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Online Fault Line Detection in Small-Sample and 
Streaming Data Environments 

 
Le Zhang, Jizhong Zhu, Fellow, IEEE, Shenglin Li, Alberto Borghetti, Fellow, IEEE, Di Zhang 

 

 Abstract—This paper focuses on medium and low voltage 
networks with neutral grounded through arc-suppression coils. 
Standard data-driven fault line detection (FLD) approaches 
assume that the training sample is sufficient, static, and reusable. 
In practical scenarios, such approaches may be infeasible due to 
the sporadic and temporary nature of single-phase-to-ground 
faults, which provide insufficient fault samples, and due to large-
scale high-speed dynamic data streams associated with 
measurements. To tackle these issues, the paper proposes a novel 
FLD scheme based on personalized federated learning (PFL) and 
incremental stochastic configuration networks (SCN) for small-
sample and streaming data environments. Concretely, the SCN, a 
concise non-iterative neural network, is exploited as the FLD 
classifier. To adapt effectively to dynamic and non-reusable 
environments, an incremental SCN is proposed that can learn 
fault features without experiencing forgetting when dealing with 
streaming data. The proposed FLD scheme based on PFL 
selectively aggregates fault features from multiple substations. 
This approach addresses the challenge of limited sample sizes 
while preserving the personalization of each local model. 
Extensive experiment results using real data show that the 
proposed method can significantly improve accuracy when 
dealing with small samples and continuously learn fault features 
in streaming data. 
 

Index Terms—Fault line detection, personalized federated 
learning, incremental stochastic configuration networks, small 
sample, streaming data. 

I. INTRODUCTION 
N general, distribution networks with voltage levels of 
35 kV and below are commonly referred to as medium 
and low voltage network. These networks play crucial role 

in power transmission and distribution, serving as dependable 
infrastructure for large-scale power supply in cities and 
industrial areas. The medium and low voltage distribution 
network systems with neutral grounding via arc-suppression 
coils, also known as resonant grounded systems, find 
preference in various contexts and regions [1]. The inductive 
current generated by the arc-suppression coils neutralizes the 
capacitive current in the event of a line-to-ground fault, 
leading to the presence of weak fault currents. This 
characteristic contributes to an enhancement in power supply 
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reliability. However, due to the reduced fault current, the 
installed relay protection devices remain inactive, leading to 
challenges in fault feature extraction and fault line detection 
(FLD) [2]. Practical industrial experiences indicate that 
prolonged operation in the presence of a line-to-ground fault 
can endanger the system. Therefore, embracing advanced 
technologies for fault feature extraction and improving FLD 
accuracy is crucial. 

Traditional FLD solutions involve identifying fault features 
based on physical knowledge. For instance, in accordance 
with Kirchhoff's current law, the zero-sequence current of the 
fault line equals the sum of the zero-sequence currents of all 
lines not affected by the fault [3]. Similarly, other steady-state 
electrical quantities, including but not limited to zero-
sequence voltage, negative-sequence current, reactive 
component, and the fifth harmonic, have served as fault 
criteria in previous studies [4-6]. Unfortunately, steady-state 
signals are weak and often mixed with noise, leading to 
unclear fault features. In light of this, researchers have turned 
their attention to transient signals for feature extraction, as 
they possess larger amplitudes compared to steady-state 
signals. Mathematical tools like Fourier transform, Wavelet 
transform, Hilbert-Huang transform, and empirical mode 
decomposition [7, 8] are employed for processing transient 
signals. However, due to the brief duration and low occurrence 
rate of transient signals, acquiring sufficient data samples for 
the transient method can be challenging and expensive. 

Recent contributions propose fault detection schemes 
employing deep neural networks (DNNs) as an effective 
approach [9]. Convolutional neural networks (CNNs), a 
classic deep structure, have been proven to adaptively extract 
line-to-ground fault features and accurately locate fault lines 
[10]. Considering the temporal correlation in fault data, 
recurrent neural networks (RNNs), known for capturing 
temporal features, are applied for fault detection and location 
using PMU data [11]. Furthermore, to mitigate issues like 
gradient explosion during training, RNN variants such as long 
short-term memory (LSTM) and gated recurrent unit (GRU) 
have gained traction in FLD [12, 13]. 

Although deep learning methods offer significant 
advantages in terms of feature self-extraction, high-
dimensional nonlinear mapping, and noise resistance, there 
remain two primary challenges that hinder their practical 
application in the industrial context: 
a) The prevalence of short-term and self-recoverable line-to-

ground faults, although accounting for the highest 
proportion, makes it impractical to amass a comprehensive 
dataset including diverse operational scenarios for effective 
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DNN model training. 
b) Measurement data from power monitoring equipment often 

takes the form of high-speed data streams characterized by 
dynamic shifts in data distribution and features [14]. 
Consequently, the need arises to dynamically adjust 
parameters to adapt to new models in real-time. 

