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ON GOOD APPROXIMATIONS AND BOWEN-SERIES EXPANSION

LUCA MARCHESE

Abstract. We consider the continued fraction expansion of real numbers under the action
of a non-uniform lattice in PSL(2,R) and prove metric relations between the convergents
and a natural geometric notion of good approximations.

1. Introduction

Let H := {z ∈ C : Im(z) > 0} be the upper half plane and for p/q ∈ Q let Hp/q ⊂ H be
the circle of diameter 1/q2 tangent at p/q. Set H∞ = {z ∈ H : Im(z) > 1} and consider the
family {Hp/q : p/q ∈ Q∪{∞}} of Ford circles, which are the orbit of H∞ under the projective
action of the modular group SL(2,Z), that is the group of 2 × 2 matrices with coefficients
a, b, c, d in Z (notation refers to Equation (1.3) below). Any two circles are either disjoint or
tangent, and Figure 1 shows that for any irrational α there exist infinitely many p/q ∈ Q with
α ∈ Π(Hp/q), that is |α− p/q| < (1/2)q−2, where Π(x+ iy) := x. This defines the sequence
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Figure 1. Balls G(Hk), k ∈ Z, tangent to Hp/q = G(H∞), where p/q = G · ∞.

of geometric good approximations of α as the sequence of pn/qn in Q with α ∈ Π(Bpn/qn).
The same sequence arises from the continued fraction expansion α = a0 + [a1, a2, . . . ] of α,
indeed the convergents pn/qn := a0 + [a1, . . . , an] satisfy:

(1.1) |α− p/q| < (1/2)q−2 ⇒ p/q = pn/qn for some n ≥ 1.

The first n+ 1 partial quotients a1, . . . , an+1 approximate α with error given by

(1.2)
1

2 + an+1

≤ q2
n · |α− pn/qn| ≤

1

an+1

for any n ∈ N.

Rosen continued fractions where introduced in [9], in relation to diophantine approxima-
tion for Hecke groups, proving in particular an extension of Equation (1.2), which was later
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improved by [7]. Equation (1.1) was extended to Rosen continued fraction in [5], where the
sharp constant replacing 1/2 was obtained in [10]. In this note we consider diophantine
approximation for a general non-uniform lattice Fuchsian group, in relation to the so-called
Bowen-Series expansion of real numbers ([3]). Our Main Theorem 3.1 provides an extension
of Equations (1.1) and (1.2) to this setting. This result is used in [6] to approximate the di-
mension of sets of badly approximable points by the dimension of dynamically defined regular
Cantor sets. The study of the high part of Markov and Lagrange spectra is also a natural
application, in the spirit of [11], [1] and [2]. In general, Theorem 3.1 applies to a large variety
of problems in diophantine approximations, since it translates diophantine properties into
ergodic properties of the Bowen-Series expansion.

Let SL(2,C) be the group of matrices

(1.3) G =

(
a b
c d

)
with a, b, c, d ∈ C and ad− bc = 1, where any such G acts on points z ∈ C ∪ {∞} by

(1.4) G · z :=
az + b

cz + d
.

Denote a = a(G), b = b(G), c = c(G) and d = d(G) the coefficients of G as in Equation (1.3).
The group SL(2,R) of G with coefficients a, b, c, d in R acts by isometries on H via Equa-
tion (1.4), and inherits a topology from the identification with the set of (a, b, c, d) ∈ R4 with
ad − bc = 1. A Fuchsian group is a discrete subgroup Γ < SL(2,R). Referring to [4], we
say that Γ is a lattice if it has a Dirichlet region Ω ⊂ H with finite hyperbolic area. If Ω is
not compact, then the lattice Γ is said non-uniform. In this case the intersection Ω ∩ ∂H
is a finite non-empty set, whose elements are called the vertices at infinity of Ω. A point
z ∈ R ∪ {∞} is a parabolic fixed point for Γ if there exists P ∈ Γ parabolic with P (z) = z.
Let PΓ be the set of parabolic fixed points of Γ, which is equal to the orbit under Γ of the
vertices at infinity of Ω. The set PΓ is dense in R. Two points z1 and z2 in PΓ are equivalent
if z2 = G(z1) for some G ∈ Γ. Any non-uniform lattice Γ has a finite number p ≥ 1 of
equivalence classes [z1], . . . , [zp] of parabolic fixed points, called the cusps of Γ.

