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Abstract. Like other components of Semantic Web-based applications, ontologies are evolving 

over time to reflect changes in the real world. Several of these applications require keeping a full-

fledged history of ontology changes so that both ontology instance versions and their 

corresponding ontology schema versions are maintained. Updates to an ontology instance could 

be non-conservative, that is leading to a new ontology instance version no longer conforming to 

the current ontology schema version. If, for some reasons, a non-conservative update has to be 

executed, in spite of its consequence, it requires the production of a new ontology schema version 

to which the new ontology instance version is conformant so that the new ontology version 

produced by the update is globally consistent. In this paper, we first propose an approach that 

supports ontology schema changes which are triggered by non-conservative updates to ontology 

instances and, thus, gives rise to an ontology schema versioning driven by instance updates. 

Notice that in an engineering perspective, such an approach can be used as an incremental 

ontology construction method driven by the modification of instance data, whose exact structure 

may not be completely known at the initial design time. After that, we apply our proposal to the 

already established τOWL (Temporal OWL 2) framework, which allows defining and evolving 

temporal OWL 2 ontologies in an environment that supports temporal versioning of both ontology 

instances and ontology schemas, by extending it to also support the management of non-

conservative updates to ontology instance versions. Last, we show the feasibility of our approach 

by dealing with its implementation within a new release of the τOWL-Manager tool. 
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1. Introduction 

1.1. Context of Work 

The Semantic Web (Berners-Lee et al., 2001; Antoniou et al., 2012) can be defined as a 

common framework that allows knowledge and data to be shared and reused by different 

users and applications via their formalization and representation as ontologies (Gruber, 1995; 

Guarino, 1998). To this purpose, ontologies are composed of a terminological component 

(intensional knowledge), representing the data schema, and an assertional component 

(extensional knowledge) representing the data instances. Large scale Semantic Web 

applications require the management of ontologies with very large instance repositories 

(Heymans et al., 2008; Kuiler, 2014; Konys, 2016), for which the adoption of database 

techniques to efficiently access data instances has been advocated (Seylan et al., 2009; Al-

Jadir et al., 2010). 

As πάντα ῥεῖ (“everything flows”, quoting Heraclitus), also Semantic Web ontologies cannot 

help but change over time and evolve (Heflin & Hendler, 2000a; Flahive et al., 2015; Zablith 

et al., 2015). Ontology evolution can be due to many reasons: changes in the domain 

(including enactment of new Laws) or in the user requirements, revision of the knowledge 

conceptualization (including error correction), or expansion of the domain representation 

(including ontology integration and merging). Several applications require keeping track of all 

the changes that have been applied to the underlying ontologies, in order to be able to recover 

past ontology versions (Klein et al., 2002; Grandi, 2009; Im et al., 2012; Taleb et al., 2014), 

to track ontology changes over time (Noy et al., 2004; Plessers et al., 2007; Khattak et al., 

2013; Lambrix et al., 2016), and to query temporal (Grandi, 2010; O'Connor & Das, 2011; 

Artale et al., 2017) or multi-version (Liu et al., 2014) ontologies. Such requirements can 

effectively be met with the adoption of the temporal ontology versioning technique, as 

proposed for instance in (Grandi, 2011) or implemented in the τOWL framework (Zekri et al., 

2016; Zekri et al., 2017), supporting the maintenance of a complete history of ontology 

instance versions with their corresponding ontology schema versions. Notice that in our work 

we define an ontology as a consistent set of two dependent components: an ontology schema 

and an ontology instance, such that the ontology instance must be always conformant to its 

ontology schema (i.e., the structure of the ontology instance is always equal to or compatible 

with the ontology schema). 

In the state-of-the-art of (temporal) ontology schema evolution and versioning (Zablith et al., 

2015), changes to an ontology schema are explicitly made by an ontology administrator 

through a graphical interface or using a textual ontology schema change language (we assume 

the ontology administrator to be a special person, the only one allowed to create, modify, and 

remove ontologies). A new ontology schema version (different from the current one) can be 
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supplied as a whole by the ontology administrator or derived by incrementally applying 

schema change operations to the current ontology schema version. A sequence of ontology 

instance update operations may also be needed to adapt ontology instances to the new 

ontology schema (ontology schema change propagation), in order to ensure the consistency of 

the new ontology version, i.e., to guarantee that all ontology instances are 

syntactically/structurally conformant to the new ontology schema version. It is worth 

mentioning that the term “consistency” means, in this paper, syntactical or structural 

conformity between an ontology schema and its ontology instance(s); it is similar to the 

notion of validity of an XML instance document to an XML schema document, in the XML 

world. 

On the other hand, when considering modifications of ontology instances, we can distinguish 

between updates that are conservative or non-conservative with respect to the ontology 

schema.  

• Conservative updates add new ontology instances or modify existing ones such that the 

resulting ontology instances still conform to the current ontology schema.  

• On the contrary, we call non-conservative updates the ones that would produce ontology 

instances non-conformant to the current ontology schema.  

1.2. Problems 

Non-conservative updates are threatening the ontology consistency (i.e., conformity of 

ontology instances w.r.t. their ontology schema) and, thus, cannot be thoroughly executed 

without being preceded by an ontology schema change. A commonly adopted approach for 

dealing with non-conservative updates consists of simply rejecting them (Heflin & Hendler, 

2000a; Flahive et al., 2015; Zablith et al., 2015). To the best of our knowledge, only 

conservative updates are allowed and supported in existing ontology evolution/versioning 

management tools, like SHOE (Heflin & Hendler, 2000b), OntView (Klein & Fensel, 2001), 

PROMPTDiff (Noy & Musen, 2002), SemVersion (Völkel & Groza, 2006), CEX (Konev et 

al., 2012), CHRONOS Ed (Preventis et al., 2014), and τOWL-Manager (Zekri et al., 2016). 

Nevertheless, in many cases, non-conservative updates have to be executed in order to fulfill 

cogent application requirements, like (i) integrating new ontology instances into an ontology 

repository although they do not correspond to the current ontology schema (e.g., in a 

collaborative environment where there are multiple actors and, thus, multiple points of view, 

or when the ontology administrator wants to reuse some old ontology instance collection or 

extend the current ontology with new instances found in online Semantic Web repositories 

(Tzitzikas et al., 2008; Merrill et al., 2014)), (ii) providing more flexibility to ontology 

administrators by allowing them to perform non-conservative updates (e.g., owing to a 

decision coming from the managers or the decision makers in the enterprise), or (iii) taking 

into account some new knowledge which corrects or expands the current one (e.g., in 
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scientific, biological and medical applications). Therefore, if a non-conservative ontology 

instance update must be executed and at the state-of-the-art there are no available tools for 

helping him/her in such a task, the ontology administrator has to intervene in an ad hoc 

manner in order to carefully construct a new ontology schema version that can consistently 

accommodate the new ontology instance resulting from the update. 

1.3. Objective and Contributions 

Hence, the novel contribution of this work is that we propose that such a task be automated 

and, thus, we consider the execution of ontology schema changes driven by ontology instance 

evolution and propose practical solutions to deal with them that can be implemented in a 

setting where very large (or big) ontology instances (i.e., those with very large sizes) can be 

managed: when a new ontology instance created by an insertion or update does not fit into the 

current ontology schema (making the current ontology inconsistent), we want an implicit 

ontology schema change is triggered to automatically adapt the ontology schema to accept the 

new instance.  

In particular, as a starting point for the management of non-conservative updates, we consider 

the τOWL framework (Zekri et al., 2016; Zekri et al., 2017), which is an environment already 

supporting both temporal ontology instance versioning and temporal ontology schema 

versioning, in an integrated manner. Hence, in this paper, we propose an approach that 

extends τOWL with implicit ontology schema versioning driven by the execution of non-

conservative ontology instance updates. In other words, in our new approach, changes at 

instance level not only produce a new ontology instance version but may also lead to the 

automatic creation of a new ontology schema version. Moreover, from an engineering point of 

view, our approach can serve as an incremental ontology construction method driven by the 

ontology instances whose exact nature and structure may not be completely known at the 

initial design time. 

1.4. Organization 

The rest of the paper is organized as follows. Section 2 presents our approach for managing 

ontology schema changes that are generated by non-conservative ontology instance updates, 

in an environment that supports ontology versioning both at schema and instance levels. 

Section 3 applies such an approach to the τOWL framework. Section 4 deals with the 

implementation of our proposal through the enhancement of the τOWL-Manager tool, 

implementing the original τOWL framework, with new modules that are necessary for 

supporting the new proposed functionalities. Section 5 discusses related work and clarifies the 

contributions of our approach and of its implementation with regard to the state of the art. 

Section 6 summarizes the paper and sketches directions for our future work. 
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2. Ontology Schema Changes Implicitly Triggered by Non-conservative 

Updates to Ontology Instances 

In this section, we motivate and introduce our approach for automated support of ontology 

schema changes which are generated by non-conservative ontology instance updates. 

In general, the main difference between the semantics of data in a database and in the 

Semantic Web is the fact that the former relies on a Closed World Assumption (CWA), 

whereas the latter is traditionally based on an Open World Assumption (OWA) (Patel-

Schneider & Horrocks, 2007). Being the CWA purposely suitable to constraining and 

validating data, the OWA is considered more appropriate to describe knowledge in an 

extensible way, assuming data to be incomplete by default. In such a way, data intentionally 

underspecified can be easily reused and extended by others for their own ontology. Although 

the OWA is the “classical” viewpoint in the ontology world, the CWA has been adopted in 

several Semantic Web applications (Etzioni et al., 1997; Heflin & Munoz-Avila, 2002) which 

require conformance of instances to a set of constraints: with the CWA, ontology definitions 

act like database schema specifications, which are rigid constraints on the values data may 

assume. The introduction of the CWA in the Semantic Web has been recently investigated 

also from a theoretical point of view, assuming the adoption of an instance repository obeying 

the CWA, called DBox in (Seylan et al., 2009); also the coexistence of OWA and CWA for 

the same ontology has been studied in (Lutz et al., 2012). The main motivation for this 

strategic move has to be sought in the convenience to resort to standard database technologies 

for efficiently querying very large instance repositories. 

Notice that our approach is strictly limited to ontologies with only a DBox, which “basically” 

behave like a database and follow the CWA, for which we can talk about an “ontology 

schema”. 