Small-sample learning is a rapidly growing and dynamic 
research field with theoretical foundations encompassing 
transfer learning, self-supervised learning, and federated 
learning (FL) [15]. Among these, transfer learning assumes 
the existence of a source domain with sufficiently ample 
samples closely aligned with the target domain for preliminary 
learning. However, the intricate selection of an appropriate 
source domain poses a challenge [16]. Self-supervised 
learning uses sufficient unlabeled data to establish pre-trained 
models, subsequently transferring the gained fault knowledge 
to the target task [17]. However, due to the sporadic, short-
term, and self-recovery properties of most of line-to-ground 
faults, the accumulation of sufficient unlabeled data comes 
with significant time-related costs, making the establishment 
of pre-trained models often impractical. In contrast, the FL 
scheme, which augments the sample repository by fusing fault 
data from multiple substations while preserving privacy, 
emerges as a competitive alternative. For instance, in [18], FL 
is applied to exchange model parameters, facilitating joint 
training of fault diagnosis models for photovoltaic stations to 
enhance accuracy and generalization. Similarly, a fault 
diagnosis method rooted in CNN and FL is proposed in [19], 
training a high-precision global diagnostic model without the 
need to share data. Moreover, the effectiveness of FL in small-
sample learning is affirmed through applications in energy 
prediction [20] and image classification [21]. However, 
existing models often aggregate limited data to formulate a 
global model, inadvertently overemphasizing the global aspect 
while disregarding individual distinctions. Consequently, 
when fault data from each substation displays heterogeneity, a 
commonplace occurrence in FLD scenarios, these global 
parameters might not optimally suit each local model. In such 
instances, the concept of personalized federated learning 
(PFL) [22], striking a balance between the optimal global and 
local models, could be more suitable. PFL has yet to be 
explored in the context of fault diagnosis. 

To cater to the demands of the streaming data environment, 
researchers are progressively shifting their focus towards 
online learning, a methodology aimed at rapid model 
acquisition and incremental updates [23]. As an alternative to 
DNNs, randomized neural networks, characterized by a single 
hidden layer structure without backpropagation and iteration, 
progressively gain attention in fault diagnosis under extensive 
streaming data due to their effectiveness and efficiency [24]. 
Among these, the extreme learning machine (ELM) is proven 
effective in transmission line fault detection [25]. In [26] and 
[27], the online incremental learning paradigm OSELM for 
ELM is used in fault diagnosis and energy prediction with a 
non-stationary environment, successfully balancing accuracy 
and efficiency. Further enhancing this, in [28], a random 

vector functional link network (RVFLN), combined with 
Wavelet transform and Hilbert transform, is utilized for fault 
line detection in transmission systems. The incremental 
RVFLN (IRVFLN) exhibits promising prospects for online 
fault diagnosis in speed sensors within induction motor drive 
systems [29]. Additionally, a fault diagnosis method relying 
on a broad learning system (BLS) for rotors is proposed in 
[30], offering improved adaptability, swifter computation 
speed, and better classification accuracy. Notably, incremental 
learning-based BLS, referred to as IBLS, also exhibits robust 
performance in continuous fault diagnosis [31]. Despite the 
strong potential of the abovementioned online learning 
models, they all necessitate predefining the number of hidden 
nodes, widely recognized as a pivotal hyperparameter 
affecting capability. Addressing this, Wang et al. [32] 
introduced the stochastic configuration network (SCN), a 
concept that bypasses the need to pre-specify hidden node 
numbers by incrementally stacking hidden nodes in a 
supervised manner. In contrast to DNNs, SCN is composed of 
a single hidden layer, and its parameters are obtained through 
ridge regression instead of backpropagation, which 
significantly accelerates the model update, making it suitable 
for handling large-scale high-speed streaming data. Moreover, 
unlike other random neural networks, SCN adaptively adjusts 
the number of hidden nodes, avoiding the suboptimality and 
blindness of fixed presets. As a result of these advantageous 
characteristics, SCN has been selected as the FLD classifier in 
this study. Although SCN-based fault detection approaches 
have been documented in [33, 34], their incremental learning 
in the context of streaming data remains unexplored. 

To tackle the issues outlined above, this paper proposes an 
FLD method based on PFL and incremental SCN (ISCN) to 
address the scarcity of fault samples and to facilitate online 
learning in streaming data scenarios. 

The contributions of the paper are summarized as follows. 
1) In recognition of the heterogeneity in data across various 

substations, covering differences in sample size and feature 
space, a novel FLD model rooted in PFL is devised. 
Beyond the conventional weighted aggregation of FL, the 
proposed approach employs the maximum mean 
discrepancy (MMD) across high-dimensional fault feature 
spaces to guide local models in the personalized fusion of 
fault features from other substations. This improves 
accuracy in scenarios with limited data sizes. 

2) A novel FLD method based on ISCN is introduced to 
address streaming data issues. SCN, an emerging 
randomized neural network, serves as an FLD classifier 
without the need to predefine the number of hidden layer 
nodes. An incremental learning strategy is outlined for 
SCN, which detects classification performance changes 
through a sliding window. This strategy strives to 
continually and non-forgetfully learn new features, 
therefore, improving FLD accuracy in streaming data 
settings. 