Let Γ be a non-uniform lattice with p ≥ 1 cusps. Fix a list S = (A1, . . . , Ap) of elements
Ak ∈ SL(2,R) such that the points

(1.5) zk = Ak · ∞ for k = 1, . . . , p

form a complete set {z1, . . . , zp} ⊂ PΓ of inequivalent parabolic fixed points. A natural
choice for z1, . . . , zp is a maximal set of non-equivalent vertices at infinity of a fundamental
domain. Any element of PΓ has the form G · zk for some G ∈ Γ and k = 1, . . . , p. We have
horoballs

Bk := Ak
(
{z ∈ H : Im(z) > 1}

)
with k = 1, . . . , p,

each Bk being tangent to R∪{∞} at zk. We can have Ak = Id, that is zk =∞ and Bk = H∞.
Thus G(Bk) is a ball tangent to the real line at G · zk for any G ∈ Γ with G · zk 6=∞. These
balls generalize Ford circles and we measure how their diameter shrinks to zero as G varies
in Γ with the denominator

D(G · zk) :=

{
1/
√

Diam
(
G(Bk)

)
if G · zk 6=∞

0 if G · zk =∞.
2



Recall that for any T > 0 and any G ∈ SL(2,R) with c(G) 6= 0 we have

(1.6) Diam

(
G
({
z ∈ H : Im(z) > T}

))
=

1

Tc2(G)
,

where we refer to the notation of Equation (1.3). Hence

(1.7) D(G · zk) = |c(GAk)| for any G · zk ∈ PΓ.

In [8], Patterson proves that there exists a constant M = M(Γ,S) > 0 such that for any
Q > 0 big enough and any α ∈ R there exists G ∈ Γ and k ∈ {1, . . . , p} with

|α−G · zk| ≤
M

D(G · zk)Q
and 0 < D(G · zk) ≤ Q.

For Γ = SL(2,Z), S = {Id} and M = 1 Patterson’s Theorem gives the Classical Dirichlet
Theorem. In general, for any α ∈ R we obtain infinitely many G · zk ∈ PΓ with

(1.8) |α−G · zk| ≤
M

D2(G · zk)
.

The Bowen-Series expansion ([3]) provides a coding α = [W1,W2, . . . ] of a real number
α, where for r ≥ 1 we call cuspidal words the symbols Wr, which belong to a countable
alphabet W (definitions are in § 2 and § 3). Cuspidal words W ∈ W , that were introduced
in [1] and [2], label a subset of elements {GW : W ∈ W} of Γ, which generalize the role
played in the theory of classical continued fractions by the matrices(

1 a2k+1

0 1

)
and

(
1 0
a2k 1

)
with a2k, a2k+1 ∈ N∗ for any k ∈ N.

The coding is a continuous bijection Σ → R, where Σ ⊂ WN is a subshift with aperiodic
transition matrix (see [6]). For r ≥ 1 the first r symbols in the expansion of α = [W1,W2, . . . ]
define ζr = ζr(W1, . . . ,Wr) ∈ PΓ, see Equation (3.5). This extends the classical notion of
convergents pn/qn of α. The main result of this note is Theorem 3.1 in § 3. We give the
following preliminary statement (see also Remark 3.2).

Main Theorem (Theorem 3.1). Fix α = [W1,W2, . . . ] which is not an element of PΓ.
The convergents ζr = ζr(W1, . . . ,Wr) approximate α with error given by an analogue of
Equation (1.2). Moreover there exists a constant ε0 > 0 such that any G · zk ∈ PΓ satisfying
Equation (1.8) with M = ε0 belongs to the sequence (ζr)r≥1.

Acknowledgements. The author is grateful to M. Artigiani and C. Ulcigrai. The author
is also grateful to the anonymous referee for his/her helpful remarks and suggestions.

2. The Bowen-Series expansion

We follow § 3 in [6], which is itself based on § 2.4 in [1] and § 2 in [2]. The original
construction is in [3], where it is defined a Markov map, which is orbit equivalent to the
action of a given finitely generated Fuchsian group of the first kind. In our setting such
Markov map corresponds to an acceleration of the map in Equation (2.7) below. This § 2
describes the coding by cusidal words. The same description appears in [6], where it is
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followed by the study of the combinatorial and metric properties of the subshift related to
the coding. Consider the unit disc D := {z ∈ C : |z| < 1} and the map

(2.1) ϕ : H→ D ; ϕ(z) :=
z − i
z + i

.

The conjugate of SL(2,R) under ϕ is the group SU(1, 1) of F ∈ GL(2,C) with

(2.2) F =

(
α β
β α

)
with |α|2 − |β|2 = 1.

Denote α = α(F ) and β = β(F ) the coefficients of F as in Equation (2.2).

2.1. Isometric circles. Consider F ∈ SU(1, 1) and α = α(F ), β = β(F ) as in Equa-
tion (2.2). Assume β 6= 0 and let ωF := −α/β be the pole of F . The isometric circle IF of
F is the euclidean circle centered at ωF with radius ρ(F ) := |β|−1, that is

IF := {ξ ∈ C : |ξ − ωF |}.
We have F (IF ) = IF−1 , where ρ(F ) = ρ(F−1) and |ωF−1| = |ωF |. See Theorem 3.3.2 in [4].
Moreover IF ∩ D is a geodesic of D for any F ∈ SU(1, 1), by Theorem 3.3.3 in [4]. Denote
UF the disc in C with ∂UF = IF , that is the interior of IF .