Besides, although basically sticking to the CWA, our proposed contribution is a way to add 

some kind of “openness” to the CWA approach by means of the implicit ontology versioning 

triggered by non-conservative updates. In practice, this happens in the same way that, in the 

database field, the adoption of a semistructured data model, like XML (Brahmia et al., 2014a) 

or JSON (Brahmia et al., 2017), strongly mitigates the inability to represent incomplete data 

of the relational model (where the only allowed incompleteness feature is represented by the 

controversial use of null values) by allowing the representation of flexible and extensible data 

structures. New ontology instances not conforming to the old ontology schema can be merged 

with the old ontology instances by creating a new ontology schema (from the old ontology 

schema), both compliant with the old and the new instances, by means of implicit schema 

changes automatically executed by the system (the ontology administrator must only approve 

their application) within the same transaction that adds the new instances. The use of the 

schema versioning technique (Brahmia et al., 2018; Roddick, 2018) implies that the old 
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ontology schema version with the old ontology instance is also retained and can be retrieved 

on demand (e.g., to be still used by legacy applications or for audit purposes). 

More precisely, and in a formal way, the implicit ontology schema changes are triggered by 

non-conservative updates to ontology instance documents, in the cases presented below. 

Notice that, for the description of these cases, we have used the following variables and 

functions: 

• Variables: 

- C, C′, Q, Q′: classes; 

- c, c′: an instance of the class C, C′, respectively; 

- q, q′: an instance of the class Q, Q′, respectively; 

- DPi: data property i of a class; 

- S: current ontology schema; 

- ctr: a constraint specified in S. 

• Functions: 

- value(DPi,c): it returns the value of “Dpi” in “c”; 

- type(v): it returns the data type of the value “v”; 

- violate(arg, ctr): it returns true, if the argument arg (a value “v”, or an instance “r” of 

an object property R) violates the constraint ctr, or false otherwise; 

- involve(ctr, x): it returns true, if the definition of the constraint “ctr” takes into 

account the argument “x” (i.e., a data property of a class, or an object property) in an 

explicit manner, or false otherwise; 

- ObjectProperty(C, Q): it returns the object property that links the two classes “C” 

and “Q”; 

- mandatory(x, y): it returns true, if the argument “x” (i.e., a data property, or an object 

property) has been defined as mandatory in the argument “y” (i.e., a class, or an 

ontology schema, respectively), or false otherwise. 

Case 1: a rename operation, which modifies the name of either the class of a class instance or 

the data property of a class instance, has been executed. 

Case 2: an insertion operation that adds: (i) a new instance c of a class C that has not been 

already defined in the current ontology schema “S” (Case 2.1), (ii) a new instance c 

of an already existing class C, which violates some constraint in S, (Case 2.2), (iii) an 

instance r of an object property R not belonging to S (Case 2.3), or (iv) a new 

instance r of an already existing object property R, which violates some constraint in 

S (Case 2.4). These three sub-cases are detailed as follows: 
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Case 2.1: an insertion of a new instance c of a class C not already defined in the current 

ontology schema “S” 

( c ∈ C ∧ C ∉ S ) 

Case 2.2: an insertion of a new instance c of an already existing class C, which violates some 

constraint(s) in S 

( c ∈ C ∧ C ∈ S ) ∧  

[ ( ∃ 𝑣 = value(DPi, c)  ∧  DPi ∉ C ) ∨ 

  ( ∃ 𝑣 = value(DPi, c)  ∧  DPi ∈ C ∧  type(𝑣) ≠ type(DPi) ) ∨ 

  ( ∃ 𝑣 = value(DPi, c)  ∧  DPi ∈ C ∧  ∃ ctr1 ∈ S such that violate(𝑣, ctr1)) ∨ 

  ( ∃ ctr2 ∈ S such that violate(𝑐, ctr2) ) ] 

Case 2.3: an insertion of an instance r = (c1, c2) of an object property R that does not belong 

to the current ontology schema “S” 

(c1 ∈ C1 ∧  c2 ∈ C2 ) ∧ 

( ∄ R ∈ S such that R = ObjectProperty(C1, C2) ) 

Case 2.4: an insertion of a new instance r of an already existing object property R, which 

violates some constraint in S 

( c1 ∈ C1 ∧ C1 ∈ S ∧  c2 ∈ C2 ∧ C2 ∈ S  ) ∧ 

 ( ∃ R ∈ S such that R = ObjectProperty(C1, C2)  ∧ r ∈ R ∧  

   ∃ ctr ∈ S such that violate(r, ctr) ) 

Case 3: a modification operation, which replaces: (i) an instance c of a class C with a new 

instance c′ of C (Case 3.1) or (ii) an instance r of an object property R with a new 

instance r′ (Case 3.2), while violating some constraint already defined in the current 

ontology schema “S”. The two sub-cases are detailed in the following: 

Case 3.1: a modification operation that replaces an instance c of a class C with a new instance 

c′ of C, which violates some constraint in S 

( C ∈ S ∧  DPi ∈ C ∧  ∃ 𝑛𝑒𝑤𝑉 = value(DPi, c′) such that  

[ type(𝑛𝑒𝑤𝑉) ≠ type(DPi) ∨ 

  ∃ ctr ∈ S such that involve(ctr, DPi)  ∧  violate(𝑛𝑒𝑤𝑉, ctr)  ] ) 

Case 3.2: a modification operation that replaces an instance r of an object property R with a 

new instance r′ = ( c′, q′), which violates some constraint in S 

(c′ ∈ C′ ∧ C′ ∉ S) ∨ (q′ ∈ Q′ ∧ Q′ ∉ S) ∨ 
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(c′ ∈ C′ ∧ C′ ∈ S ∧ q′ ∈ Q′ ∧ Q′ ∈ S)  ∧ 

  [ (∄ R ∈ S such that R = ObjectProperty(C′, Q′)  ∧ (R ∈ S) )  ∨ 

     (∃ R ∈ S such that R = ObjectProperty(C′, Q′)  ∧ (R ∈ S)  ∧  

       ∃ ctr ∈ S such that involve(ctr, R) ∧  violate(𝑟′, ctr) ) ] 

Case 4: a deletion operation, which removes: (i) the value 𝑣 of a data property DPi (Case 

4.1), (ii) an instance c of a class C (Case 4.2), or (iii) an instance r of an object 

property R (Case 4.3), while violating some constraint (explicitly) specified in the 

current ontology schema “S”. These three sub-cases are detailed below. 

Case 4.1: a deletion operation that removes the value of a data property from an instance c of 

a class C, which violates some constraint in S 

( c ∈ C ∧  C ∈ S ∧ DPi ∈ C ∧ ∃ 𝑣 = value(DPi, c) such that mandatory(DPi, C) ) 

Case 4.2: a deletion operation that removes an instance c of a class C, which violates some 

constraint in S 

( C ∈ S ∧  ∃ Q ∈ S ∧  ∃ R ∈ S  such that  

   R = ObjectProperty(Q, C)  ∧ mandatory(R, S) ) 

Case 4.3: a deletion operation that removes an instance r of an object property R, which 

violates some constraint in S 

( R ∈ S ∧  mandatory(R, S) ) 

To illustrate our approach, we provide in the following two examples. 

Illustrative example no. 1: it deals with the addition of a new instance “c11” of a class “C1”, 

to the current ontology instance document version “D1_V1” that is conformant to the current 

ontology schema version “S1_V1”, while “c11” has a value “v” for a data property “DPx” 

that does not belong to “C1” in “S1_V1”. This scenario is similar to the above Case 2.2. To 

satisfy this requirement, an ontology schema change must be executed before performing the 

addition operation. Indeed, first “S1_V1” must be changed through an operation that adds a 

new data property “DPx” (whose data type is deduced from the type of the value “v”) to the 

class “C1”. Since we are in a multi-schema-version environment, changing “S1_V1” 

generates two components: “S1_V2”, the new/second ontology schema version, and 

“D1_V2”, the new/second ontology instance document version that is conformant to “S1_V2” 

and that is automatically created as a copy of “D1_V1”. After that, “c11” is stored in 

“D1_V2”, as it could be added to this latter without problems. At instance level, one of the 

two following situations will occur:  

• If the new data property “DPx” has been declared, by the ontology administrator, as 

mandatory (in “C1”), the previous instances of “C1”, which have been initially inserted 
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under “S1_V1” and have “logically” migrated from “D1_V1” to “D1_V2” during the 

execution of the ontology schema change, are not conformant to “S1_V2” and therefore 

one of the two following situations will happen for each previous instance 

“prev_inst_C1” of “C1”, in order to preserve the consistency of the new ontology 

version: 

- if the ontology administrator provides a value for “DPx”, this instance 

“prev_inst_C1” will be updated and kept in “D1_V2”; 

- else, if the ontology administrator could not supply a value for “DPx”, this instance 

“prev_inst_C1” will be removed from “D1_V2”. 

• Else, if “DPx” has been specified as optional, the previous instances of “C1” are 

conformant to both “S1_V1” and “S1_V2”. 

Illustrative example no. 2: it deals with the addition of a new instance “c21” of a class “C2”, 

to the current ontology instance document version “D2_V1” which is conformant to the 

current ontology schema version “S2_V1”, while “c21” has not a value for a mandatory data 

property “DPy” that belongs to “C2” in “S2_V1”. This scenario is also similar to the above 

Case 2.2. To fulfill this requirement, an ontology schema change must be carried out before 

adding the new class instance. In fact, first “S2_V1” has to be changed via one of the 

following three operations:  

• an operation that drops, from “C2”, the axiom that defines “DPy” as a mandatory data 

property; 

• an operation that changes, in “C2”, the axiom that specifies “DPy” as a mandatory data 

property to an axiom that declares it as an optional one; 

• an operation that drops, from “C2”, the data property “DPy” (and implicitly all axioms 

that are related to it). 

This ontology schema change gives rise to two ontology components: “S2_V2”, the second 

ontology schema version, and “D2_V2”, the second ontology instance document version that 

is conforming to “S2_V2” and that is built as a copy of “D2_V1”. Thereafter, “c21” is added 

to “D2_V2”, since it could be stored in this latter without any problem. At instance level, one 

of the three following situations will occur:  

• If the axiom that defines “DPy” as a mandatory data property, has been dropped from 

“C2” or if the axiom that specifies “DPy” as a mandatory data property of “C2”, has 

been changed to declare it as an optional one, then the previous instances of “C2”, 

introduced under “S2_V1” and migrated from “D2_V1” to “D2_V2” when executing 

the ontology schema change, are conformant also to “S2_V2” (by default, a data 

property is considered as optional). 

• If the data property “DPy” has been dropped from “C2”, the previous instances of “C2”, 
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stored in “D2_V1” and copied in “D2_V2” during the accomplishment of the ontology 

schema change, are not conforming to “S2_V2” and, as a consequence, each previous 

instance “prev_inst_C2” of “C2” will be removed from “D2_V2”, in order to preserve 

the whole consistency of the new ontology version. 