The subsequent sections of this paper are organized as 
follows. Section II describes the data collection process and 



3 
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 
frames the research problem. Section III provides a brief 
review of the fundamental concepts of SCN as a precursor to 
Section IV. The latter section introduces the proposed FLD 
method based on PFL and ISCN. The experimental and 
numerical simulation results are presented in Section V. 
Finally, Section VI concludes this paper. 

II. DATA COLLECTION AND PROBLEM STATEMENT 

A. Data Collection 
To avoid the expenditure associated with installing 

dedicated data collection equipment, this paper uses the 
readily available telemetry from dispatching systems. The 
schematic diagram of the considered feeders is shown in Fig. 
1: Fig. 1(a) refers to the 35 kV side, and Fig. 1(b) pertains to 
the 10 kV side of an actual county-level system. For the 
presented analysis, the remote measurements in three feeders 
from 110 kV/35 kV substations and in three feeders from 
110 kV/10 kV substations are selected. As shown in Figure 1, 
sensors within the operational dispatching system record key 
quantities, such as three-phase bus voltages aV , bV , and cV , as 
well as three-phase currents aI , bI , cI , active power P , 
reactive power Q , and power factor cosϕ  of the feeders. 

It is assumed that these remote measurements possess a 
sufficiently high resolution to accurately characterize the fault 
features across the entire cycle. Consequently, the proposed 
procedure collects the mentioned telemetry data from the 
feeders during the fault occurrences to create the training 
sample set. The implementation of this data collection 
procedure includes the following two steps. 

Parameters:
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(a)                                             (b) 

Fig. 1. Scheme of the considered test network: (a) feeders on 
the 35 kV side; (b) feeders on the 10 kV side. 

1) Determination of the fault period. For a line-to-ground 
fault, the voltage of the grounded phase conductor 
collapses, while the voltages of the other two conductors 
tend to increase. This identifies the fault start time st . 
Conversely, when the fault is cleared, all the three-phase 
voltages return to the rated value range. This moment is 
recorded as et . The interval between these two moments, 
denoted as [ , ]s eT t t= , constitutes the fault window and 
represents the fault occurrence duration. 

2) Collection of the fault data. Telemetry information for each 
feeder during the fault window T  is collected and stored. 
Additionally, the telemetry captured during each T is 

transformed into a feature phasor, with the corresponding 
fault line as a label. This combination of feature phasors 
and fault line labels forms the training data. The feature 
phasor of the p-th substation, pX , and its corresponding 
label, pY , can be expressed as 
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where 6m l= ×  is the number of feature parameters of the 
feeder; l  is the number of feeders; n  is the number of fault 
windows; p

iy  corresponds to the fault line of i-th fault 
window. 

B. Problem Statement 
In networks characterized by resonant grounding, lines 

affected by a line-to-ground fault should be disconnected 
within 1~2 hours to restore the regular power system 
operation. Line-to-ground faults in diverse operation scenarios 
are predominantly sporadic, tend to self-recover, and are often 
influenced by geographical factors and weather conditions. 
Unfortunately, the application of the arc suppression coil 
cannot guarantee that all faults are short-term and self-
recoverable, although they account for the highest proportion. 
In the case of short-term and self-recoverable faults, useful 
data may not be effectively acquired. Consequently, this poses 
challenges in accumulating adequate data, contributing to the 
small-sample scenario for detecting non-self-recoverable 
faults. Therefore, FLD needs to be carried out assuming 
limited samples. 

 
(a)                                              (b) 

Fig. 2. Training sample data visualization: (a) for different 
substations; (b) for different fault periods. 

To clarify the advantages of PFL as pertinent of this study, 
t-SNE (t-Distributed Stochastic Neighbor Embedding) is used 
for the visual representation of the training sample set for each 
substation, as shown in Figure 2(a), as well as the sample set 
including six fault periods for the same line, illustrated in 
Figure 2(b). 

The training samples of each substation exhibit 
heterogeneity in both quantity and spatial distribution due to 
different operating conditions. The spatial distribution 
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boundaries of the substation data are indistinct, suggesting the 
presence of some shared fault features among them. To 
enhance the feature database while preserving privacy, data 
from other substations are aggregated through federated 
learning (FL). However, not all features from other substations 
are beneficial to the local model due to data heterogeneity. For 
instance, fault features in substation GC and substation DC 
differ significantly. Table I presents the Maximum Mean 
Discrepancy (MMD), a distance metric in the reproduced 
Hilbert space, between data from various substations. The 
values in Table I show that the contributions of data from 
individual substations to the local model are not equal. The 
MMD between pX  and qX  is calculated using (2). The use 
of PFL permits models to selectively learn features from other 
substations, a strategy that improves the accuracy of local 
models. 
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where pN  and qN  are the number of the p-th and q-th 