2.2. Labelled ideal polygon. Let Γ ⊂ SU(1, 1) be a non-uniform lattice. According to [12],
there exist a free subgroup Γ0 < Γ with finite index [Γ0 : Γ] < +∞. See also § 2.2 of [6]. In
particular β(F ) 6= 0 for any F ∈ Γ0, referring to Equation (2.2), so that the isometric circle
IF and the disc UF introduced in § 2.1 are defined. The origin 0 ∈ D is not a fixed point of
any F ∈ Γ0 and Theorem 3.3.5 in [4] implies that the set

(2.3) Ω0 := D \
⋃
F∈Γ0

UF

is a Dirichlet region for Γ0. Recall from [4] that Ω0 is an hyperbolic polygon with an even
number 2d of sides, denoted by the letter s, and with 2d vertices, denoted by the letter ξ
(see also § 2.4 of [6]). All vertices of Ω0 belong to ∂D, because Γ0 is free. Any side s is a
complete geodesic in D and for any such s there exists an unique F ∈ Γ such that F (s) is
another side of Ω0 with F (s) 6= s. The sides s and F (s) are thus paired. See Figure 2. The
set of pairings generates Γ0, according to Theorem 3.5.4 in [4]. For a convenient labelling,

consider two finite alphabets A0 and Â0, both with d elements, and a map

ι : A0 ∪ Â0 → A0 ∪ Â0 with ι2 = Id and ι(A0) = Â0,

that is an involution of A0∪Â0 which exchanges A0 with Â0. Set A := A0∪Â0 and for any
a ∈ A, denote â := ι(a).

• Label the sides of Ω0 by the letters in A, so that for any a ∈ A the sides sa and sâ
are those which are paired by the action of Γ0.
• For any pair of sides sa and sâ as above, let Fa be the unique element of Γ0 such that

(2.4) Fa(sâ) = sa.

• For any a ∈ A we have Fâ = F−1
a , and the latter form a set of generators for Γ0.

In the following we denote ΩD := Ω0 ⊂ D the labelled ideal polygon defined above and
ΩH := ϕ−1(ΩD) ⊂ H its preimage under the map in Equation (2.1).
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sa

sb
sâ

sb̂

sc

sd sd̂

sĉ
Fd̂

Fb

ξLĉ = ξRa

ξLa = ξRb

ξLb
ξR
b̂

ξL
b̂

ξRĉ

[a]D

[b]D

[̂b]D

Figure 2. Ideal polygon labelled by A = {a, b, c, d, â, b̂, ĉ, d̂}.

2.3. The boundary map. Parametrize arcs J ⊂ ∂D by t 7→ e−it with t ∈ (x, y). Set
inf J := e−ix and sup J := e−iy. We say that J is right open if inf J ∈ J and sup J 6∈ J . Let
Γ0 < Γ be a finite index free subgroup and ΩD be an ideal polygon for Γ0 labelled by A, as
in § 2.2.

For a ∈ A let Fa be the map in Equation (2.4). Let IFa be the isometric circle of Fa and
UFa be its interior, as in § 2.1. Recall that sâ = IFa ∩ D and sa = IFâ

∩ D. Let [a]D be the
right open arc of ∂D cut by the side sa, that is

[a]D := UFâ
∩ ∂D.

Set ξLa := inf[a]D and ξRa := sup[a]D. Figure 2 shows examples of such notation. In order
to take account of the cyclic order in ∂D of the arcs [a]D, fix a0 ∈ A and define a map
o : A → Z/2dZ setting o(a0) := 0 and

(2.5) o(b) = o(a) + 1 mod 2d for a, b ∈ A with ξRa = ξLb .

We have Fa(IFa) = IFâ
for any a ∈ A, thus Fa sends the complement of [â]D to [a]D, that is

(2.6) Fa
(
∂D \ [â]D

)
= [a]D.

The Bowen-Series map is the map BS : ∂D→ ∂D defined by

(2.7) BS(ξ) := F−1
a (ξ) iff ξ ∈ [a]D.

The boundary expansion of a point ξ ∈ ∂D is the sequence (ak)k∈N of letters ak ∈ A with

(2.8) BSk(ξ) ∈ [ak]D for any k ∈ N.
By Equation (2.6), any such sequence satisfies the so-called no backtracking Condition:

(2.9) ak+1 6= âk for any k ∈ N.
A finite word (a0, . . . , an) satisfying Condition (2.9) corresponds to a factor of the map
BS : ∂D → ∂D, that is a finite concatenation F−1

an ◦ · · · ◦ F
−1
a0

arising from iterations of
BS. We call admissible word, or simply word, any finite or infinite word in the letters of A
satisfying Condition (2.9). We use the notation

Fa0,...,an := Fa0 ◦ · · · ◦ Fan ∈ Γ0.
5



Define the right open arc [a0, . . . , an]D as the set of ξ ∈ ∂D such that BSk(ξ) ∈ [ak]D for any
k = 0, . . . , n, that is

(2.10) [a0, . . . , an]D := Fa0,...,an−1 [an]D = Fa0,...,an
(
∂D \ [ân]D

)
.