As for the ontology schema change operations that are implicitly triggered by the system to 

force the execution of the non-conservative ontology instance updates, they should be 

correctly generated, based on the details of the instance update operations and on the 

environment in which these updates are performed. Indeed, we propose two methods that 

allow a multi-version ontology system to generate the sequence of ontology schema change 

operations that is necessary for applying a sequence of non-conservative updates to an 

ontology instance document version while preserving the consistency of the new ontology 

version: the interactive and the non-interactive method. (i) The interactive method is based 

on the interaction of the ontology administrator with the system, while he/she is updating 

ontology instances through a suitable graphical user interface (GUI). The necessary ontology 

schema change operations are implicitly generated by a specific module, named the “Instance 

Update Interface Manager”. Such a module continuously collects all information supplied or 

chosen by the ontology administrator on the GUI, detects any possible ontology schema 

constraint violation, and automatically produces a valid sequence of ontology schema change 

operations whose execution (and the automatic propagation of their effects to the 

corresponding ontology instances) enables a consistent execution of the ontology instance 

update(s). (ii) The non-interactive method is based on the provision, by the ontology 

administrator, of a new entire ontology instance document version that has to be integrated 

into the current ontology version. The ontology schema change operations that are necessary 

to accommodate the new instance document version in the current version of the 

corresponding ontology, are implicitly triggered by a specific module, named the “Conformity 

Checker”. This module checks the conformity of the ontology instances, stored in the 

provided ontology instance document version, with respect to the current version of the 

ontology schema. If all instances are conforming to it, they are automatically integrated. In 

case there are some instances that are not conforming to the current ontology schema version, 

the “Conformity Checker” module generates a sequence of ontology schema change 

operations whose execution (and the propagation of their effects to the corresponding 

ontology instances) permit the addition of the new ontology instance document version to the 

current ontology schema version, in a consistent manner.  

Notice that, in our present work, we consider only the first method (i.e., the interactive one), 

and apply it to the τOWL framework and to its τOWL-Manager tool, as shown in the next two 

sections, respectively. The second method will be studied in a future work. 
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3. Extension of the τOWL Framework to Support Implicit Ontology Schema 

Changes  

In this section, we first present the τOWL framework (Zekri et al., 2014; Zekri et al., 2016). 

Then, we apply our approach to τOWL by extending it to support non-conservative updates to 

ontology instances, which require the execution of implicit ontology schema changes. 

3.1. The τOWL Framework 

In this subsection, first we provide the requirements that are satisfied through the building of 

τOWL. Then, we present the architecture of this framework, in a detailed way. 

3.1.1. Requirements 

The τOWL framework fulfills the following set of requirements: 

• to make easy the management of time for ontology administrators and to allow him/her 

specifying and changing the temporal format of any OWL 2 ontology component; 

• to support valid time and transaction time, for the management of the evolution over 

time of OWL 2 ontologies; 

• to support both ontology instance versioning and ontology schema versioning, in an 

integrated manner;  

• to keep compatibility with existing OWL 2 W3C recommendations, and editors, without 

any need to modify them; 

• to support existing applications that exploit OWL 2 ontologies;  

• to guarantee logical data independence (Burns et al., 1986) for temporal OWL 2 

ontologies by isolating changes to logical annotations from those to physical ones, and 

vice versa;  

• to provide several physical representations for the same logical specification of a 

temporal OWL 2 ontology. 

3.1.2. Architecture 

τOWL allows an ontology administrator to create a temporal OWL 2 (W3C, 2012a) schema 

and manage the corresponding temporal OWL 2 instances from a conventional OWL 2 

schema, logical annotations, and physical annotations. In doing that, the τOWL approach 

separates the ontology instances (assertional component) from the ontology schema 

(terminological component) by storing them as distinct OWL 2 documents; such a separation 

is usually considered as a good ontology design practice (Bergman, 2009). To this purpose, all 

the data instances belonging to an ontology are stored together in what we call an ontology 

instance document. The ontology instance document is assumed to be an OWL 2 file in 

RDF/XML format (W3C, 2004b), which is, according to the OWL 2 specification (W3C, 
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2012b), the only syntax that must mandatorily be supported by OWL 2 tools. However, for 

future releases of the τOWL framework, it is also planned to support a different serialization 

format (e.g., JSON files or relational tables) in order to enable a more efficient processing of 

very large ontology instances. 

Figure 1 illustrates the architecture of τOWL. Rectangular boxes represent documents, 

hexagonal boxes represent tools, solid arrows denote input/output data flows, dotted arrows 

link documents to namespaces and dashed arrows stand for “references” relationships. 

Moreover, the meaning of the color and the border pattern of rectangular boxes is as follows: 

pink box with bold border for documents created/added by the ontology administrator (7, 9, 

10, 11 and 12), blue box with dotted border for documents automatically generated by the 

system (8, 13, 14, and 15), green box with dashed border for predefined documents making 

part of the framework (2, 3, 4, 5 and 6), and white box with thin border for reference 

documents released by the W3C (0 and 1). 

 

Figure 1. The overall τOWL architecture. 

In order to create a new ontology, the ontology administrator starts by creating the 

conventional ontology schema (box 7), which is an OWL 2 ontology document that models 

the concepts of a particular domain and the relations between these concepts as usual, without 

taking into account any temporal aspect. To each conventional ontology schema corresponds 

a set of conventional (i.e., non-temporal) OWL 2 instances that are stored in a conventional 

ontology instance document (box 12). Any change to the conventional ontology schema is 

propagated to its corresponding conventional ontology instances. 
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After that, the ontology administrator augments the conventional ontology schema with 

logical and physical annotations, which allow him/her to express, in an explicit way, all 

requirements dealing with the representation and the management of temporal aspects 

associated to the components of such a schema, as described in the following.  

• Logical annotations, which are inspired from those proposed in (Snodgrass et al., 2008), 

allow the ontology administrator to specify (i) whether a conventional ontology schema 

component varies over valid time and/or transaction time, (ii) whether its lifetime is 

described as a continuous state or a single event, (iii) whether the component may 

appear at certain times (and not at others), and (iv) whether its content changes. If no 

logical annotations are provided, the default logical annotation is that anything can 

change. However, once the conventional ontology schema is annotated, components 

that are not described as time-varying are static and, thus, they must have the same 

value across every conventional ontology instance document (box 12). 

• Physical annotations, which are inspired from those introduced in (Snodgrass et al., 

2008), allow the ontology administrator to specify the chosen timestamp representation 

options, such as where the timestamps are located, their kind (i.e., valid time or 

transaction time), and their representation. The location of timestamps is largely 

independent of which ontology components vary over time. Timestamps can be located 

either on time-varying components (as specified by the logical annotations) or 

somewhere above such components (i.e., on the components (grand) parents of these 

components). Two temporal OWL 2 documents with the same logical information will 

look very different if the ontology administrator changes the location of their physical 

timestamps. Changing an aspect of even one timestamp can make a big difference in the 

representation. τOWL supplies a default set of physical annotations, which is to 

timestamp the root element with valid and transaction time. However, explicitly 

defining them can lead to more compact representations (Snodgrass et al., 2008). 

In order to improve conceptual clarity and also to enable a more efficient implementation, a 

“separation of concerns” principle is adopted in τOWL: since the entities, the axioms and the 

expressions of an OWL 2 ontology evolve over time independently, the authors of τOWL 

distinguish between three separate types of annotations to be defined and to be associated to a 

conventional ontology schema: the entity annotations (box 9), the axiom annotations (box 10) 

and the expression annotations (box 11). 

Entity annotations describe the logical and physical characteristics associated to the 

components of an OWL 2 ontology: classes, relations, and properties. They indicate for 

example the temporal formats of these components, which could be valid-time, transaction-

time, bi-temporal or snapshot (by default). The schema for the logical and physical entity 

annotations is given by EntASchema (box 4). Axiom annotations and expression annotations 
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describe the logical and physical aspects of axioms and expressions defined on classes or on 

properties. The schema for the logical and physical axiom annotations is given by 

AxiASchema (box 5) and the schema for the logical and physical expression annotations is 

given by ExpASchema (box 6). 

Notice that EntASchema, AxiASchema, and ExpASchema, which all contain both logical and 

physical annotations, are XML Schemas (W3C, 2004a). The annotations associated to the 

same conventional schema can evolve independently. Any change to one of the three sets of 

annotations does not affect the two other sets. 

Finally, when the ontology administrator finishes annotating the conventional ontology 

schema and asks the system to commit his/her work, the system creates the temporal ontology 

schema (box 8) in order to provide the linking information between the conventional ontology 

schema and its corresponding logical and physical annotations. The temporal ontology 

schema is a standard XML document, which ties the conventional ontology schema, the entity 

annotations, the axiom annotations, and the expression annotations together. In the τOWL 

framework, the temporal ontology schema is the logical equivalent of the conventional OWL 

2 schema in a non-temporal context. This document contains sub-elements that associate a 

series of conventional ontology schema definitions with entity annotations, axiom 

annotations, and expression annotations, along with the time span during which the 

association was (or is) in effect. The schema for the temporal ontology schema document is 

the XML Schema Definition document TOSSchema (box 3). 

To complete the picture in the considered temporal context, after creating the temporal 

ontology schema, the system creates a temporal ontology document (box 14) in order to link 

each conventional ontology instance document (box 12), which is conformant to a 

conventional ontology schema (box 7), to its corresponding temporal ontology schema (box 

8), and more precisely to its corresponding logical and physical annotations (which are 

referenced by the temporal ontology schema). A temporal ontology document is a standard 

XML document that maintains the evolution of a non-temporal ontology instance document 

over time, by recording all of the versions (or temporal slices) of the document with their 

corresponding timestamps and by specifying the temporal ontology schema associated to 

these versions. This document contains sub-elements that associate a series of conventional 

ontology instance documents with logical and physical annotations (on entities, axioms, and 

expressions), along with the time span during which the association was (or is) in effect. 

Thus, the temporal ontology document is very important for making easy the support of 

temporal queries working on past versions or dealing with changes between versions. The 

schema for the temporal ontology document is the XML Schema Definition document 

TODSchema (box 2).  

Notice that, whereas TODSchema (box 2), TOSSchema (box 3), EntASchema (box 4), 
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AxiASchema (box 5), and ExpASchema (box 6) have been developed by us, OWL 2 (box 0) 

and XML Schema (box 1) correspond to the standards endorsed by the W3C. 