substation sample data; ( )k   is the Gaussian kernel function. 
TABLE I 

MMD BETWEEN DATA FROM DIFFERENT SUBSTATIONS 
 DC DM GC JN ML QS 

DC 0 0.73 1.08 0.78 0.86 0.77 

DM 0.73 0 0.84 0.88 0.96 0.87 

GC 1.08 1.08 0 0.37 0.52 0.35 

JN 0.78 0.88 0.37 0 0.59 0.44 

ML 0.86 0.96 0.52 0.59 0 0.58 

QS 0.77 0.87 0.35 0.44 0.58 0 

In the proposed approach, the FLD is formulated as a 
supervised classification task ( )p pf=Y X , where f  denotes 
the mapping. Figure 2(b) shows the variability in spatial data 
distribution in different periods, implying that pX  is 
susceptible to temporal changes. Consequently, the fixed 
input-output mapping f  may not perform optimally when 
confronted with streaming data. Additionally, the data from 
multiple periods exhibit partial space overlap, indicating the 
presence of shared fault features among them. For example, 
considerable overlap is observed in the fault features of T3 
and T5. This confirms the importance of historical information 
in guiding future FLD. Therefore, it is effective to integrate 
online adjustment of f  through incremental learning, 
considering historical information, as a means to sustain the 
accuracy of FLD. 

III. STOCHASTIC CONFIGURATION NETWORK 
This section is dedicated to the description of the procedure 

adopted for the construction of the SCN employed in the FLD 
procedure.  

Input 

Hidden layer 

Output

 

  



X

i 1L − L1
 

Y

 
Fig. 3. Structure of the stochastic configuration network. 

As shown in Figure 3, SCN consists of an input layer, a 
single hidden layer, and an output layer, which achieves 
universal approximation by incrementally adding hidden 
nodes. The parameters of hidden nodes are randomly assigned 
within a specific range, while the output layer parameters are 
determined by ridge regression. The training flow chart of the 
SCN is summarized in Figure 4, and the detailed explanation 
follows. 

Begin

Initialize the number of hidden 
nodes and model hyperparameters

Randomly assign hidden layer 
parameters              as candidates

Calculate the current classification 
error e

{ , }L Lbω

    
  

    

    

   

  

 
Fig. 4. Training flow chart of SCN algorithm. 

Let us represent the dataset as { , }N m N d× ×∈ ∈ X Y , 
where X  and Y  denote the input and target, respectively. 
The sample size is denoted as N ; m  and d  are the 
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dimensions of the input and target, respectively. Assume that 
the SCN model already includes L-1 hidden nodes, and its 
mapping is  

1

1 max 0
1

( ) ( )( 1, 2, , , 0)
L

L i i i i
i

f g b L L fβ ω
−

−
=

= + = =∑   X X  

where maxL  is the preset maximum number of hidden nodes, 
{ , }i ibω  are the parameters of i-th hidden nodes, iβ  is the 
output layer parameter; ( )ig   is the sigmoid activation 
function. The incremental stacking process of L-th node 
consists of the following steps. 
Step 1: Set the expected error tolerance maxe , the maximum 

allowable count of random configurations maxT , and the 
learning parameter r . Choose a set of positive scalars 

min max{ : : }λ λ λϒ = ∆  to serve as the range for the hidden 
node parameters. 

Step 2: Calculate the current classification error: 
  1 1,1 1,2 1,[ , , , ]L L L L df e e e− − − −= − = e Y  (3) 

Step 3: Randomly assign parameters { , }L Lbω  from ϒ  for a 
total of maxT  times. Screen parameters satisfying the 
following definitions as candidates: 

 

2
1

, 1, 1,

,

( ) (1 )
 1, ,

0

T
TL L

L i L L i L iT
L L

L i

e h r e e
h h i d

ξ µ

ξ

−
− −


= − − − =
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
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 where ( )L L L Lh g bω= +X , (1 ) / ( 1)L r Lµ = − + . 

Step 4: Select parameters { , }L Lbω  from the candidates that 
maximize Lξ  given by (5) as the optimal parameters for 
the L-th node. 

  ,1

d
L L ii

ξ ξ
=

= ∑  (5) 

Step 5: Calculate the optimal output weights using the least 
squares method:  

  
1

arg min ( )
L

i i i i
i

g b
β

β ω
=

= − +∑  Y Xβ  (6) 

The solution of (6) is obtained through ridge regression 
and Moore-Penrose generalized inverse: 

  
†

1 2[ , , , ] 
L

L Lh h h
=

= 

H Y
H
β  (7) 

where LH  is the output of L hidden nodes; †  indicates 
the pseudo-inverse operator, † 1( )T T

L L L Lγ −= +H I H H H , 
with I  representing the identity matrix and γ  a minimal 
constant.  

Continue iterating through steps 2 to 5 until the 
classification error maxe  reaches the preset threshold or the 
maximum number of hidden nodes is attained, indicating the 
conclusion of local model training. 

IV. PROPOSED ONLINE FAULT LINE DETECTION 
METHODOLOGY 

This section introduces the proposed online FLD method. 

Firstly, the overall framework and internal logic of the 
proposed method are described. Subsequently, a detailed 
description of the implementation process for the adopted PFL 
and incremental learning techniques is presented. 

A. The Overall Framework of the Proposed Method 
Figure 5 shows the overall framework of the proposed 

method, illustrating the flow of information throughout the 
model training process.  