Two such arcs satisfy [a0, . . . , an]D ⊂ [b0, . . . , bm]D if and only if m ≥ n and ak = bk for
any k = 0, . . . , n. It is easy to see that [a0, . . . , an]D shrinks to a point as n → ∞. See
Lemma 3.1 in [6] for a proof. A sequence (ak)k∈N satisfying Condition (2.9) corresponds to
a point ξ = [a0, a1, . . . ]D in ∂D, where we use the notation

[a0, a1, . . . ]D :=
⋂
n∈N

[a0 . . . , an]D.

Conversely, if (ak)k∈N is the boundary expansion of ξ ∈ ∂D, then ξ = [a0, a1, . . . ]D. The
Bowen-Series map BS is the shift on the space of admissible infinite words.

2.4. Cuspidal words. Consider the map o : A → Z/2dZ in Equation (2.5). The definitions
in § 2.3 easily imply Lemma 2.1 below. See Lemma 3.2 in [6] for a proof.

Lemma 2.1. Let (a0, . . . , an) be a word satisfying Condition (2.9) with n ≥ 1 and a0 = an.
The map Fa0,...,an−1 is a parabolic element of Γ0 fixing ξRa0 if and only if

(2.11) o(ak+1) = o(âk)− 1 for any k = 0, . . . , n− 1.

The map Fa0,...,an−1 is a parabolic element of Γ0 fixing ξLa0 if and only if

(2.12) o(ak+1) = o(âk) + 1 for any k = 0, . . . , n− 1.

Let W = (a0, . . . , an) be an admissible word. We say that W is a cuspidal word if it is the
initial factor of an admissible word (a0, . . . , am) with m ≥ n such that Fa0,...,am is a parabolic
element of Γ0 fixing a vertex of ΩD.

• If n ≥ 1 and Equation (2.11) is satisfied, we say that W is a right cuspidal word. In
this case we define its type by ε(W ) := R and we set ξW := ξRa0 .
• If n ≥ 1 and Equation (2.12) is satisfied, we say that W is a left cuspidal word. In

this case we define its type by ε(W ) := L and we set ξW := ξLa0 .
• If n = 0, that is W = (a0) has just one letter, the type ε(W ) is not defined. We set

by convention ξW := ξRa0 .

If W = (a0, . . . , an) is cuspidal with n ≥ 1, Lemma 2.1 implies ξ
ε(W )
ak = Fak · ξ

ε(W )
ak+1 for any

k = 0, . . . , n− 1 and it follows

(2.13) ξW = ∂[a0]D ∩ ∂[a0, a1]D ∩ · · · ∩ ∂[a0, . . . , an]D,

that is the n + 1 arcs above share ξW as common endpoint (see also § 2.4 in [2] and § 4.3
in [1]). A sequence (an)n∈N is said cuspidal if any initial factor (a0, . . . , an) with n ∈ N is a
cuspidal word, and eventually cuspidal if there exists k ∈ N such that (an+k)n∈N is a cuspidal
sequence.

2.5. The cuspidal acceleration. If W = (b0, . . . , bm) and W ′ = (a0, . . . , an) are words

with a0 6= b̂m, define the word W ∗W ′ := (b0, . . . , bm, a0, . . . , an). Let (an)n∈N be a sequence
satisfying Condition (2.9) and not eventually cuspidal.

Initial step: Set n(0) := 0. Let n(1) ∈ N be the maximal integer n(1) ≥ 1 such that
(a0, . . . , an(1)−1) is cuspidal, then set W0 := (a0, . . . , an(1)−1).

6



ξW

ΩD

s0
a0

a3

a1

a2

s1 s2

s3

e3 e2 e1 e0

|W | = |Re(e3)− Re(e0)|

∞

A−1
k B−1ΩH

Figure 3. Geometric length |W | of a right cuspidal word W = (a0, a1, a2, a3).
The arrows inside ΩD represent the action of Fa0 , Fa1 , Fa2 . The arcs s0 := sa0 ,
s1 := Fa0(sa1), s2 := Fa0,a1(sa2) and s3 := Fa0,a1,a2(sa3) share the common
vertex ξW , which is sent to ∞ under the map A−1

k B−1ϕ−1. Thus the arcs
s0, s1, s2, s3 in D are sent to parallel vertical arcs ei := ϕ−1(si) in H.

Recursive step: Fix r ≥ 1 and assume that the instants n(0) < · · · < n(r) and the
cuspidal words W0, . . . ,Wr−1 are defined. Define n(r+ 1) ≥ n(r) + 1 as the maximal
integer such that [an(r), . . . , an(r+1)−1] is cuspidal, then set

Wr := (an(r), . . . , an(r+1)−1).