In a way similar to what happens in the τXSchema framework (Snodgrass et al., 2008) from 

which τOWL is inspired, the temporal ontology schema document (box 8) is processed by the 

temporal ontology schema validator tool in order to ensure that the logical and physical entity 

annotations, axiom annotations and expression annotations are (i) valid with respect to their 

corresponding schemas (i.e., EntASchema, AxiASchema, and ExpASchema, respectively), 

and (ii) consistent with the conventional ontology schema. The temporal ontology schema 

validator tool reports whether the temporal ontology schema document is valid or invalid. 

Once all the annotations are found to be consistent, the representational ontology schema 

generator tool generates the representational ontology schema (box 13) from the temporal 

ontology schema (i.e., from the conventional ontology schema and the logical and physical 

annotations); it is the result of transforming the conventional ontology schema according to 

the requirements expressed through the different annotations. The representational ontology 

schema becomes the schema for temporal ontology instances (box 15). These latters are 

stored in a document, called the “squashed ontology document”; they are created 

automatically from the temporal ontology document (box 14), i.e., from the conventional 

ontology instances (box 12) and the temporal ontology schema (box 8), using the temporal 

ontology instances generator tool (such an operation is called “squash” in the original 

τXSchema approach). Moreover, the temporal ontology instances are validated against the 

representational ontology schema through the temporal ontology instances validator tool, 

which reports whether the temporal ontology instances document or the squashed ontology 

document (box 15) is valid or invalid. 

Notice that the τOWL framework has been implemented within a tool, named τOWL-

Manager (Zekri et al., 2015b; Zekri et al., 2016). It is programmed in Java (JDK 1.7) within 

the IDE Eclipse Mars, using the OWL API (Horridge & Bechhofer, 2011) for creating and 

manipulating OWL 2 ontology files, and the JDOM API for creating and manipulating XML 

files. The first version of this tool, presented in (Zekri et al., 2015b), (i) allows constructing a 

temporal ontology schema, by specifying some logical and physical annotations on an 

existing valid conventional ontology schema, and (ii) supports only temporal versioning of 

temporal ontology instances. The second version of this tool, presented in the subsection 4.3 

of (Zekri et al., 2016), supports temporal versioning of the conventional ontology schema.  

3.2. Extension of τOWL to Support Implicit Ontology Versioning 

As ontology instances evolve over time to reflect the dynamics of the modelled reality, 

corresponding ontology instance documents are also being updated to put into effect such a 

dynamics. In the τOWL environment, instances updates are applied only on the current 
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version of the corresponding ontology instance document, since both instance updates and 

schema changes are managed along transaction time, which means that only the current 

instance document version can be changed by adding new instances, or by modifying or 

deleting already existing instances. 

The τOWL-Manager tool provides a GUI that allows the ontology administrator to 

interactively update ontology instances. By receiving a command from the ontology 

administrator involving the commit of the performed update operation(s), τOWL-Manager 

launches the execution of the “Ontology Instance Document Update Processor” module 

whose pseudo-code algorithm is given in Figure 2. 

Algorithm Ontology_Instance_Document_Update_Processor 

Inputs: ConvOntDoc_CV, ConvOntSch_CV, OIU_Ops, OSC_Ops, TempOntDoc,  

        TempOntSch 

Outputs: ConvOntDoc_NV, ConvOntSch_NV, SquashOntDoc_NV 

Begin 

1. CopyOntInstDoc(ConvOntDoc_CV, ConvOntDoc_NV); 

2. ExecuteOntInstanceUpdates(ConvOntDoc_NV, OIU_ops); 

3. resultComp := CompareOntInstDoc(ConvOntDoc_NV, ConvOntDoc_CV); 

4. If (resultComp) Then 

5. RemoveOntInstDoc(ConvOntDoc_NV); 

6. Display(“In reality, no instance updates have been executed on 

the current version of the conventional ontology instance 

document”); 

7. Else 

8. UpdateTemporalOntologyDoc(TempOntDoc, ConvOntDoc_NV); 

9. If (!Empty(OSC_Ops)) Then /* ConvOntDoc_NV is not  

                             conformant to ConvOntSch_CV */ 

10. CopyOntSchema(ConvOntSch_CV, ConvOntSch_NV);  

11. ExecuteOntSchemaChanges(ConvOntSch_NV, OSC_Ops);  

12. PropagateOntSchemaChangesTo(ConvOntDoc_NV); 

13. UpdateTemporalOntologySchema(TempOntSch, ConvOntSch_NV); 

14. End If 

15. GenerateSquashedOntologyDoc(SquashOntDoc_NV, TempOntSch, 

ConvOntDoc_NV); 

16. End If 

End 

Figure 2. The algorithm executed by the “Ontology Instance Document Update Processor”. 



18 

 

This pseudo-code algorithm uses the following variables, functions, and procedures. 

• Variables: 

- ConvOntDoc_CV: the current version of the conventional ontology instance 

document; 

- ConvOntDoc_NV: the new version of the conventional ontology instance document; 

- ConvOntSch_CV: the current version of the conventional ontology schema; 

- ConvOntSch_NV: the new version of the conventional ontology schema; 

- OIU_Ops:  a valid sequence of update operations to conventional ontology instances, 

which is generated by the “Instance Update Interface Manager”; 

- OSC_Ops: a valid sequence of change operations to conventional ontology schema, 

which is generated by the “Instance Update Interface Manager”; 

- SquashOntDoc_NV: the new squashed ontology document, associated to the updated 

temporal ontology document TempOntDoc; 

- TempOntDoc: the temporal ontology document that links together the conventional 

ontology instance document versions and the temporal ontology schema; 

- TempOntSch: the temporal ontology schema that links together the conventional 

ontology schema versions and the temporal ontology annotation document versions. 

• Functions: 

- CompareOntInstDoc(oid1, oid2): it compares two ontology instance documents (oid1 

and oid2) and returns true if they have the same contents, or false otherwise; 

- Empty(osc_ops): it returns true if the sequence of ontology schema change 

operations (osc_ops) passed as argument is empty, or false otherwise. 

• Procedures: 

- CopyOntInstDoc(oid_cv, oid_nv): it creates a new conventional ontology instance 

document (oid_nv) as a copy of the one passed as argument (oid_cv); 

- ExecuteInstanceUpdates(conv_oid, oiu_ops): it executes the sequence of ontology 

instance update operations (oiu_ops) on the conventional ontology instance 

document passed as argument (conv_oid); 

- RemoveOntInstDoc(conv_oid): it removes, from the disc, the conventional ontology 

instance document passed as argument (conv_oid); 

- Display(msg): it displays the message passed as argument (msg); 

- CopyOntSchema(os_cv, os_nv): it creates a new conventional ontology schema 

(os_nv) as a copy of the one passed as argument (os_cv); 

- ExecuteOntSchemaChanges(conv_os, osc_ops): it executes the sequence of ontology 

schema change operations (osc_ops) on the conventional ontology schema passed as 
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argument (conv_os); 

- UpdateTemporalOntologyDoc(tod, conv_oid): it adds, to the temporal ontology 

document passed as argument (tod), a new slice associated to a new conventional 

ontology instance document version (conv_oid); 

- PropagateOntSchemaChangesTo(conv_oid): it propagates the conventional ontology 

schema change operations executed so far to the conventional ontology instance 

document passed as argument; 

- UpdateTemporalOntologySchema(tos, conv_os): it adds, to the temporal ontology 

schema passed as argument (tos), a new slice associated to a new conventional 

ontology schema version (conv_os); 

- GenerateSquashedOntologyDoc(sod, tos, conv_oid): it creates a new squashed 

ontology document (sod) based on a new conventional ontology instance document 

version (conv_oid) and its temporal ontology schema (tos). 

In general, our approach simplifies the checking of ontology instance conformity and the 

generation of implicit ontology schema change operations, which are then performed in an 

efficient way, since the system relies on both the current ontology schema version and the full 

sequence of instance update operations (which have been executed on the current ontology 

instance document version), to detect the ontology administrator’s operations (i) which move 

inside this ontology schema version  (i.e., conservative updates to ontology instances) or (ii) 

which cross its borders (i.e., non-conservative updates to ontology instances) and 

consequently require implicit changes to be done on the current ontology schema. More 

precisely, we describe below how ontology instances are updated through the GUI of the 

τOWL-Manager tool. To this purpose, τOWL-Manager is based on two main components: the 

“Instance Update Interface Manager” and the “Ontology Instance Document Update 

Processor”. 

To add a new class instance, the ontology administrator starts by selecting the target class 

from the class hierarchy to the left of the GUI (as shown in Figure 3) and clicking on the 

contextual menu “Create instances” or by writing the class name in a suitable text field. If the 

entered name actually does not correspond to an existing class, the “Instance Update Interface 

Manager” assumes the ontology administrator wants to create a new class (i.e., it detects a 

non-conservative ontology instance update) and, after asking for confirmation, asks the 

ontology administrator where the new class should be put in the hierarchy (i.e., to indicate its 

superclass); once the superclass of the new class is provided, the “Instance Update Interface 

Manager” generates the corresponding ontology schema changes: 

AddClass(newClassName); 

AddSubClass(newClassName, superClassName); 

After that, the “Instance Update Interface Manager” shows the Data Property Assertions 
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displaying the data properties of the selected class, or the data properties that are inherited 

from the superclass in case of a new subclass, that the ontology administrator can use to fill in 

the slots in order to specify values for the existing data properties.  