In the initial stage, historical data, collected as described in 
Section II-A, are normalized and used to train multiple local 
SCN-based FLD classification models in a separate manner. 
Subsequently, the obtained hidden layer parameters of each 
model are uploaded onto the server. The global model is 
obtained through the weighted aggregation of these uploaded 
parameters. This strategy effectively addresses the challenges 
due to the heterogeneity in sample data sizes. 

To preserve privacy and address distribution heterogeneity, 
the MMD, quantifying the distribution distance within high-
dimensional feature spaces, guides the personalized update of 
local parameters. By extending beyond exclusive reliance on 
local data, this approach allows obtaining personalized local 
models that combine advantageous features through a 
weighted aggregation of both global and personalized 
parameters, effectively tackling the small-sample problem.  

Finally, when operating in a streaming data scenario, a 
sliding window mechanism is used to detect changes in the 
performance of local models. When performance deteriorates, 
the model undergoes swift and incremental updates using the 
unlearned data, thus ensuring the preservation of accuracy. 

B. Fault Line Detection Model Based on Personalized 
Federated Learning 

The second module shown in Figure 5 illustrates the 
proposed personalized learning process. Consistent with 
Section III, the sample data of the i-th substation are denoted 
as 1{ , }i iN m N di i C

i
× ×

=∈ ∈ X Y ; where iX  and iY  are the input 
and target; iN  is the number of the sample data; m  and d  are 
the dimensions of the input and target, respectively; C  is the 
number of substations. As in Section III, we consider the 
incremental stacking of the L-th hidden node. The training 
steps proceed the follows. 

1) Upload of local model parameters: the local parameters 
1{ , }i i C

L L ibω =  of the L-th hidden node, obtained by Step 1-Step 4 
described in Section III, are transferred to a central server for 
weighted aggregation. 

2) Upload of hidden layer output: the high-dimensional 
data features extracted by the hidden layer are transmitted to 
the central server. The output of the L-th hidden node is 
 ( )( 1, 2, , )i i i i i

L L L Lh g b i Cω= + = X  (8) 

where ( )i
Lg   is the sigmoid activation function. 

3) Calculation of the global model parameters: in the 
central server, the primary objective is to merge the fault 
features. Conventional FL permits the weighted aggregation of 
the uploaded local parameters to obtain global parameters 
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{ , }L Lbω∗ ∗ : 

 1 1
,    C Ci ii i

L L L Li i

N N
b b

N N
ω ω∗ ∗

= =
= =∑ ∑  (9) 

where 
1

C
ii

N N
=

= ∑  represents the total number of samples. 

4) Calculation of the personalized model parameters: the 

central server receives the high-dimensional features 
1 2[ , , , ]C

L L L Lh h h= h  from multiple substations and calculates 
the distance matrix ij

LM  between different feature spaces as: 
 ( , )( , 1, 2 , )ij i j

L L LM MMD h h i j C= =   (10) 
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Fig. 5. Framework of FLD method based on personalized federated learning and incremental stochastic configuration network.

The element ij
LM  shows a negative correlation with feature 

similarity between the corresponding substations. The goal of 
PFL is to aggregate similar parameters. Thus, on the basis of 

ij
LM , a normalized feature coefficient matrix is constructed 

as: 

 
1

( , 1, 2, , )
ij
L

ik
L

M
ij

L C M
k

eF i j C
e

−

−
=

= =
∑

  (11) 

Subsequently, ij
LF  is used to accomplish personalized 

weighted aggregation of local model parameters: 
 

1 1
,   C Ci ij j i ij j

L L L L L Lj j
F b F bω ω

= =
= =∑ ∑  (12) 

where { , }i i
L Lbω  are the personalized parameters. In order to 

coordinate personalized and global parameters, a global factor 
0 1α< <  is introduced, and the final personalized local model 
parameters are expressed as 

 
(1 )

(1 )

i i
L L L

i i
L L Lb b b

ω α ω α ω

α α

∗

∗

= + −

= + −



  (13) 

5) Distribution of personalized model parameters: the 
personalized local parameters { , }i i

L Lbω   are dispatched from 
the server to the relevant local client. Subsequently, these 
parameters replace { , }i i

L Lbω  as the L-th hidden node 
parameters, as described in Step 4 of Section III. 

6) Calculation of output layer parameters: following the 
acquisition of { , }i i

L Lbω  , the output layer parameter iβ  can be 
calculated as 

 
†

1 1

1 2

               } { }

[ , , , ],   ( )

i C i i C
i L i

i i i i i i i i i
L L L L L Lh h h h g bω

= ={ =

= = + 

H Y

H X

β
 (14) 

The above-described training process is summarized in 
Algorithm 1. 
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C. Fault Line Detection Based on Incremental Stochastic 
Configuration Networks for Streaming Data 

As illustrated in the third module of Figure 5, the 
incremental SCN-based FLD method using streaming data can 
be divided into two parts: 1) detection of classification 
accuracy changes through a sliding window; 2) update of the 
model through an incremental learning algorithm. 

 
1) Detection of the classification accuracy changes. To 

mitigate single-sample randomness, a sliding window 
approach is used to detect classification accuracy changes in 
batch increments. The classification accuracy within the 
sliding window of historical data serves as the performance 
evaluation benchmark. A scenario where the accuracy within 
the sliding window of the streaming data falls below the 
predefined minimum performance threshold indicates the 
inadequacy of the present SCN model for the window data, 
necessitating an update. 