The sequence of words (Wr)r∈N is called the cuspidal decomposition of (an)n∈N. We have
of course a0, a1, a2 · · · = W0 ∗W1 ∗ . . . . For any ξ = [a0, a1, . . . ]D, if (Wr)r∈N is the cuspidal
decomposition of (an)n∈N, we write

(2.14) ξ = [a0, a1, . . . ]D = [W0,W1, . . . ]D.

Remark 2.2. If Wr−1 := (an(r−1), . . . , an(r)−1) and Wr := (an(r), . . . , an(r+1)−1) are two con-
secutive cuspidal words in the cuspidal decomposition of a sequence (an)n∈N satisfying Con-
dition (2.9), then the word (an(r)−1, an(r), . . . , an(r+1)−1) can be cuspidal.

3. The main Theorem 3.1

The tools in § 2 induce a boundary expansion on R. Let Γ0 < Γ be the free subgroup and
ΩD ⊂ D be the ideal polygon in § 2.2. Recall that PΓ0 = Γ0(ΩD ∩ ∂D) by Theorem 4.2.5 in
[4]. Since Γ0 has finite index in Γ then the two groups have the same set of parabolic fixed
points, that is

(3.1) PΓ = Γ0(ΩD ∩ ∂D).

3.1. Geometric length of cuspidal words and main statement. Fix S = (A1, . . . , Ap)
as in Equation (1.5). Let ΩH := ϕ−1(ΩD) ⊂ H be the pre-image of ΩD under the map in
Equation (2.1). Any vertex ξ of ΩD corresponds to an unique vertex ζ = ϕ−1(ξ) of ΩH. For
any such vertex ζ consider B ∈ Γ and k ∈ {1, . . . , p} with

(3.2) ζ = BAk · ∞
Any side sa of ΩD corresponds to an unique side ea := ϕ−1(sa) of ΩH, where a ∈ A. If
BAk · ∞ = B′Aj · ∞, then j = k. Moreover B′ = BP , where P ∈ Γ is parabolic fixing

7



Ak ·∞, where we recall that in any Fuchsian group Γ with cusps, if G ∈ Γ satisfies G · ζ = ζ
for some ζ ∈ PΓ, then G is parabolic. Hence the map z 7→ A−1

k PAk(z) is an horizontal
translation in H. If s and s′ are geodesics in D having ξ as common endpoint, then their
pre-images in H under ϕ ◦ B ◦ Ak are parallel vertical half lines whose distance does not
depend on the choice of B in Equation (3.2). We have a well defined positive real number

∆(s, s′, ξ) :=
∣∣Re
(
A−1
k B−1ϕ−1(s)

)
− Re

(
A−1
k B−1ϕ−1(s′)

)∣∣ .
Fix a cuspidal word W = (a0, . . . , an) and the vertex ξW of ΩD associated to W in § 2.4.

For n ≥ 1 Equation (2.13) implies that the geodesics sa0 , Fa0(sa1), . . . , Fa0,...,an−1(san) all have
ξW as common endpoint. See Figure 3. Define the geometric length |W | ≥ 0 of W as

(3.3) |W | :=
{

∆
(
sa0 , Fa0,...,an−1(san), ξW

)
if n ≥ 1

0 if n = 0.

For a ∈ A set Ga = ϕ−1 ◦ Fa ◦ ϕ. Set Ga0,...,an := Ga0 ◦ · · · ◦Gan for any word (a0, . . . , an)
and GW0,...,Wr = Ga0,...,an if (a0, . . . , an) = W0 ∗ · · · ∗Wr. Define the interval

[a0, . . . , an]H := ϕ−1
(
[a0, . . . , an]D

)
= Ga0,...,an

(
∂H \ [ân]H

)
.

Set [a0, a1, . . . ]H := ϕ−1
(
[a0, a1, . . . ]D

)
, that is encode α ∈ R by the same cutting sequence

as ϕ(α) ∈ D. If (an)n∈N has cuspidal decomposition (Wr)r∈N, Equation (2.14) becomes

(3.4) α = [W0,W1, . . . ]H := [a0, a1, . . . ]H.

For r ∈ N let Wr be the r-th cuspidal word. Set ζWr := ϕ−1(ξWr). The convergents of α are

(3.5) ζr := GW0,...,Wr−1 · ζWr ; r ∈ N.

For k = 1, . . . , p let µk > 0 be such that the primitive parabolic element Pk ∈ AkΓA
−1
k

fixing ∞ acts by Pk(z) = z + µk. Set µ := max{µ1, . . . , µp}.

Theorem 3.1 (Main Theorem). For any r ∈ N with |Wr| > 0 we have

(3.6)
1

|Wr|+ 2µ
≤ D(GW0,...,Wr−1 · ζWr)

2 · |α−GW0,...,Wr−1 · ζWr | ≤
1

|Wr|
.

Moreover there exists ε0 > 0 depending only on ΩD and on S, such that for any G ∈ Γ and
k = 1, . . . , p with D(G · zk) 6= 0 the condition

D(G · zk)2 · |α−G · zk| < ε0

implies that there exists some r ∈ N such that

(3.7) G · zk = GW0,...,Wr−1 · ζWr where |Wr| > 0.