Notice here that when adding a new instance of an existing class, the ontology administrator 

could also perform the following tasks: 

• to add new data properties, by clicking on the link “Add Data Property Instance(s)” and 

specifying a data property name and possibly a set of values for the new data property; 

thus, a non-conservative ontology instance update is detected and the required ontology 

schema changes is generated: 

AddDataProperty(className, newDataPropertyName); 

Confirmation is then asked to the ontology administrator whether the new data property 

has to be defined as optional and/or the number of inserted values has to be taken as a 

cardinality constraint; in the former case the following ontology schema change has to 

be added 

SetCardinality(className, newDataPropertyName, minCard, 0); 

whereas in the latter case the following ontology schema change has to be added 

SetCardinality(className, newDataPropertyName, maxCard, 

numberInsertedValues); 

• to change the data type of existing data properties (e.g., from xsd:integer to 

xsd:string), since the inserted data property values may be non compatible with the 

type currently defined for that data property; hence a new data type is derived from the 

inserted values and, after asking confirmation to the ontology administrator, the 

following ontology schema change is generated: 

ChangeDataPropertyType(className, dataPropertyName, newDataType); 

• to rename existing data properties, since data properties names, which come either from 

the selected class or from the specified superclass, are editable; hence, the “Instance 

Update Interface Manager” detects a non-conservative ontology instance update and 

generates the corresponding ontology schema change: 

RenameDataProperty(className, dataPropertyName, newName); 

• to change the minimum cardinality of existing data properties (e.g., to change the data 

property from mandatory to optional), by deleting one or more values from those 

currently defined for the data property such that the remaining values are under the 

current minimum cardinality constraint (including deleting the single value of an 

existing mandatory data property); hence, the “Instance Update Interface Manager” 

detects a non-conservative ontology instance update and builds the corresponding 

ontology schema change: 
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SetCardinality(className, dataPropertyName, minCard, 

newNumberOfValues); 

• to change the maximum cardinality of existing data properties (e.g., to change the data 

property from functional to generic), by adding one or more values to those currently 

defined for the data property such that the resulting values are over the current 

maximum cardinality constraint (including adding a second value to an existing 

functional data property); hence, the “Instance Update Interface Manager” detects a 

non-conservative ontology instance update and builds the corresponding ontology 

schema change: 

SetCardinality(className, dataPropertyName, maxCard, 

newNumberOfValues); 

• to remove some existing data properties, by clicking on the link “Remove Data Property 

Instance(s)”; consequently, in case the data property was currently defined as 

mandatory, a non-conservative ontology instance update is detected and the 

corresponding ontology schema changes are generated but confirmation is asked to the 

ontology administrator whether the data property has to be removed from the class 

definition or it has simply to be made optional: in the former case the generated 

ontology schema change is 

RemoveDataProperty(className, dataPropertyName); 

whereas in the latter case the generated ontology schema change is 

SetCardinality(className, dataPropertyName, minCard, 0); 

• to specify some instances of the object properties (i.e., relationships) of this class, by 

clicking on the button having the symbol “+” as a name and located to the right on top 

of the table reserved to Object Property Assertions, while some range values correspond 

to classes that do not exist in the current conventional ontology schema version (using 

the graphical editor, the domain of an object property instance cannot be changed since 

it corresponds to the chosen class on which the ontology administrator is working). In 

such a case, the “Instance Update Interface Manager” infers that the ontology 

administrator wants to change the range of some object property and the ontology 

administrator is interactively asked where to put the new classes in the class hierarchy; 

according to the ontology administrator’s answers, the “Instance Update Interface 

Manager” generates, for each changed range, the following required ontology schema 

changes: 

AddClass(newClassName); 

AddSubClass(newClassName, superClassName);  

ChangeRange(objectPropertyName, newClassName); 

Automatic change of cardinality constraints of object properties, triggered by non-
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conservative insertions, deletions or modifications of object property instances, is managed 

similarly to changes of cardinality constraints of data properties, explained above. 

In order to update existing class instances (with their data property instances and object 

property instances), the ontology administrator has to go to the menu “Ontology Instance 

Document” and to click on the submenu “Evolve Ontology Instances”. Hence, the “Instance 

Update Interface Manager” will let him/her choosing a conventional ontology schema (e.g., 

PersonFOAF in our example), or more precisely and implicitly the current version of this 

ontology schema, and according to the choice of the ontology administrator, the current 

version of the conventional ontology instance document, associated to the chosen 

conventional ontology schema, will be displayed. The ontology administrator could then 

update (in a broader sense) data property instances and/or object property instances of each 

class instance, either these updates are conservative or not. Everything the ontology 

administrator may choose, modify, delete or insert, that violates a constraint specified in the 

current version of the involved conventional ontology schema, the “Instance Update Interface 

Manager” assumes that he/she wants to perform a non-conservative ontology instance update 

that consequently requires an ontology schema change. Hence, the “Instance Update Interface 

Manager” uses the specifications and values provided by the ontology administrator to 

compile the required sequence of all necessary implicit ontology schema changes. Notice that 

the ontology schema changes generated during the interaction are similar to those presented 

above for the insertions of class instances. 

When the ontology administrator finishes updating conventional ontology instance(s) and 

asks τOWL-Manager to commit his/her work, the “Instance Update Interface Manager” 

receives his/her order and calls the module “Ontology Instance Document Update Processor” 

(whose pseudo-algorithm is listed in Figure 2), while passing to it four arguments: the current 

conventional ontology schema version (ConvOntSch_CV), the current conventional ontology 

instance document version (ConvOntDoc_CV) which is being “updated”, the final sequence 

of ontology instance update operations that have been made by the ontology administrator 

(OIU_Ops), and the complete sequence of generated ontology schema change operations 

(OSC_Ops); the former sequence constitute a log of the operations executed by the ontology 

administrator in the whole conventional ontology instance update session and the latter has 

been automatically generated during the interaction of the ontology administrator with 

τOWL-Manager as detailed above. Being called, the module “Ontology Instance Document 

Update Processor” executes the actions presented in the pseudo-algorithm of Figure 2. Indeed, 

it generates a copy of ConvOntDoc_CV, executes the sequence of ontology instance update 

operations (OIU_Ops) on this copy, and compares the updated copy to ConvOntDoc_CV; if, 

there is no difference between them, it removes the updated copy and informs the ontology 

administrator that actually no changes have been made. However, if the updated copy 

ConvOntDoc_NV is different from ConvOntDoc_CV, it updates the temporal ontology 
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document corresponding to ConvOntDoc_CV, to take into consideration the new ontology 

instance document version ConvOntDoc_NV, and checks the conformity of 

ConvOntDoc_NV with respect to ConvOntSch_CV, by verifying if OSC_Ops is empty or 

not. In case OSC_Ops is not empty, then the module “Ontology Instance Document Update 

Processor” applies OSC_Ops on ConvOntSch_CV and obtains the new conventional ontology 

schema version ConvOntSch_NV. If necessary, it also propagates (under the interactive 

guidance of the ontology administrator) the conventional ontology schema changes 

(OSC_Ops) to the conventional ontology instances stored in ConvOntDoc_CV, which have 

not been affected by the ontology instance updates (OIU_Ops). After that, it updates the 

corresponding temporal ontology schema to include ConvOntSch_NV, and generates the new 

squashed ontology document version corresponding to ConvOntSch_CV. 

It is worth mentioning that we have chosen to present the ontology schema change operations 

generated by the “Instance Update Interface Manager” (OSC_Ops) as high-level operations 

(Brahmia et al., 2014b), since they correspond to frequent ontology schema evolution needs 

and allow to express intuitive ontology schema changes in a compact and user-friendly way. 

However, each one of these operations can easily be mapped onto a valid sequence of 

primitive operations for changing ontology schemas, which have been proposed in previous 

works (Zekri et al., 2015a; Zekri et al., 2016; Zekri et al., 2017).  

4. Implementation  

Since the τOWL-Manager prototype tool (Zekri et al., 2015b; Zekri et al., 2016) already 

supports the τOWL approach, we have decided to show the feasibility of our proposal through 

its implementation as an extension of such a tool. This extension has consisted mainly in the 

two following tasks: 

• We have revised the “Ontology Instance Document Change Manager” module so that it 

can also manage non-conservative ontology instance updates by allowing the creation of 

a new version of the conventional ontology instance document, which is not conformant 

to the current version of the conventional ontology schema; notice that such a 

conventional ontology instance document version was automatically rejected, in the 

previous releases of τOWL-Manager. 

• We have built a new module, called “Implicit Ontology Schema Change Manager”, 

which generates, in an automatic and transparent manner, a new version of the 

conventional ontology schema and evolves its temporal ontology schema, every time 

the “Ontology Instance Document Change Manager” module calls it. 

In order to clarify the usage of the new release of the τOWL-Manager tool, we provide below 

two examples that show how this tool manages non-conservative updates to ontology instance 

documents. We assume to work on an ontology PersonFOAF, whose schema is initially a 
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copy of the well-known FOAF definition1. 

In the first example (see Figures from 3 to 11), the non-conservative update consists in a new 

instance of the class “Person” with two new instances for two data properties (i.e., “address” 

and “phone” properties), which do not belong to the current PersonFOAF ontology schema 

version. Notice that in this version, the class “Person” has only three data properties (for the 

sake of simplicity) whose names are “name”, “surname”, and “country”, and which are all 

mandatory. 

In the second example (see Figures from 12 to 16), the non-conservative update consists in 

adding a new instance of the class “Person” that does not include a value for a mandatory data 

property (i.e., “phone”). 

In the instance update session corresponding to example 1, the creation of a new instance of 

the class "Person" is started in Figure 3, and the tool is asked to add new data property 

instance(s) in Figure 4. In Figure 5, two new data property instances (address, optional with 

the value “24, Avenue of the Revolution, 1000 Tunis”, and phone, mandatory with the value 

“1122334455”) are being prepared to be added to the new Person instance. Adding the two 

new data property instances (of address and phone) to the new Person instance is then shown: 

in Figure 6 the ontology administrator asks the tool to add these two new instances, and in 

Figure 7 the two new property instances are shown at the end of the list of property instances 

of the new Person instance. In Figure 8, the tool is asked to save the new Person instance and 

informs the ontology administrator that a new conventional ontology schema version will be 

added to the τOWL repository and asks him/her to continue (i.e., saving the new Person 

instance while adding a new ontology schema version) or to cancel the work. There is also an 

option to view this new ontology schema version. Figures from 9 to 11 show the creation of 

the new conventional ontology instance document version (OD_PersonFOAF_V2.rdf) and the 

new conventional ontology schema version (PersonFOAFSchema_V2.owl), while updating 

the temporal ontology document and the temporal ontology schema. In particular, in Figure 9, 

the tool provides this information, in Figure 10 it informs the ontology administrator that 

he/she has defined the phone property as mandatory and asks him/her supplying values for 

this property in old instances if he/she wants that they also conform to the new ontology 

schema version (the ontology administrator has not supplied any value), and in Figure 11 the 

tool displays the code of the new ontology instance document version and the code of the new 

ontology schema version. 

 
1 http://xmlns.com/foaf/spec/ 
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Figure 3. Step 1 of the ontology instance update process session of example 1. The ontology 

administrator starts the addition of a new instance of the class “Person” with the following 

data property values: "name"="Ahmad", "surname"="Layla", and "country"="Tunisia". 



26 

 

 

Figure 4. Step 2 of the ontology instance update process session of example 1. The ontology 

administrator requests the addition of new data property instance(s), for the new “Person” 

instance, and the tool informs him/her that he/she will add new data properties that do not 

belong to the definition of the class “Person”, in the current ontology schema version. 
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Figure 5. Step 3 of the ontology instance update process session of example 1. The ontology 

administrator specifies, for the same “Person” instance, the name, the value, and the 

cardinality constraint of each new data property (“address”, and “phone”), and asks the 

tool to save such a new instance. 
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Figure 6. Step 4 of the ontology instance update process session of example 1. The tool informs the 

ontology administrator that the new data property instances will be added at the end of the 

data property assertion list associated to the new instance of the class “Person”. 



