements of the family of systems described

by (1) are asymptotically stable.

Proof. i)⇒ ii) Nilpotency of A in (1) for all the values of
the parameters means that all the elements of the family
of systems described by the structured linear system Σ
have a dead-beat behavior. So, let us prove the implication
by contradiction, assuming that A is not nilpotent and
deriving that there is a loop in ((G, E), Gin, Gout). If A
is not nilpotent, then there is an element aij �=0 in An.
Since aij =

∑
h aih ahj , where, for h=1, . . . , n, aih is an

element of An−1 and ahj is an element of A, aij �=0 implies
that there exists h1 ∈{1, . . . , n} such that aih1

�=0 and
ah1j �=0. The last inequality means that there is an edge
(xj , xh1

)∈E . In turn, since aih1
=

∑
h aih ahh1

, where, for
h=1, . . . , n, aih is an element of An−2 and ahh1

is an
element of A, by the same argument previously applied,
it ensues that, for some h2 ∈{1, . . . , n}, there is an edge
(xh1

, xh2
)∈E . By iterating the same reasoning, we find

that there is a path {(xj , xh1
), . . . , (xhn−1

, xhn
)} in (G, E)

that crosses n+1 vertices. Since there are n vertices in G,
the path must be a loop. ii)⇒ iii) It is obvious. iii)⇒ i)
We show by contradiction that the presence of loops is
an obstruction to asymptotic stability. Assume that there
is a loop {(xi1 , xi2), (xi2 , xi3), . . . , (xik , xi1)} in (G, E) and
take all the nonzero entries aij of A in such a way that
aij = āij ≥α> 1. By initializing the corresponding linear
system, say Σ̄, at a point x(0) such that xi1(0)> 0 and all
the other coordinates are greater than or equal to 0, we
have that the i1-th coordinate of x(k)=Akx(0) satisfies
xi1(k)≥αkxi1(0) and all the other coordinates are greater
than or equal to 0. Then, xi1(t) diverges as t→+∞ and
Σ̄ is not asymptotically stable. �

Remark 1. It is well known that no results similar to
Theorem 1 hold for continuous-time structured systems
(Dion et al., 2003, Section 2.3). Moreover, the presence of
divergent behaviors in continuous-time structured systems
is not necessarily related to the presence of cycles in their
graph. For instance, the structured linear system

Σ ≡
{
ẋ1(t) = a12x2(t),
ẋ2(t) = 0,

has no cycles in its graph. However, the motion originat-
ing at x(0)= (a b)� with b �=0, i.e. x(t)= (a+ a12b t b)

�,
diverges for all the values of a12 �=0.

Remark 2. From Theorem 1, it ensues that the presence
of a single unstable element in the family of systems
described by a discrete-time structured linear system Σ
implies the presence of a loop in ((G, E), Gin, Gout). Hence,
the family contains an unstable element like Σ̄ considered
in the Only-if part of the proof. In the space of the
nonzero parameters of A, the point corresponding to Σ̄ has
a neighborhood of points with coordinates greater than 1,
which define unstable systems. Then, asymptotic stability
is not a generic property: unstable elements either are not
present in the family or are in infinite number.

Remark 3. To illustrate the relevance of Theorem 1, the
situation in which Σ describes the evolution of the dis-
placement from an equilibrium point of a given dynamics
is considered. In practical situations, the equilibrium point
can represent a desired behavior or a situation of consensus
among interconnected agents and the displacement from it
can be due, e.g., to noise, unknown inputs or failures. The
absence of loops in ((G, E), Gin, Gout) guarantees that,
after the disturbance has vanished, the dynamics returns
to the equilibrium in n time instants at most for any
value of the parameters. Although this requirement is quite
strong, it is often desirable (e.g., for safety or security
reasons). If it is not satisfied, the displacement from the
equilibrium point originated by a perturbation with finite
duration may diverge.

Another important property related to asymptotic stabil-
ity is feedback stabilizability. In the case of a family of
systems described by a structured linear system Σ, it is
interesting to investigate if all the elements, or almost
all of them, are stabilizable by a state feedback, which,
obviously, depends on the specific value of the parameters.
Since feedback stabilizability is implied by reachability, an
obvious remark is that almost all the systems of the family
are feedback stabilizable if Σ satisfies one of the equivalent
conditions, expressed in terms of the graph representation,
in (Dion et al., 2003, Theorem 1): i.e., if, in the terminology
of that paper, Σ is generically controllable. However, the
question is more complicated if structural reachability does
not hold. A partial result can be given herein on the basis
of Theorem 1 and the notion of essential state feedback ,
which the authors introduced for structured linear systems
in (Conte et al., 2019).