Remark 3.2. Equation (3.6) holds for any choice of S as in Equation (1.5), and this fol-
lows because geometric length and denominators satisfy a form of equivariance under the
choice of S. Equation (3.7) shows that, for any choice of the subgroup Γ0, all good enough
approximations of a given α belong to the sequence of its convergents.
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3.2. Reduced form of parabolic fixed points. Fix G · zk ∈ PΓ. Recall Equation (3.1)
and write elements of Γ0 in the generators {Ga : a ∈ A}. There exists an unique admissible
word b0, . . . , bm and a vertex ζ of ΩH which is not an endpoint of eb̂m such that

G · zk = Gb0,...,bm · ζ.

The representation above is called the reduced form of the parabolic fixed point G · zk. In
the next Lemmas 3.3 and 3.4, let (b0, . . . , bm) be a non-trivial admissible word and let ζ0 be
a vertex of ΩH which is not an endpoint of eb̂m , so that Gb0,...,bm · ζ0 is a parabolic fixed point
written in its reduced form and different from ∞.

Lemma 3.3. There exists a constant κ1 > 0, depending only on ΩH, such that∣∣ζ0 −G−1
b0,...,bm

· ∞
∣∣ ≥ κ1,

that is the vertex ζ0 and the pole of Gb0,...,bm stay at distance uniformly bounded from below.

Proof. We have Gb0,...,bm

(
R \ [b̂m]H

)
= [b0, . . . , bm]H By Equation (2.10). Since ∞ does not

belong to the interior of [b0, . . . , bm]H then the pole of Gb0,...,bm belongs to the closure of [b̂m]H.
The Lemma follows because ζ0 is a vertex of ΩH different from the endpoints of eb̂m . �

Lemma 3.4. There exists a constant κ2 > 0, depending only on ΩH and on S, such that the
following holds.

(1) If ζ1 is a vertex of ΩH different from ζ0, then

D(Gb0,...,bm · ζ0) ≥ κ2 ·D(Gb0,...,bm · ζ1).

(2) If bm+1 satisfies bm+1 6= b̂m and ζ2 is a vertex of ΩH with Gbm+1 · ζ2 6= ζ0, then

D(Gb0,...,bm · ζ0) ≥ κ2 ·D(Gb0,...,bm,bm+1 · ζ2).

Proof. We prove Part (1). Set G := Gb0,...,bm , ζ := G · ζ0, and ζ ′ := G · ζ1. If ζ ′ = ∞ then
the statement is trivially true. If D(G · ζ1) 6= 0, let ζ0 = B0Ak · ∞ and ζ1 = B1Aj · ∞ as in
Equation (3.2). Referring to Equation (1.3), let c, d be the entries of G. Let a0, c0 and a1, c1

be the entries of B0Ak and B1Aj respectively. We prove an upper bound for

D(Gb0,...,bm · ζ1)

D(Gb0,...,bm · ζ0)
=

∣∣∣∣ca1 + dc1

ca0 + dc0

∣∣∣∣ .
We cannot have c0 = c1 = 0, because ζ0 6= ζ1 and in particular ζ0, ζ1 cannot be both equal to
∞. Moreover G · ζ0, G · ζ1 are both different from∞, thus condition c = 0 implies c0, c1 6= 0.
Hence for c = 0 Part (1) follows because the ratio above equals |c1/c0|, which varies in a
finite set of values and is therefore bounded from above. If c, c0, c1 6= 0 then∣∣∣∣ca1 + dc1

ca0 + dc0

∣∣∣∣ =

∣∣∣∣c1

c0

∣∣∣∣ · ∣∣∣∣(a1/c1)− (−d/c)
(a0/c0)− (−d/c)

∣∣∣∣ =

∣∣∣∣c1

c0

∣∣∣∣ · ∣∣∣∣ζ1 − (G−1 · ∞)

ζ0 − (G−1 · ∞)

∣∣∣∣ .
In this case Part (1) follows because |c1/c0| is bounded from above, and Lemma 3.3 gives a
lower bound for the denominator of the second factor (the numerator is not bounded, but
as it increases the ratio converges to 1). If c, c0 6= 0 and c1 = 0 then Lemma 3.3 gives∣∣∣∣ca1 + dc1

ca0 + dc0

∣∣∣∣ =

∣∣∣∣a1

c0

∣∣∣∣ · ∣∣∣∣ 1

(a0/c0)− (−d/c)

∣∣∣∣ =

∣∣∣∣a1

c0

∣∣∣∣ · ∣∣∣∣ 1

ζ0 − (G−1 · ∞)