29 

 

 

Figure 7. Step 5 of the ontology instance update process session of example 1. The tool displays all 

data property instances that have been previously specified by the ontology administrator for 

the new instance of the class “Person”. 
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Figure 8. Step 6 of the ontology instance update process session of example 1. The tool informs the 

ontology administrator that a new version of the conventional ontology schema 

PersonFOAF will be created (as a result of the specification of a non-conservative insertion 

operation of a “Person” instance) and provides the full sequence of the ontology schema 

change operations that will be executed to produce this new schema version (by adding, to 

the class “Person”, the two new data properties “address” and “phone”). 
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Figure 9. Step 7 of the ontology instance update process session of example 1. The tool informs the 

ontology administrator that (i) both a new conventional ontology instance document version 

(that stores the new “Person” instance) and a new conventional ontology schema version, 

corresponding to this instance document version, have been created, (ii) the temporal 

ontology document has been updated to include the new slice corresponding to the new 

conventional ontology instance document version, and (iii) the temporal ontology schema 

has been updated to take into account the new conventional ontology schema version. 
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Figure 10. Step 8 of the ontology instance update process session of example 1. The tool informs the 

ontology administrator that the data property “phone” of the class “Person” is mandatory, 

and asks him/her to provide values for this data property in instances of the class “Person”, 

which have been defined according to the previous version of the conventional ontology 

schema (i.e., without the two data properties “address” and “phone”), if he/she would like 

that these old “Person” instances also conform to the new conventional ontology schema 

version. Notice that the ontology administrator has chosen not to supply values for these 

instances. 
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Figure 11. Step 9 of the ontology instance update process session of example 1. The tool displays the 

code of the new conventional ontology instance document version and the code of the new 

conventional ontology schema version. 

In the instance update session corresponding to example 2, Figure 12 shows the class 

expression “DataMinCardinality” (with cardinality = 1) specified on the data property 

“phone” of the class “Person”, in the second conventional ontology schema version 

“PersonFOAFSchema_V2.owl”. In Figure 13, while creating a new instance of the class 

“Person”, without a value for the data property “phone”, and asking the tool to save the new 

Person instance, the tool informs the ontology administrator that the data property “phone” 

should do not have a null value, since a class expression “DataMinCardinality” has been 

defined on the class Person in the current conventional ontology schema version, and asks 

him/her to continue or to cancel the work. In Figure 14, the tool informs the ontology 

administrator that a new version of the conventional ontology schema PersonFOAF, which 

changes the class expression “DataMinCardinality” previously defined on the data property 

“phone” of the class “Person” from 1 to 0, will be generated and added to the τOWL 

repository, and asks him/her to continue (i.e., saving the new Person instance while adding a 

new ontology schema version) or to cancel the work. Figures 15 and 16 show the creation of 

the new conventional ontology instance document version (OD_PersonFOAF_V3.rdf) and the 

new conventional ontology schema version (PersonFOAFSchema_V3.owl), while updating 
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the temporal ontology document and the temporal ontology schema. In particular, in Figure 

15 the tool provides this information and in Figure 16 the tool displays the code of the new 

ontology instance document version and the code of the new ontology schema version. 

 

 

Figure 12. Step 1 of the ontology instance update process session of example 2. The tool shows that, 

in the code of new conventional ontology schema version, a class expression 

“DataMinCardinality”, with the value “1” assigned to the attribute “cardinality”, has been 

defined on the data property “phone” of the class “Person”, as a sub-class of this latter. 
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Figure 13. Step 2 of the ontology instance update process session of example 2. The tool (i) informs 

the ontology administrator that the data property “phone” of the class “Person” is 

mandatory, and therefore should not have a Null value in the new instance of the class 

“Person” (having the following data property values: "name"="Rossi", 

"surname"="Mario", "country"="Italy", and "address"="Porta Grenada 6, 20100 Milano"), 

and (ii) asks him/her to press either the button “OK”, if he/she wants to force the execution 

of this (non-conservative) insertion operation and to continue in this direction, or the 

button “CANCEL”, if he/she does not want to add this new instance. 
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Figure 14. Step 3 of the ontology instance update process session of example 2. The tool (i) informs 

the ontology administrator that a new conventional ontology schema version will be 

created, corresponding to the new “Person” instance and changing the data property 

“phone” of the class “Person” from mandatory (cardinality = "1") to optional (cardinality 

= "0"), and (ii) asks him/her to press either the button “OK” to continue the execution of 

the ontology instance insertion operation (which is implicitly accompanied with an 

ontology schema change), or the button “CANCEL” otherwise. 
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Figure 15. Step 4 of the ontology instance update process session of example 2. The tool informs the 

ontology administrator that (i) both a new conventional ontology instance document 

version (to store the new “Person” instance) and a new conventional ontology schema 

version, corresponding to this conventional ontology instance document version, have 

been created, (ii) the temporal ontology document has been updated to take into account 

the new slice corresponding to the new instance document version, and (iii) the temporal 

ontology schema has been also updated to include the new schema version. 
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Figure 16. Step 5 of the ontology instance update process session of example 2. The tool displays both 

the code of the new conventional ontology instance document version and that of the new 

conventional ontology schema version. 

Besides, it is worth mentioning that the effectiveness of our τOWL-Manager tool has also 

been evaluated by several colleagues, through several and different examples; it has given 

always the expected results. Therefore, we think that we achieved the objective stated in 

Section 1.3, and that our tool behaves as expected in order to interactively accomplish implicit 

ontology versioning driven by the modifications to the ontology instances, effected by the 

ontology administrator. 

5. Related Work Discussion 

Managing changes to ontologies is an important and challenging topic that has been widely 

studied in the literature. In (Flouris et al., 2008), the authors provide a good survey of all 

aspects related to the ontology change issue. They first define this issue as the generic process 

of modifying an ontology in response to a certain need and managing the effects of such a 

modification on all depending components (data, services, applications, agents, other 

ontologies, etc.). After that they identify and study eleven subfields of ontology change: 

ontology mapping, morphism, matching, alignment, articulation, translation, evolution, 
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debugging, versioning, integration and merging. Our work is closely related to the subfields 

“ontology evolution”, which means keeping always a single ontology schema version (i.e., the 

last updated one) with its set of ontology instance versions (all ontology instance versions that 

were conforming to the previous ontology schema version are automatically adapted to the 

new ontology schema version), and “ontology versioning”, which consists in keeping all 

ontology schema versions with their corresponding ontology instance versions. Notice that in 

that survey, the authors have not mentioned any work that deals with non-conservative 

updates or with ontology schema changes triggered by ontology instance updates. 

In a recent work, Zablith et al. (2015) have given an excellent literature review on the 

“ontology evolution” topic in the broad sense of this term: from ontology 

change/adaptation/evolution (e.g., (Noy & Musen, 2002; Klein, 2004; Plessers et al., 2007; 

Papavassiliou et al., 2013)) to ontology versioning (e.g., (Heflin & Hendler, 2000a; Klein & 

Fensel, 2001; Klein et al., 2002; Redmond et al., 2008; Allocca et al., 2009a; Grandi, 2009)). 

The authors present and compare approaches for managing ontology updates, at ontology 

instance level and/or at ontology schema level, while maintaining or not ontology versions. 

However, none of the reviewed proposals has tackled ontology instance updates that lead to 

ontology schema changes or to ontology schema versions. 

Hence, all works presented and discussed in (Zablith et al., 2015) and dealing with ontology 

instance updates and/or ontology schema change/evolution/versioning could be considered as 

related to our work. In the following, we will discuss only works that have dealt with 

ontology instance/schema change/evolution/versioning and that either have not been covered 

by such a survey or have been published after 2015. 

Grandi (2009) proposes a multi-temporal RDF database model and provides a set of 

manipulation operations which allow the management of temporal versions of an ontology. 

Grandi (2011) extends such a model to support temporal versioning of light-weight RDF(S) 

ontologies and introduces a set of change operations for defining and managing temporal 

schema versions of an RDF(S) ontology. Similarly to (Grandi, 2009) and to (Grandi, 2011), 

our present work handles temporal versioning of ontology instances and temporal versioning 

of ontology schemas, respectively, but in a different temporal Semantic Web framework. 

However, both (Grandi, 2009) and (Grandi, 2011) have not studied ontology instance updates 

that require ontology schema changes.  

Grandi (2013) provides primitive operations that can be used for the maintenance of the class 

structure of a multi-version ontology (embodying a tree-shaped class hierarchy). Grandi 

(2016) extends this work by considering ontologies with a class hierarchy structured as a 

general directed graph, that is also supporting multiple inheritance and intersection classes, 

and showing how multi-version ontologies must be dealt with for the processing of ontology-

based personalization queries. Contrarily to (Grandi, 2013) and (Grandi, 2016), we focus on 
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changes to ontology instance documents, which give rise to implicit and automatic ontology 

schema changes.  

Jaziri et al. (2010) introduce a tool-supported approach for ontology evolution (i.e., keeping 

always the last ontology version) which allows adapting an ontology while preserving its 

consistency. This work has been extended by the authors of (Sassi et al., 2016) who have 

proposed an ontology versioning approach and a tool, called Consistology, which support (i) 

the management of ontology versions based on their relevance, which is evaluated according 

to four criteria (i.e., conceptualization, usage frequency, abstraction, and completeness), and 

(ii) the definition of a process that “reduces” the number of stored ontology versions: when a 

maximum is reached, the least relevant ontology versions are removed. Notice here that the 

maximum number of ontology versions and the selection of relevance criteria to be applied 

are managed by the tool user. In our current paper, we do not study ontology version 

relevance or reduction of ontology version number. Besides, we think that removing ontology 

versions is a dangerous action since it leads to ontology loss and therefore to several problems 

in all components (applications, agents, services, other ontologies …) depending on the 

removed ontology. Furthermore, in our environment, we consider that any ontology version 

has been created as a response to some actual requirement(s) and thus all ontology versions 

are important and have the same relevance.  

Im et al. (2012) propose a framework for managing ontology versioning in RDF triple stores. 

Their approach is based on (i) storing the original RDF data version and the deltas between 

each two consecutive versions, in a relational database, and (ii) constructing any version, on 

the fly, through an SQL statement that applies the corresponding deltas to the original version. 