2) Incremental model update. Similarly to prior procedures, 
the window data to be learned is denoted as 
{ , }a aN m N da a× ×∈ ∈ X Y ; where aX  and aY  are the input 
and target; aN  is the sample size; m  and d  are the dimension 
of input and target, respectively. Within this context, the i-th 
SCN with L hidden nodes incrementally learns { , }a aX Y . 

The hidden layer output of the i-th SCN under { , }a aX Y  is 
denoted as a

LH ; where 1 2[ , , , ]a a a a
L Lh h h= H , 

( )a a a i a
L L L Lh g bω= +  X . Incremental learning promotes the 

updated output layer parameters iβ  to satisfy both the 
mappings i i→X Y  and a a→X Y  simultaneously, i.e.,  

 
i i
L i
a a
L

   
≈   

     
H Y

H Y
β  (15) 

As in (7) and (14), iβ  is given by: 

 

†

†

†[ | ]

i i
Li
a a
L

i
L i T

L a a aa
L

   
=    

     

 
= − 

  

 H Y
H Y

H
H Q D Q

H

β

 (16) 

where  

 

†

† 1

†

                             0       

(1 )    =0    

           

a a
a i T

L a a a a

a T i
a L a L

T a i
a L L

−

 ≠= 
+

= −

=

A A
Q

H D D D A

A H D H

               D H H

 (17) 

By combining (15), (16), and (17), iβ  can be expressed as 

 
† †( )

     = ( )

i i i a a i i i
L a L L L

i a a i
a L

+ −

+ −

 = H Y Q Y H H H

Q Y H

β β

β β
 (18) 

The process adopted to build the proposed ISCN is 
summarized in Algorithm 2. 

V. CASE STUDY 
This section describes the comparison experiments 

conducted under small-sample and streaming data scenarios 
intended to validate the progressiveness and effectiveness of 
the proposed method. Three state-of-the-art random neural 
networks, ELM, BLS, and RVFLN, along with their 
corresponding federated learning and incremental learning 
variants, are applied as benchmarks for comparison. In 
addition, the computational efficiency of the proposed method 
is analyzed. 

A. Experimental Data and Environment 
As described in Section II-A, a sample set of fault data from 

six substations of a real county-level power grid company in 
China, spanning the years 2016 to 2019, is collected. Table II 
and Table III provide the feeder parameters and specific 
sample sizes for each substation. The sample set of each 
substation is evenly divided into two parts, assumed to 
represent historical and streaming data, respectively. All 
procedures are implemented by using Matlab 2022b, and the 
tests are conducted on a PC platform with an Intel (R) Core 
(TM) i7-11700F CPU and 16GB RAM. 

TABLE III 
FAULT SAMPLE SIZE 

 DC DM GC JN ML QS 

L1 5406 1875 2242 2839 4290 5723 
L2 2357 2184 3042 1687 3427 8526 
L3 3562 2265 1698 3421 4721 6782 

Total 11325 6324 6982 7947 12438 21031 

B. Experimental Comparison Under Small Samples 
To evaluate the effectiveness of the proposed method for 

small sample sizes, a total of nine tests are conducted for each 
substation, varying the sizes of the historical data. These tests 
compare the following approaches: 1) ELM; 2) ELM-FL: 
ELM with federated learning; 3) RVFLN; 4) RVFLN-FL: 
RVFLN with federated learning; 5) BLS; 6) BLS-FL: BLS 
with federated learning; 7) SCN; 8) SCN-FL: SCN with 
federated learning; 9) SCN-PFL (Our method): SCN with 
personalized federated learning.  

The training set includes 80% of the historical samples, 
divided equally into ten parts for model training with a small-
sample data set. The remaining 20% is designated as the test 
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set, used to evaluate the performance of the trained models. 

Figure 6 illustrates the accuracy of each model for the six 
substations and for different training data sizes. Overall, the 
proposed method shows the best FLD accuracy, indicating its 
effectiveness in small-sample environments. 

In detail, the comparative analysis shows the following 
characteristics. 

1) SCN vs. other models without FL. As shown in Figure 
6, SCN outperforms ELM, RVFLN, and BLS. Unlike other 
random networks relying on stochastic parameter 
configuration for hidden layers, SCN is constructed with a 
supervisory mechanism, which contributes to the model 
performance. Additionally, SCN dynamically increases hidden 
layer nodes, thereby enhancing optimization efficiency. 

TABLE II 
FEEDER PARAMETERS OF EACH SUBSTATION 

Substations DC JN ML DM GC QS 
Lines L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 

Level (kV) 35 10 

Length (km) 2.5 3 2.7 3.7 5.6 2.8 2.2 7.7 3.5 1.5 4 2.1 1.6 2.4 2.2 2.3 2.4 1.8 

Impedance (Ω/km) 0.072+j0.103 0.181+j0.095 

 
Fig. 6. Accuracy of each model for six different substations and different training data sizes. 