∣∣∣∣ ≤ ∣∣∣∣ a1

c0 · κ1

∣∣∣∣ ,
9



G(ΩH)
e′2

e′1

e′0

αGζWr

ΩH

e2

e1

e0

G−1αζWr |Wr| µ

e′′2 e′′1 e′′0

2T

A−1
k B−1ΩH

Figure 4. The r-th cuspidal word Wr = (a0, a1, a2) of α is the first cuspidal
word of G−1 · α, where G = GW0,...,Wr−1 . The vertex ζWr of ΩH is common to
the arcs e0 = ea0 , e1 := Ga0ea1 and e2 := Ga0a1ea2 . The arcs e′i = Gei share
the vertex GζWr . The point ζWr is sent to ∞, and the arcs e0, e1, e2 are sent
to the parallel vertical arcs e′′0, e

′′
1, e
′′
2. We have |Wr| =

∣∣Re(e′′2)− Re(e′′0)
∣∣.

and Part (1) follows observing that a1/c0 varies in a finite set of values. Finally, if c, c1 6= 0
and c0 = 0 then ∣∣∣∣ca1 + dc1

ca0 + dc0

∣∣∣∣ =

∣∣∣∣a1

a0

− (−d/c) c1

a0

∣∣∣∣ ≤ ∣∣∣∣a1

a0

∣∣∣∣+ |G−1 · ∞|
∣∣∣∣ c1

a0

∣∣∣∣ .
In this case ζ0 =∞, which is not an endpoint of [b̂m]. Thus [b̂m] is contained in the compact
interval of R delimited by the two parallel vertical segments of ΩH. Hence |G−1 · ∞| is

uniformly bounded, because the pole G−1 · ∞ belongs to the closure of [b̂m] (see proof of
Lemma 3.3). Part (1) follows in this case too, and the proof is complete. Part (2) follows
similarly, replacing ζ1 by ζ∗ := Gbm+1 · ζ2 and observing that, since Gbm+1 varies in the finite
set {Ga : a ∈ A} then also the entries of X ∈ SL(2,R) with Gbm+1 · ζ2 = X · ∞ vary in a
finite set. Moreover ζ0 6= ζ∗, and thus G · ζ0 6= G · ζ∗. �

3.3. Proof of Theorem 3.1. By a standard separation property of parabolic fixed points
(a proof is in § A in [6]), there exists a constant S0 > 0, depending only on Γ and on S, such
that for any G · zi and F · zj in PΓ with G · zi 6= F · zj we have

(3.8) |G · zi − F · zj| ≥
S0

D(G · zi)D(F · zj)
.

Let α = [a0, a1, . . . ]H = [W0,W1, . . . ]H be the expansion of α ∈ R as in Equation (3.4).

3.3.1. Proof of Equation (3.6). Fix r ∈ N with |Wr| > 0. Take k ∈ {1, . . . , p} and B ∈ Γ
as in Equation (3.2), that is ζWr = BAk · ∞. As in Figure 4, let T > 0 be such that the
horoball

BT := GW0,...,Wr−1BAk
(
{z ∈ H : Im(z) > T}

)
is tangent at GW0,...,Wr−1 · ζWr with radius ρ(BT ) = |α − GW0,...,Wr−1 · ζWr |. Equation (1.6)
and Equation (1.7) give

D(GW0,...,Wr−1 · ζWr)
2 · |α−GW0,...,Wr−1 · ζWr | = c2(GW0,...,Wr−1BAk) ·

Diam(BT )

2
=

1

2T
.
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The geodesic in H with endpoints (GW0,...,Wr−1BAk)
−1 · ∞ and (GW0,...,Wr−1BAk)

−1 · α is
tangent to {z ∈ H : Im(z) > T}. Equation (3.6) follows because Equation (3.3) gives

|Wr| ≤ 2T ≤ |Wr|+ 2µ.

3.3.2. Proof of Equation (3.7). Referring to § 3.2, let ζ0 be the vertex of ΩH and (b0, . . . , bm)
be the admissible word such that the reduced form of the parabolic fixed point G · zk is

G · zk = Gb0,...,bm · ζ0,

where ζ0 is not an endpoint of eb̂m whenever (b0, . . . , bm) is not the empty word. Assume

D(G · zk)2|α−G · zk| < ε0, where the constant ε0 > 0 will be determined later.

Step (0). Assume that (b0, . . . , bm) is the empty word, so that ζ0 = G · zk 6=∞. Consider
the extra assumption |W0| > 0 and ζ0 = ζW0 on pairs (α, ζ0), where ζW0 = ϕ−1(ξW0) and ξW0

is the vertex of ΩD associated to W0 as in § 2.4. Define ε0 > 0 by

ε0 := inf
(α,ζ0)

D(ζ0)2 · |α− ζ0|,

where the infimum is taken over all pairs (α, ζ0) not satisfying the extra assumption. With
such ε0, the statement follows whenever (b0, . . . , bm) is the empty word.