Definition 1. (Conte et al., 2019, Definition 3) Given
a structured linear system Σ, with parametric state-
space representation (1) and graph representation
((G, E), Gin, Gout), an essential state feedback is a set of
edges

F ⊆G×Gin.

The application of an essential state feedback F
to the structured linear system Σ((G, E), Gin, Gout)
gives rise to the compensated structured linear sys-
tem ΣF ((G, E \\F), Gin, Gout), where E \\F = (E ∪F) \
(E ∩F) = {(xj , xi)∈E ∪F such that (xj , xi) /∈E ∩F}.
An essential state feedback F modifies the graph represen-
tation ((G, E), Gin, Gout) of Σ either by adding to E new
edges of the form (xj , xi) with xj ∈G and xi ∈Gin or by
removing from E existing edges of the same form.
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In order to associate to F the relation u=F x, where

F = [fkj ]k=1,...,m
j=1,...,n

is an m×n matrix whose entries are real, mutually inde-
pendent parameters, let us take the parameters fkj so as
to satisfy the following conditions:

• fkj �=0 if and only if (xj , xi)∈F with xj ∈G and
xi =xik ∈Gin (i.e., xi is the k-th element of Gin);

• fkj =−aij/bik if (xj , xi)∈F ∩E with xj ∈G and
xi =xik ∈Gin (note that xi being the k-th element of
Gin implies bik �=0 and (xj , xi)∈E implies aij �=0).

Note that, as a consequence of the second condition above,
some of the nonzero parameters of F are constrained in
that they are function of the parameters in A and B.
The compensated system ΣF ((G, E \\F), Gin, Gout) is
given in parametric form by the equations

ΣF ≡
{
x(t+ 1) = (A+B F )x(t) +B u(t),

y(t) = C x(t).
(2)

Then, the following result about state feedback stabiliza-
tion, which, in particular, applies if Σ is not structurally
reachable, can be shown.

Theorem 2. The elements of the family of systems de-
scribed by the structured linear system Σ with parametric
state-space representation (1) and graph representation
((G, E), Gin, Gout) are all stabilizable by state feedback if
each cycle in the graph representation ((G, E), Gin, Gout)
crosses a vertex in Gin. Moreover, under the same hypoth-
esis, they can be compensated by a state feedback in such
a way to have a dead-beat behavior.

Proof. Let ((xi1 , xi2), . . . , (xih , xi1)) be a simple loop in
the graph representation ((G, E), Gin, Gout) and assume,
without loss of generality, that xi1 is the k-th element
xik of Gin. Then, both ai1ih ∈A and bi1k ∈B are different
from 0. By applying the essential state feedback F with
F = {(xih , xi1)}, whose associated 1×n matrix F is such
that fkih =−ai1ih/bi1k and all other elements are equal
to 0, the edge (xih , xi1) originally belonging to E does no
longer appear in E \\F . Therefore, all the simple loops
containing the edge (xih , xi1) are not present anymore
in the graph representation ((G, E \\F), Gin, Gout) of the
compensated structured linear system ΣF . By iterating
the same procedure, all the loops in ((G, E), Gin, Gout) can
be eliminated from the graph representation of the result-
ing compensated system. Hence, by virtue of Theorem 1,
all the systems of the resulting family are asymptotically
stable and, in particular, have a dead-beat behavior for all
values of the parameters. �

The notion of essential state feedback finds its dual one in
that of essential output injection, defined as follows.

Definition 2. Given a structured linear system Σ, with
parametric state-space representation (1) and graph repre-
sentation ((G, E), Gin, Gout), an essential output injection
is a set of edges

K⊆Gout ×G.

The application of an essential output injection K to the
structured linear system Σ((G, E), Gin, Gout) gives rise to
the new system ΣK((G, E \\K), Gin, Gout), where E \\K =
(E ∪K) \ (E ∩K)= {(xj , xi)∈E ∪K such that (xj , xi) /∈
E ∩K}.