The main advantage of this approach is the reduction of the storage space. Contrarily to this 

work, we keep all versions of any manipulated ontology. Moreover, our proposal allows the 

ontology administrator/user performing any change to an ontology instance document 

whereas the framework proposed in (Im et al., 2012) considers only insert and delete 

operations. The authors consider that a triple update operation could be effected through a 

deletion of the old triple followed by an insertion of the new triple. Notice that while this 

modeling of the triple update operation could be acceptable at instance level, as it is safe, it 

may give rise to some problems at schema level. 

In (Khattak et al., 2013), the authors propose a tool-supported framework for managing 

change history in evolving web ontologies. It supports features related to ontology change like 

ontology versioning, change provenance, ontology consistency, ontology recovery, change 

representation, and change visualization. Ontology changes are stored in a temporal triple 

store, named the Change History Log (CHL), which is a main component of the framework. 

Logged ontology changes allow recovering any previous ontology version in the case of 

unauthorized changes, version conflicts, or an inconsistent/incomplete ontology version 
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resulting e.g. from an accidental closing of the ontology editor. Our approach does not include 

an ontology change log but it stores all ontology instance/schema versions while 

timestamping them with their transaction times (thanks to the temporal ontology schema and 

the temporal ontology document components). Therefore, our proposal allows the ontology 

administrator to obtain any previous ontology instance/schema version that has been valid at a 

given instant or during a given time interval. 

Taleb et al. (2014) propose and implement a method for comparing OWL ontology versions 

and extracting differences between them. Our approach compares both ontology instance 

versions and ontology schema versions, before recording them; if a new ontology 

instance/schema version is identical to the previous one, it is not accepted. 

The paper of Flahive et al. (2015) has dealt with updating or adapting large ontologies in a 

semantic grid environment. The authors have formalized and validated the ontology update 

process while some sections of one ontology are replaced by a subset extracted from another 

ontology. However, the authors have not talked about ontology instance updates that require 

ontology schema changes. 

In the context of ontologies that are defined under the RDF model, Kondylakis and Papadakis 

(2018) have proposed EvoRDF, a framework to explore ontology evolution through 

provenance queries. It is based on a high-level language for changing ontologies and allows 

answering three types of queries: (i) “when” queries, looking for the introduction time of a 

resource, (ii) “how” queries, seeking by which change operations a resource has been 

introduced, and (iii) “why” queries, searching the sequence of change operations that led to 

the creation of a resource in the current ontology version. Further, Taelman et al. (2019) have 

proposed a technique for indexing RDF archives, which allows storing datasets with a low 

storage overhead, through the compression of consecutive versions and the addition of 

metadata to reduce lookup times. They have also defined algorithms, which are based on this 

technique, to evaluate queries in such a multi-version environment. 

Kozierkiewicz and Pietranik (2019) have studied revalidation of ontology alignment (i.e., 

mapping defined between two ontologies), which is triggered by evolution of one or both of 

the participating ontologies, and more precisely by changes performed on concepts of these 

ontologies. However, the environment in which the study has been effected does not support 

ontology versioning. Besides, it is worth mentioning that in our present work, we have not 

dealt with the impact of ontology changes on ontology alignment. 

In (Bayoudhi et al., 2019), the authors have proposed an approach and a Protégé plug-in for 

versioning of OWL 2 DL ontologies, while applying an a priori consistency management 

technique (i.e., checking ontology consistency before applying ontology changes) and storing 

ontology versions in a temporal object-oriented database whose (temporal) schema is based 

on both the direct model-theoretic semantics for OWL 2 (W3C, 2012c) and on the proposal of 
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Zhang et al. (2015) dealing with the storage of OWL 2 ontologies in object-oriented 

databases. However, the approach of Bayoudhi et al. (2019) does not support implicit schema 

changes triggered by non-conservative instance updates (not taken into account in this 

approach). 

Bürger et al. (2020) have proposed an approach implemented in a system prototype for the 

detection of occurrences of semantic editing patterns, defined as graph transformation rules, 

between two versions of an OWL ontology. Moreover, they have evaluated their proposals in 

a medical information system, while considering ontologies for software security. 

Nevertheless, this approach supports neither ontology schema versioning (only the last 

version of the ontology is kept), nor ontology instance versioning. 

In (Cardoso et al., 2020), first a new technique, named the historical knowledge graph (HKG), 

has been proposed to store into one single knowledge graph all versions of an ontology along 

with a log of corresponding changes (which includes all changes applied on each version of 

this ontology). After that, the authors have experimentally evaluated the HKG through three 

use-cases in the biomedical area. Contrarily to the approach of Cardoso et al. (2020), ours 

stores ontology versions in files that are independent on those that store ontology change 

operations. We think that although the HKG could reduce the storage space associated to 

multi-versions ontologies and their changes logs, it introduces new difficulties like: (i) the 

necessity to define new efficient indexes for HKG files that are in general very large, and (ii) 

the need to revise specifications of existing ontology query/update languages and ontology 

tools, which were designed to work on files that only contain ontologies created with one of 

the existing ontology languages like OWL, OWL 2, RDF, RDF/XML or RDFS. Besides, 

Cardoso et al. (2020) have considered neither non-conservative ontology instance updates, 

nor implicit ontology schema changes. 

In (Priya and Kumar, 2020), the topic of ontology merging has been dealt with while focusing 

on the ontology heterogeneity that does not allow interoperability between heterogeneous 

ontologies. More precisely, the authors have proposed an algorithm, named “pseudo-intent 

with backtracking-based FCA-Merge”, for ontology merging through the use of formal 

concept analysis (FCA) (Ganter and Wille, 2012). This algorithm executes four processes in 

order to merge two ontologies (inputs) into a single ontology (output). These processes are as 

follows: (i) identification of decision tree-based attributes, (ii) generation of linked lists to 

increase the sparse matrix size, (iii) performing backtracking to reduce the combinatorial 

problems, and (iii) execution of merging based on the generated linked lists. The proposed 

algorithm has been experimentally evaluated with respect to three existing methods for 

ontology merging (FCA-Merge, OntEx, and FCA-Map); it provides 97% of precision, 82% of 

recall, and 89% of accuracy, which are all higher than the other existing methods.  

Recently, Santos et al. (2020) have proposed an experimental analysis concerning a set of 
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existing tools that are used for the management of ontology evolution. The tools are: 

PromptDiff (Noy et al., 2002), WebProtégé (Horridge et al., 2019), CODEX (Hartung et al., 2012), 

KAON (Stojanovic et al., 2002), OWL Diff (Redmond & Noy, 2011), OntoDiffGraph (Lara et al., 

2017), and OIM (Davidovsky et al., 2011). The authors have evaluated them based on the 

following four criteria: change detection, complex change detection, change inspection, and 

extensibility. As for the “change detection” criterion, it deals with how primitive ontology 

changes are detected. Two techniques are identified: (i) keeping track of the history of 

ontology changes that are performed by the user using tool, and (ii) generating the difference 

between successive ontology versions. As for the “complex change detection”, it concerns the 

capability of a tool to (automatically) detect a complex ontology change from a sequence of 

primitive ontology changes applied by the user. As for the “change inspection” criterion, it 

concerns the representation of the applied ontology changes, which can be either textual (e.g., 

via a log file) or graphical (e.g., as a diagram). The “extensibility” criterion is dealing with the 

possibility to extend the provided tool (taking into account facts like the availability of its 

source code). Notice that, with regard to these four criteria, the τOWL-Manager tool detects 

ontology changes through the history of actions done by the ontology administrator on his/her 

GUI used to update ontology instances or ontology schema. Furthermore, in its current 

release, τOWL-Manager only allows to explicitly perform complex ontology changes at 

schema level, and is not able to detect a complex change from a list of primitive changes 

effected at instance/schema levels. As far as the ontology change inspection issue is 

concerned, our tool uses a textual format to represent the effected ontology changes. 

Considering the fourth criterion, τOWL-Manager is extensible and its source code could be 

provided upon request. 

In (Bayoudhi et al., 2020), the authors have surveyed (among others) approaches for ontology 

versioning while focusing on three research topics: (i) ontology versions pertinence, like in 

(Sassi et al., 2016), (ii) ontology versions relationship, like in (Allocca et al., 2009b) and 

(Díaz et al., 2011), and (iii) ontology versions storage and querying, like in (Grandi, 2013), 

(Grandi, 2016), (Meimaris, 2018), (Bayoudhi et al., 2019), and (Taelman et al., 2019). 

The works, which are more strictly related with our approach, are (Zekri et al., 2014), (Zekri 

et al., 2015a), (Zekri et al., 2015b), (Zekri et al., 2016), and (Zekri et al., 2017). 

Zekri et al. (2014) introduce τOWL, a τXSchema-like framework, which allows creating a 

temporal OWL 2 ontology from a conventional OWL 2 ontology and a set of logical and 

physical annotations. This framework ensures logical and physical data independence, since it 

(i) separates conventional schema, logical annotations, and physical annotations, and (ii) 

allows each one of these three components to be changed independently and safely. The 

present work extends (Zekri et al., 2014) by (i) proposing an approach for implicit schema 

versioning in τOWL and (ii) focusing on non-conservative changes to conventional ontology 
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instance documents, which lead to the versioning of the corresponding conventional ontology 

schema. Zekri et al. (2016) extend the work presented in (Zekri et al., 2014) by showing how, 

in the τOWL framework, temporal ontology instance versioning could be managed in the 

presence of temporal ontology schema versioning, simultaneously and in a consistent manner. 

In (Zekri et al., 2015a), the authors propose two complete sets of schema change primitives, 

one for changing conventional ontology schema and the other for updating temporal ontology 

schema, in the τOWL context. Zekri et al. (2017) propose an approach, which extends the 

contribution of Zekri et al. (2016), for managing time-varying knowledge, since an ontology 

can be used for knowledge management. Although the proposals presented in (Zekri et al., 

2015a), (Zekri et al., 2016), and (Zekri et al., 2017) have focused on ontology schema 

versioning in τOWL, none of them has dealt with ontology schema changes generated by 

ontology instance updates. Zekri et al. (2015b) present τOWL-Manager, a prototype tool that 

allows defining temporal ontology schema and managing temporal versioning of temporal 

ontology instances, in the τOWL framework, while supporting only conservative updates to 

ontology instances. Zekri et al. (2016) extend (Zekri et al., 2015b) by adding schema 

versioning support to τOWL-Manager and showing its functionalities. Our present work 

extends τOWL-Manager to consistently support both non-conservative updates to 

conventional ontology instance documents and implicit conventional ontology schema 

changes triggered by these instance updates. 