 
Fig. 7. Performance of SCN, SCN-FL, and SCN-PFL with 500 additive nodes. The loss values measure the alignment of model 
predictions with true classifications. 

2) Models without FL vs. models with FL. Figure 6 shows 
that the accuracy of models with FL is better than the accuracy 
of their counterparts without FL, since FL aggregates fault 
features from other substations, which strengthens the model 
classification and generalization capabilities. To further 
demonstrate the advantages of FL for small-sample data sets, 

Table IV presents the FLD accuracy data relevant to 
substation DM. When the sample size exceeds 80%, the 
accuracy of each model tends to stabilize, indicating that the 
sample is sufficient. In this scenario, FL-based models 
improve accuracy by up to 11%, exemplified by the 
improvement from BLS to BLS-FL when using 80% training 
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samples. In contrast, when sample data is limited, FL-based 
models improve accuracy by up to 20.3%, as shown in the 
comparison between ELM and ELM-FL using 40% training 
samples. 

3) SCN-PFL vs. SCN and SCN-FL. SCN-FL outperforms 

SCN in terms of FLD accuracy, particularly for small-sample 
data sets, which aligns with expectations. This superiority of 
the proposed method over SCN-FL can be attributed to the 
degradation of FL performance due to the heterogeneity of 
fault data, effectively addressed by the proposed PFL scheme.  

 
Fig. 8. Visualization of extracted high-dimensional hidden features. 

 
Fig. 9. Performance of SCN-PFL and ISCN-PFL using historical and streaming data. 

Figure 7 illustrates the convergence process of the three 
methods using cross entropy as a metric on the training set, 
where the cross entropy is used as the loss function. The figure 
shows that SCN achieves the fastest convergence, followed by 
SCN-PFL, while SCN-FL exhibits the slowest convergence. 
This can be explained by the incremental updates in SCN, 
which yield optimal hidden layer parameters using local fault 
data. The global parameters weighted aggregation in FL may 
not be optimal for local data, leading SCN-FL to stack more 
hidden nodes to reduce errors. Likewise, PFL aggregates other 
model parameters, causing the weighted aggregation of 
parameters to deviate from the local optimal parameter space. 
However, due to the presence of the PFL mechanism, 
personalized parameters in SCN-PFL tend to be closer to local 
optimal parameters compared to global parameters. 
Consequently, SCN-PFL requires fewer hidden nodes than 
SCN-FL to achieve optimal performance. Despite the slower 

convergence of the proposed method, it demonstrates 
improved generalization capability and accuracy on the test set 
due to the fusion of additional fault features. 

Moreover, to illustrate the effectiveness and superiority of 
the adopted PFL, t-SNE is used to show the high-dimensional 
hidden features (i.e., outputs of the hidden layer) extracted by 
the three models: SCN, SCN-FL, and SCN-PFL, as shown in 
Figure 8. The high-dimensional features extracted by SCN-FL 
and SCN-PFL are spatially similar to those extracted by SCN, 
but not entirely coincident. This is due to the incorporation of 
fault features from other substations by FL and PFL, while 
acquiring local data features, resulting in the expansion and 
shift of the feature space. Furthermore, under the data set of 
each substation, when compared with SCN-FL, the features 
extracted by SCN-PFL are spatially closer to those extracted 
by SCN. This proximity implyes that the proposed PFL 
scheme is more personalized and accurate in formulating the 
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input-output mapping for the data of each substation. 

C. Experimental Comparison for Streaming Data 
The aforementioned optimal models are adopted as base 

models for FLD using streaming data. To illustrate the 
dynamics of streaming data, Figure 9 presents the FLD 
accuracy of three scenarios:  

1) HD-SCN-PFL: accuracy of SCN-PFL using historical 
data window;  

2) SD-SCN-PFL: accuracy of SCN-PFL using streaming 
data window;  

3) SD-ISCN-PFL: accuracy of SCN-PFL with incremental 
learning for streaming data window.  

 
Fig. 10. Online FLD accuracy with incremental learning.

As discussed in Section IV-C, the minimum classification 
accuracy within the sliding window of historical data serves as 
a baseline for assessing model degradation in the streaming 
data set. Figure 9 shows that, for each substation, SD-SCN-
PFL can occasionally be lower than the minimum HD-SCN-
PFL, indicating changing streaming data and subsequent 
degradation in model performance over time, as explained in 
Section II-B. For instance, in the case of substation GC, the 
minimum HD-SCN-PFL and SD-SCN-PFL are 94.2% and 
86.1%, respectively, with a difference of 8.1%. This 
discrepancy forces incremental model updates. The 
comparison between SD-SCN-PFL and SD-ISCN-PFL shows 
that the proposed incremental learning strategy effectively 
improves FLD accuracy in the streaming data scenario. 
Indeed, the incremental nature of the proposed method 
guarantees the retention of acquired information during the 
learning process. 