Note that output injection is essentially a design tool
and cannot be physically applied to any dynamical
system. By an abuse of terms, the expression used
in Definition 2 means that Σ((G, E), Gin, Gout) and K
are combined in the design of the new abstract sys-
tem ΣK((G, E \\K), Gin, Gout). In particular, the new
system ΣK((G, E \\K), Gin, Gout) is obtained either by
adding to E new edges of the form (xj , xi) with xj ∈Gout

and xi ∈G or by removing from E existing edges of the
same form.
In order to associate to K the relation x=K y, where

K = [ki�]i=1,...,n
�=1,...,p

is an n× p matrix whose entries are real, mutually inde-
pendent parameters, let us take the parameters ki� so as
to satisfy the following conditions:

• ki� �=0 if and only if (xj , xi)∈K with xi ∈G and
xj =xi� ∈Gout (i.e., xj is the �-th element of Gout);

• ki� =−aij/c�j if (xj , xi)∈K∩E with xi ∈G and
xj =xi� ∈Gout (note that xj being the �-th element of
Gout implies c�j �=0 and (xj , xi)∈E implies aij �=0).

Like in the case of the essential state feedback, as a conse-
quence of the second condition above, some of the nonzero
parameters of K are function of those appearing in (1).
According to the conditions above, the structured lin-
ear system ΣK((G, E \\K), Gin, Gout) has the state-space
parametric form

ΣK ≡
{
z(t+ 1) = (A+K C) z(t) +B u(t),

y(t) = C z(t).
(3)

In (3), the state variable is indicated by z (instead of x as in
(1)) to remark that ΣK((G, E \\K), Gin, Gout) is obtained
by an abstract construction which does not correspond to
any physical operation on Σ((G, E), Gin, Gout).
Indeed, the construction of new structured linear systems
by means of essential output injections is related to the
synthesis of observers. In this regard, the following theo-
rem is given.

Theorem 3. The elements of the family of systems de-
scribed by the structured linear system Σ with para-
metric state-space representation (1) and graph repre-
sentation ((G, E), Gin, Gout) are all stabilizable by out-
put injection if each cycle in the graph representa-
tion ((G, E), Gin, Gout) crosses a vertex in Gout. Moreover,
under the same hypothesis, for each element of Σ there
exists an output injection such that the corresponding
element of the resulting new structured linear system has
a dead-beat behavior.

Proof. It follows from Theorem 2 by duality argu-
ments. �

Remark 4. It is important to note that, under the hypoth-
esis of Theorem 3, for each element of the family of systems
described by Σ it is possible to synthesize a dead-beat
observer, namely one whose observation error goes to 0 in
finite time.

We recall (Conte et al., 2019, Definition 1) that, given
a structured linear system Σ with graph representa-
tion ((G, E), Gin, Gout), a subset of vertices V ⊆G is
said to be invariant for Σ if (xj , xi)∈E with xj ∈V
implies xi ∈V . An invariant subset V for Σ defines a
subsystem of Σ, denoted by Σ((V, E|V ), V in, V out), where
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x1
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x2 x3

Fig. 2. Graph representation of the unobservable and un-
reachable structured linear system Σ described by (4)

E|V = {(xj , xi)∈E such that xj , xi ∈V }, V in =V ∩Gin,
V out =V ∩Gout. Also, one can consider the dynamics in-
duced by that of Σ on G \V . In particular, the smallest in-
variant subset VR ⊆G containing Gin defines the smallest
structured linear subsystem ΣR containing the reachable
subsystem of each element of the family defined by Σ.
Similarly, the largest invariant subset VO ⊆G contained in
G \Gout defines the largest structured subsystem ΣO con-
tained in the unobservable subsystem of each element of
the family defined by Σ. With these notions, the following
results, which points out an obstruction to stabilizability
can stated.

Proposition 1. Given a structured linear system Σ with
parametric state-space representation (1) and graph rep-
resentation ((G, E), Gin, Gout), there are infinitely many
elements of the family of systems described by Σ that
are not stabilizable by output injection if E|VO

contains
at least one cycle. Similarly, there are infinitely many
elements of the family of systems described by Σ that are
not stabilizable by state feedback if E|G \VR

contains at
least one cycle.

Proof. The conclusions follow from Theorem 3 and The-
orem 2, respectively. �

4. EXAMPLES

The examples of this section illustrate the effect of essen-
tial state feedbacks and of essential output injections in
relation to the stabilization of structured linear systems in
the light of Theorem 2 and Theorem 3.