Notice that in the XML world, Bouchou et al. (2004) have talked about invalid updates to 

XML (instance) documents, which are XML data updates that give rise to XML documents 

not valid to their corresponding XML schemas. Invalid documents must be adapted to meet 

the changed XML schema, which is a dangerous operation as it could lead to some data loss 

when some updates require removing some XML schema components. Although non-

conservative ontology instance updates are similar to invalid XML document updates, they 

are studied in different environments: invalid updates have been investigated in a non-

temporal XML environment that supports only schema evolution (i.e., only the last XML 

schema version is kept with its XML instances), whereas non-conservative ontology instance 

updates have been considered in a temporal and multi-schema-version OWL 2 ontology 

environment (i.e., τOWL). Furthermore, our approach does not lead to any data loss, as both 

instances and schemas are temporally versioned. Moreover, Bouchou and Duarte (2007) have 

talked about non-conservative schema evolution in an XML environment, which means that 

XML documents that are valid to an XML schema before its change could become not valid 

with respect to such a schema after its change. Similarly to the approach introduced by 

Bouchou et al. (2004), the authors of (Bouchou and Duarte, 2007) have also proposed that 

existing XML documents, which are no longer valid to the new XML schema, must be 

adapted to this latter. Contrarily to the approach of Bouchou and Duarte (2007), which has 

some disadvantages like data loss, our approach deals with non-conservative updates to 
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ontology instance documents, in an environment that supports ontology schema versioning, 

and therefore, it avoids several problems like loss of data and schemas, and system downtimes 

that are necessary to revise source codes of programs that are using the updated ontology 

instance documents and/or the changed ontology schemas. 

In Table 1, we compare the ontology evolution/versioning approaches of the literature to our 

approach, while taking into account the following seven criteria: 

• Ontology language (e.g., RDFS, OWL, OWL 2, OWL DL, UML), representing the 

ontology definition language on which the approach is based. 

• Implementation (Yes or No), telling whether the approach has been implemented. 

• Support of temporal aspects (Yes or No), telling whether the approach supports 

temporal aspects. If “Yes”, it is also mentioned at which level they are supported 

(instance level and/or schema level). 

• Ontology instance change technique (Instance Evolution, if only the last instance 

version is kept, or Instance Versioning). 

• Ontology schema change technique (Schema Evolution or Schema Versioning). 

• Support of non-conservative updates to ontology instances (Yes or No). 

• Support of implicit ontology schema changes (Yes or No). 

Table 1. Comparison of approaches dealing with ontology evolution/versioning. 

Approach 
Ontology 

language 

Im
p

le
m

en
ta

ti
o

n
 

Support of 

temporal 

aspects 

Ontology 

instance 

change 

technique 

Ontology 

schema 

change 

technique 

Support of 

non-

conservative 

updates to 

ontology 

instances 

Support 

of implicit 

ontology 

schema 

changes 

Grandi (2009) RDF No Yes 
Instance 

Versioning 
- No No 

Grandi (2011) RDF(S) No Yes 
Instance 

Versioning 

Schema 

Versioning 
No No 

Grandi (2013) 

No specific 

language; 

tree-like 

ontology 

No No 
Instance 

Versioning 

Schema 

Versioning 
No No 

Grandi (2016) 

No specific 

language; 

general 

graph 

ontology 

Yes No 
Instance 

Versioning 

Schema 

Versioning 
No No 

Jaziri et al. 

(2010) 
UML Yes No 

Instance 

Evolution 

Schema 

Evolution 
No No 

Sassi et al. 

(2016) 
UML Yes No 

Instance 

Versioning 

Schema 

Versioning 
No No 

Im et al. 

(2012) 
RDF No No 

Instance 

Versioning 
- No No 

Khattak et al. RDFS, Yes No Instance Schema No No 
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(2013) OWL Versioning Versioning 

Taleb et al. 

(2014) 
OWL Yes No 

Instance 

Versioning 
- No No 

Flahive et al. 

(2015) 
Generic No No 

Instance 

Versioning 
- No No 

Kondylakis 

and Papadakis 

(2018) 

RDF Yes No 
Instance 

Evolution 

Schema 

Evolution 
No No 

Taelman et al. 

(2019) 
RDF Yes No 

Instance 

Versioning 
- No No 

Kozierkiewicz 

and Pietranik 

(2019) 

Generic No No 
Instance 

Versioning 

Schema 

Versioning 
No No 

Bayoudhi et 

al. (2019) 
OWL 2 DL Yes No 

Instance 

Versioning 

Schema 

Versioning 
No No 

Bürger et al. 

(2020) 
OWL Yes No 

Instance 

Versioning 

Schema 

Versioning 
No No 

Cardoso et al. 

(2020) 

Historical 

Knowledge 

Graph 

Yes No 
Instance 

Versioning 

Schema 

Versioning 
No No 

Priya and 

Kumar (2020) 
FCA Yes No 

Instance 

Evolution 

Schema 

Evolution 
No No 

Zekri et al. 

(2016), Zekri 

et al. (2017) 

OWL 2 Yes 

Yes; at 

both 

instance 

and 

schema 

levels 

Instance 

Versioning 

Schema 

Versioning 
No No 

Our approach OWL 2 Yes 

Yes; at 

both 

instance 

and 

schema 

levels 

Instance 

Versioning 

Schema 

Versioning 
Yes Yes 

Moreover, in Table 2, we summarize the features of most popular existing tools for ontology 

evolution/versioning and of our τOWL-Manager tool, taking into account the following six 

aspects: 

• Ontology language (e.g., RDFS, OWL, OWL 2, OWL DL, UML), representing the 

ontology definition language on which the approach is based. 

• Support of temporal aspects (Yes or No), telling whether the tool supports temporal 

aspects. If “Yes”, it is also mentioned at which level they are supported (instance level 

and/or schema level). 

• Support of ontology instance versioning (Yes or No). 

• Support of ontology schema versioning (Yes or No). 

• Support of non-conservative updates to ontology instances (Yes or No). 

• Support of implicit ontology schema changes (Yes or No). 
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Table 2. Comparison of research tools dealing with ontology evolution/versioning. 

Tool 
Ontology 

language 

Support of 

temporal 

aspects 

Support of 

Ontology 

instance 

Versioning 

Support of 

Ontology 

Schema 

Versioning 

Support of 

Non-

conservative 

Updates to 

Ontology 

Instances 

Support of 

Implicit 

Ontology 

Schema 

Changes 

PromptDiff 

(Noy et al., 

2002) 

OWL No No No No No 

OWL Diff 

(Redmond & 

Noy, 2011) 

OWL2 No No No No No 

OntoDiffGraph 

(Lara et al., 

2017) 

VOWL No No No No No 

CODEX 

(Hartung et al., 

2012) 

OBO No No No No No 

WebProtégé 

(Horridge et al., 

2019) 

OWL 2, 

OWL 2 EL, 

OBO 

No No No No No 

KAON 

(Stojanovic et 

al., 2002) 

KAON 

language 
No No No No No 

OIM 

(Davidovsky et 

al., 2011) 

OWL No Yes Yes No No 

Consistology 

(Sassi et al., 

2016) 

UML No No Yes No No 

Bayoudhi et al. 

(2019)’s tool 
OWL 2 DL No Yes Yes No No 

Our τOWL-

Manager tool 

(in its last 

release) 

OWL 2 

Yes; at both 

instance and 

schema 

levels 

Yes Yes Yes Yes 

6. Conclusion 

In this paper, we have proposed a new general approach for managing ontology instance 

updates that require ontology schema changes in order to produce a consistent result, in an 

environment that supports temporal versioning of both ontology instances and ontology 

schemas. We have implemented this approach in the τOWL framework, extending it to 

support two new aspects: non-conservative updates to ontology instances and ontology 

schema changes that are triggered by such instance updates. In order to show the feasibility of 

our approach, we have developed a new version of the τOWL-Manager, which allows 

ontology administrators to perform ontology instance updates that require implicit ontology 

schema changes. With the developed tool, non-conservative updates can be executed in 

τOWL-based Semantic Web repositories, while managing instance and schema changes 

consistently and guaranteeing a full history of evolving conventional ontology instances and 
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schemata. The required implicit ontology schema changes are automatically generated and, 

upon approval by the ontology administrator, executed. 

To the best of our knowledge, we are the first to deal with these two interesting issues in an 

ontology environment that supports versioning at both instance and schema levels: non-

conservative updates to ontology instances and implicit ontology schema changes. We have 

also applied it to an established framework (i.e., τOWL) for managing evolving ontologies 

and implemented it within a tool prototype (i.e., τOWL-Manager). We think that our proposal 

provides more flexibility in the management of ontology evolution and ontology versioning, 

guarantees safety of the updated ontology instance documents and the ontology schema 

documents, and makes it easy to ontology administrators, especially if they have no sufficient 

skills to extricate themselves with devising and applying ontology schema changes, the task 

of effecting non-conservative updates to conventional ontology instance documents. 

Moreover, from an ontology engineering viewpoint, the τOWL-Manager provides a practical 

environment which can be used to support an incremental ontology construction method 

driven by the gradual availability of instance data. 

As a part of our future work, we intend to study the interesting second method for updating 

ontology instances: the non-interactive one. Such a method is applied when the ontology 

administrator would like to integrate, into the τOWL repository, a new conventional ontology 

instance document (e.g., which has been prepared offline or which is imported from an 

external source), that must be merged with the current ontology instance document to produce 

a new ontology instance document version. The works already done by Papavassiliou et al. 

(2009), on ontology change detection in knowledge bases, and by Gröner et al. (2010), on 

semantic recognition of ontology refactorings, could help us in this direction. 

Furthermore, although retroactive and proactive updates to ontology instances are required 

(since we are in a temporal environment) to perform some instance updates with retroactive or 

proactive effect respectively, they are not allowed by the τOWL-Manager in its current 

release, as only transaction-time versioning is supported at both instance and schema levels; 

consequently, only on-time updates are allowed. In our future work, we intend to extend both 

τOWL and τOWL-Manager to also support valid-time schema versioning and/or bitemporal 

schema versioning (De Castro et al., 1997), so that they will also provide appropriate 

functionalities to execute such updates. 

Moreover, we also plan to extend our current proposal to deal with propagating, in an 

automatic and safe manner, the effects of ontology schema changes to the possible other 

ontologies that are using or extending the evolved ontology, and to all artifacts (e.g., 

application programs, services, scripts, agents, web pages) that are relying on the ontology 

whose schema is changed; such an efficient propagation will be very helpful for ontology 

administrators. 
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Last but not least, in the future, we aim at studying the following aspect that is related to our 

present work and that we consider very interesting for today’s semantic web applications: 

performing on-the-fly ontology schema changes which are necessary to the support of high-

availability applications (like Internet of Things, cloud computing and e-health applications). 
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