TABLE IV 
ACCURACY FOR THE CASE OF SUBSTATION DM (IN %) 

Methods 
Sample size ratio (%) 

10 20 30 40 50 60 70 80 90 100 
ELM 24.1 29.5 37.6 49.9 64.5 76.8 83.2 85.6 85.1 84.9 
ELM 
-FL 35.2 40.6 56.2 70.2 79.6 87.5 92.1 93.1 92.7 91.5 

RVFLN 32.4 37.5 50.2 57.8 67.9 80.2 87.9 87.6 86.9 86.7 
RVFLN 

-FL 46.2 51.5 58.9 72.1 79.7 88.9 93.3 95.4 95.6 95.5 

BLS 34.8 35.6 51.2 60.8 68.8 79.8 82.6 83.6 87.8 88.7 
BLS 
-FL 48.8 52.8 59.6 71.6 80.6 90.6 93.7 94.6 94.9 95.1 

SCN 42.3 48.6 50.6 63.5 71.3 80.5 85.7 87.3 88.6 90.1 
SCN 
-FL 59.2 67.2 70.3 76.5 80.7 88.1 90.2 94.4 95.7 95.5 

SCN 
-PFL 69.0 72.1 77.4 81.1 84.2 92.5 94.2 97.5 97.6 97.9 

To validate the superiority of the proposed method, Figure 
10 compares FLD accuracy for each optimal model with 
incremental learning: 1) OSELM-FL; 2) IRVFLN-FL; 3) 
IBLS-FL; 4) ISCN-FL; 5) ISCN-PFL (i.e., the proposed 
method). Overall, ISCN-PFL demonstrates the highest 
performance, indicating that the proposed model outperforms 
existing state-of-the-art online learning algorithms, both using 
historical data and streaming data. 

D. Computational Efficiency 
The computational efficiency of the models is examined 

with a focus on substation DC. Table V compares the training 
time, the test time, and the online learning time for the optimal 
models. To ensure a fair and consistent comparison, the 
training process for each model is terminated when the loss 
value falls below the threshold of 0.01. The time spent to 
reach this point is then considered as the training time. 
Moreover, all models are configured with optimal parameters, 
as shown in Table VI. Unlike other models that empirically 
determine the optimal number of hidden nodes, the proposed 
method dynamically adjusts the number of hidden nodes. A 
detailed comparative assessment follows. 

TABLE V 
COMPARISON OF COMPUTATIONAL TIME 

Methods Time (s) 
Training Test Online learning 

ELM-FL 12.5 0.09 5.1 
RVFLN-FL 7.9 0.06 3.2 

BLS-FL 8.7 0.07 3.6 

SCN-FL 3.5 0.02 2.3 
SCN-PFL 10.2 0.01 1.2 

Training time. The duration of training for ELM-FL, 
RVFLN-FL, BLS-FL, and SCN-FL is directly influenced by 
the number of hidden nodes. ELM, which relies on multiple 
nodes in a single-hidden layer to improve accuracy, requires a 
longer training time. BLS-FL, which incorporates more hidden 
nodes and uses an enhancement layer for feature extraction, 
necessitates more time compared to RVFLN-FL. In contrast, 
SCN-FL, benefiting from its supervision mechanism, can 
converge with fewer hidden nodes, resulting in the shortest 
training time. When PFL replaces FL, training time increases 
significantly. This can be attributed to the increased 
complexity introduced by the calculation of the MMD 
coefficient matrix, which slows down the convergence speed. 

Test time. The testing phase solely involves forward 
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calculations and is proportionate to the number of hidden 
nodes. Since the proposed method uses the minimum number 
of hidden nodes, it exhibits the highest efficiency. 

Online learning time. Online learning time is typically 
shorter than training time for two main reasons. Firstly, rather 
than retraining the entire stream of data, only the window data 
causing performance degradation necessitates relearning. This 
improves the efficiency of online learning. Secondly, the 
proposed incremental learning approach is recursive, as shown 
by (18), and requires minimal computing resources. 
Furthermore, due to the reduced number of hidden nodes, the 
proposed method achieves high efficiency in online learning, 
thereby enabling fast updates with streaming data. 

TABLE VI 
PARAMETERS SETTING OF THE MODELS 

Methods Parameter settings 
ELM-FL Number of hidden nodes: 1000 
RVFLN-

 
Number of enhancement nodes: 500 

BLS-FL 
Number of feature node groups: 50 

Number of feature nodes in each group: 10 
Number of enhancement nodes: 300 

SCN-FL Number of hidden nodes: 350 
SCN-

 
Number of hidden nodes: 300 

VI. CONCLUSION 
This paper presents an innovative approach for online fault 

line detection in power distribution networks with resonant 
grounding. The proposed approach, which efficiently 
addresses the challenge posed by small-sample and streaming 
data scenarios, combines personalized federated learning 
(PFL) and incremental stochastic networks (ISCN).  

PFL facilitates the aggregation of fault features from 
various substations while maintaining personalization in the 
presence of heterogeneous data, effectively mitigating the 
issues associated with limited sample sizes. ISCN ensures 
continuous model updates in real-time, therefore maintaining 
accuracy even in scenarios involving high-speed dynamic data 
streaming. 

Extensive tests conducted using real data demonstrate that 
the proposed method outperforms state-of-the-art online 
learning algorithms. Given its strong performance in small-
sample and streaming data environments, the proposed 
method holds substantial promise for practical applications in 
real power systems. 
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