Step (1). Now assume that (b0, . . . , bm) is not the empty word. Then G · zk is an interior

point of [b0, . . . , bm]H. Let ζ1, ζ2 be the endpoints of [b̂m], which are vertices of ΩH different
from ζ0. The endpoints of [b0, . . . , bm]H are ζ ′i := Gb0,...,bm · ζi for i = 1, 2, according to
Equation (2.10). Let N ≥ −1 be maximal with an = bn for any n = 0, . . . , N , where the
last condition is empty for N = −1, and where N ≤ m. Observe that condition N ≤ m− 1
implies α 6∈ [b0, . . . , bm]H, and therefore

|α−G · zk| ≥ min
i=1,2
|ζ ′i −G · zk| = min

i=1,2
|Gb0,...,bm · ζi −Gb0,...,bm · ζ0|

≥ S0

D(Gb0,...,bm · ζ0)
· min
i=1,2

1

D(Gb0,...,bm · ζi)
≥ S0κ2

D(Gb0,...,bm · ζ0)2
,

where the third inequality follows from Part (1) of Lemma 3.4 and the second from Equa-
tion (3.8). Therefore N = m, provided that ε0 < κ2S0.

We proved [a0, . . . , am]H = [b0, . . . , bm]H. Moreover G · zk does not belong to the interior
of [a0, . . . , am, am+1]H, since the latter is a subinterval of [b0, . . . , bm]H delimited by the image
under Gb0,...,bm of two consecutive vertices of ΩH. The same argument as in the first part of
Step (1), which is left to the reader, shows that G · zk is an endpoint of [a0, . . . , am, am+1]H.

Step (2). We show that G · zk = Gb0,...,bm · ζ0 is an endpoint of [a0, . . . , am+2]H. Otherwise
G · zk doesn’t belong to the closure of [a0, . . . , am+2]H. Since α ∈ [a0, . . . , am+2]H then

|α−G · zk| ≥ |Gb0,...,bm,am+1 · ζ3 −Gb0,...,bm · ζ0|

≥ S0

D(Gb0,...,bm · ζ0)D(Gb0,...,bm,am+1 · ζ3)
≥ S0κ2

D(Gb0,...,bm · ζ0)2
,

where Gb0,...,bm,am+1 · ζ3 is the endpoint of [a0, . . . , am+2]H which is closest to G · zk and where
ζ3 is a vertex of ΩH which is not an endpoint of eâm+1

. We use Equation (3.8) and Part (2)
of Lemma 3.4. The inequality is absurd by condition ε0 < κ2S0.
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Step (3). Let r be minimal such that (a0, . . . , am) is an initial factor of W0 ∗ · · · ∗Wr−1.
If (a0, . . . , am+2) is also an initial factor of W0 ∗ · · · ∗Wr−1, then GW0,...,Wr−1 · ξWr−1 is a com-
mon endpoint of the intervals [a0, . . . , am]H, [a0, . . . , am+1]H and [a0, . . . , am+2]H, according
to Equation (2.13). Without loss of generality we have

GW0,...,Wr−1 · ξWr−1 = inf[a0, . . . , am]H = inf[a0, . . . , am+1]H = inf[a0, . . . , am+2]H.

The common endpoint is not G · zk, which belongs to the interior of [a0, . . . , am]H. Thus
Step (1) implies G · zk = sup[a0, . . . , am+1]H, which is absurd because G · zk is an endpoint
of [a0, . . . , am+2]H by Step (2). Hence W0 ∗ · · · ∗ Wr−1 is either equal to (a0, . . . , am) or
to (a0, . . . , am+1). Moreover (am+1, am+2) is a cuspidal word, because [a0, . . . , am+1]H and
[a0, . . . , am+2]H share the endpoint G · zk.
• In case W0 ∗ · · · ∗Wr−1 = (a0, . . . , am) the word (am+1, am+2) is an initial factor of Wr,

that is |Wr| > 0 and ζ0 = ζWr .

• In case W0 ∗ · · · ∗Wr−1 = (a0, . . . , am+1) the word W ′ := (am+1) ∗Wr is also cuspidal
(this is allowed by Remark 2.2). If |Wr| = 0, that is Wr = (am+2), then G · zk does not
belong to the closure of [a0, . . . , am+3]H and we get an absurd by

|α−G · zk| ≥ |Gb0,...,bm · ζ0 −Gb0,...,bm,am+1,am+2 · ζ3| ≥
S0κ2

D(Gb0,...,bm · ζ0)2
,

where ζ3 is a vertex of ΩH and Gb0,...,bm,am+1,am+2 · ζ3 is the endpoint of [a0, . . . , am+3]H which
is closest to G · zk. In the last inequality we reason as in Step (2), replacing κ2 by a
smaller constant and extending Part (2) of Lemma 3.4 one more step, in order to compare
D(Gb0,...,bm · ζ0) and D(Gb0,...,bm,am+1,am+2 · ζ3). Since W ′ is cuspidal with |W ′| > 0 we have
ζ0 = ζW ′ . But we have also ζW ′ = Gam+1 · ζWr , which implies

Gb0,...,bm · ζ0 = Ga0,...,am ·Gam+1 · ζWr = GW0,...,Wr−1 · ζWr .

In both cases Equation (3.7) follows. The proof of Theorem 3.1 is complete. �
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