4.1 Example 1

The structured linear system

Σ ≡

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

x1(t+ 1) = a13 x3(t) + b11 u1(t),
x2(t+ 1) = a21 x1(t) + a24 x4(t),
x3(t+ 1) = a32 x2(t),
x4(t+ 1) = 0,

y1(t) = c13 x3(t),

(4)

whose graph representation is shown in Fig. 2, is un-
reachable and unobservable. In particular, the state
x=(0 0 0 1)� is not reachable and the state x =
(a24 0 0 − a21) is not observable for any value of the
parameters. Moreover, due to the presence of the cycle
{(x1, x2), (x2, x3), (x3, x1)} that crosses the vertices x1,
x2, x3, not all the systems of the family described by
Σ are asymptotically stable (Theorem 1). However, since
x1 ∈Gin, all the systems of the family described by Σ
are stabilizable by state feedback (Theorem 2). Moreover,
since x3 ∈Gout, all the systems of the family described by

x1

x4

x2 x3

Fig. 3. Graph representation of the system obtained by
state feedback or by output injection from the struc-
tured system Σ described by (4)

Σ are stabilizable by output injection (Theorem 3). The
essential state feedback F = {(x3, x1)}⊆G×Gin, whose
associated matrix is F =(0 0−a13/b11 0), actually removes
the edge (x3, x1), thus eliminating the cycle that can cause
instability. The compensated system ΣF is described by

ΣF ≡

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

x1(t+ 1) = 0,
x2(t+ 1) = a21 x1(t) + a24 x4(t),
x3(t+ 1) = a32 x2(t),
x4(t+ 1) = 0,

y(t) = c13 x3(t),

and its graph is shown in Fig. 3. Similarly, the essential
output injection K= {(x3, x1)}⊆Gout ×G, whose associ-
ated matrix is K =(−a13/c13 0 0 0), also removes the
edge (x3, x1), thus eliminating the cycle which can cause
instability. The new system ΣK obtained by the output
injection is described by the same equations of ΣF , where,
consistently with (3), the state variables are denoted by
zi, with i=1, . . . , 4.

4.2 Example 2

The structured linear system

Σ ≡

⎧⎪⎨
⎪⎩

x1(t+ 1) = b11 u1(t),
x2(t+ 1) = a21 x1(t) + a23 x3(t),
x3(t+ 1) = a32 x2(t),

y1(t) = c12 x2(t),

(5)

whose graph representation is shown in Fig. 4, is unobserv-
able for any value of the parameters. Moreover, neither the
condition of Theorem 2 nor the condition of Theorem 3 are
satisfied.
In particular, the subset VO (i.e., the largest invari-
ant subset for Σ cointained in G \Gout) is given by
{x2, x3}. Moreover, Σ((VO, E|VO

), V in
O , V out

O ) contains the
cycle {(x2, x3), (x3, x2)}. Hence, by Proposition 1, there
are infinitely many elements in the family of systems de-
scribed by Σ that are not stabilizable by output injection.
Nevertheless, each element in the family of systems de-
scribed by Σ is stabilizable by state feedback and it can
be compensated in such a way to get a dead-beat behavior.
In fact, the system ΣF obtained with the application of the
essential state feedback F = {(x2, x1)}, is described by

Σ ≡

⎧
⎪⎨
⎪⎩

x1(t+ 1) = b11f12 x2(t),
x2(t+ 1) = a21 x1(t) + a23 x3(t),
x3(t+ 1) = a32 x2(t),

y1(t) = c11x1(t)

and, if f12 is taken such that f12 =−a23 a32(b11a21)
−1, the

dynamic matrix of ΣF becomes nilpotent for all values of
the parameters, since (A+B F )3 =0. This example sug-
gests that the condition of Theorem 2 can be weakened. In
particular, one can conjecture that the divergent behavior
associated to a cycle that cannot be eliminated by an
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x1 x2 x3

Fig. 4. Graph representation of the unobservable and un-
reachable structured system Σ described by (5)

essential state feedback can be counteracted by choosing,
for each value of the parameters, a suitable state feedback,
if there exists a single path from a vertex of Gin to a vertex
of the cycle and other conditions are satisfied. These are
that there is no path from any vertex of the cycle to a
vertex of any other cycle, that the path between the vertex
of Gin and the vertex of the cycle has a length equal to
that of the cycle minus 1 and that there is no path between
any of its vertices and a vertex of any other cycle.

5. CONCLUSIONS

It has been shown that stability and stabilization of
discrete-time structured linear systems can be investigated
and characterized in terms of graph representations. This
facilitates the analysis of such properties and it allows the
statement of results that hold for the elements of the family
of systems described by a given structured linear systems.
The condition for stabilizability by state feedback or by
output injection of all the elements of a family of systems
described by a linear structured system given in Theorem 2
and in Theorem 3 can be weakened, as suggested by Exam-
ple 4, by asking that each cycle in the graph representation
satisfies certain constraints. Investigations in this direction
will be the object of future work.
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