
22 December 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Brahmia Z., Grandi F., Zekri A., Bouaziz R. (2022). Ontology Versioning Driven by Instance Evolution in the
τOWL Framework. JOURNAL OF INFORMATION & KNOWLEDGE MANAGEMENT, 21(1), 1-46
[10.1142/S0219649222500022].

Published Version:

Ontology Versioning Driven by Instance Evolution in the τOWL Framework

Published:
DOI: http://doi.org/10.1142/S0219649222500022

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/882266 since: 2024-01-23

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1142/S0219649222500022
https://hdl.handle.net/11585/882266

1

VERSIONE REVISIONATA E ACCETTATA

DELL’ ARTICOLO PUBBLICATO COME https://doi.org/10.1142/S0219649222500022

2

Ontology Versioning Driven by Instance Evolution

in the τOWL Framework

Zouhaier Brahmia1,*, Fabio Grandi2,**, Abir Zekri1,***, and Rafik Bouaziz1,****

1 Multimedia, InforRmation Systems, and Advanced Computing Laboratory, University of Sfax,

Road of the Aerodrome, Km 4.5, P.O.Box 1088, 3018 Sfax, Tunisia

2 Department of Computer Science and Engineering, Alma Mater Studiorum – Università di Bologna,

Viale Risorgimento 2, I-40136 Bologna, Italy

*zouhaier.brahmia@fsegs.rnu.tn

**fabio.grandi@unibo.it
***abir.zekr@gmail.com
****rafik.bouaziz@usf.tn

Abstract. Like other components of Semantic Web-based applications, ontologies are evolving

over time to reflect changes in the real world. Several of these applications require keeping a full-

fledged history of ontology changes so that both ontology instance versions and their

corresponding ontology schema versions are maintained. Updates to an ontology instance could

be non-conservative, that is leading to a new ontology instance version no longer conforming to

the current ontology schema version. If, for some reasons, a non-conservative update has to be

executed, in spite of its consequence, it requires the production of a new ontology schema version

to which the new ontology instance version is conformant so that the new ontology version

produced by the update is globally consistent. In this paper, we first propose an approach that

supports ontology schema changes which are triggered by non-conservative updates to ontology

instances and, thus, gives rise to an ontology schema versioning driven by instance updates.

Notice that in an engineering perspective, such an approach can be used as an incremental

ontology construction method driven by the modification of instance data, whose exact structure

may not be completely known at the initial design time. After that, we apply our proposal to the

already established τOWL (Temporal OWL 2) framework, which allows defining and evolving

temporal OWL 2 ontologies in an environment that supports temporal versioning of both ontology

instances and ontology schemas, by extending it to also support the management of non-

conservative updates to ontology instance versions. Last, we show the feasibility of our approach

by dealing with its implementation within a new release of the τOWL-Manager tool.

Keywords: τOWL, ontology schema, ontology instance, ontology instance update, ontology

instance versioning, ontology instance version, ontology schema change, ontology schema

versioning, ontology schema version

mailto:zouhaier.brahmia@fsegs.rnu.tn
mailto:fabio.grandi@unibo.it
mailto:abir.zekr@gmail.com
mailto:rafik.bouaziz@usf.tn

3

1. Introduction

1.1. Context of Work

The Semantic Web (Berners-Lee et al., 2001; Antoniou et al., 2012) can be defined as a

common framework that allows knowledge and data to be shared and reused by different

users and applications via their formalization and representation as ontologies (Gruber, 1995;

Guarino, 1998). To this purpose, ontologies are composed of a terminological component

(intensional knowledge), representing the data schema, and an assertional component

(extensional knowledge) representing the data instances. Large scale Semantic Web

applications require the management of ontologies with very large instance repositories

(Heymans et al., 2008; Kuiler, 2014; Konys, 2016), for which the adoption of database

techniques to efficiently access data instances has been advocated (Seylan et al., 2009; Al-

Jadir et al., 2010).

As πάντα ῥεῖ (“everything flows”, quoting Heraclitus), also Semantic Web ontologies cannot

help but change over time and evolve (Heflin & Hendler, 2000a; Flahive et al., 2015; Zablith

et al., 2015). Ontology evolution can be due to many reasons: changes in the domain

(including enactment of new Laws) or in the user requirements, revision of the knowledge

conceptualization (including error correction), or expansion of the domain representation

(including ontology integration and merging). Several applications require keeping track of all

the changes that have been applied to the underlying ontologies, in order to be able to recover

past ontology versions (Klein et al., 2002; Grandi, 2009; Im et al., 2012; Taleb et al., 2014),

to track ontology changes over time (Noy et al., 2004; Plessers et al., 2007; Khattak et al.,

2013; Lambrix et al., 2016), and to query temporal (Grandi, 2010; O'Connor & Das, 2011;

Artale et al., 2017) or multi-version (Liu et al., 2014) ontologies. Such requirements can

effectively be met with the adoption of the temporal ontology versioning technique, as

proposed for instance in (Grandi, 2011) or implemented in the τOWL framework (Zekri et al.,

2016; Zekri et al., 2017), supporting the maintenance of a complete history of ontology

instance versions with their corresponding ontology schema versions. Notice that in our work

we define an ontology as a consistent set of two dependent components: an ontology schema

and an ontology instance, such that the ontology instance must be always conformant to its

ontology schema (i.e., the structure of the ontology instance is always equal to or compatible

with the ontology schema).

In the state-of-the-art of (temporal) ontology schema evolution and versioning (Zablith et al.,

2015), changes to an ontology schema are explicitly made by an ontology administrator

through a graphical interface or using a textual ontology schema change language (we assume

the ontology administrator to be a special person, the only one allowed to create, modify, and

remove ontologies). A new ontology schema version (different from the current one) can be

4

supplied as a whole by the ontology administrator or derived by incrementally applying

schema change operations to the current ontology schema version. A sequence of ontology

instance update operations may also be needed to adapt ontology instances to the new

ontology schema (ontology schema change propagation), in order to ensure the consistency of

the new ontology version, i.e., to guarantee that all ontology instances are

syntactically/structurally conformant to the new ontology schema version. It is worth

mentioning that the term “consistency” means, in this paper, syntactical or structural

conformity between an ontology schema and its ontology instance(s); it is similar to the

notion of validity of an XML instance document to an XML schema document, in the XML

world.

On the other hand, when considering modifications of ontology instances, we can distinguish

between updates that are conservative or non-conservative with respect to the ontology

schema.

• Conservative updates add new ontology instances or modify existing ones such that the

resulting ontology instances still conform to the current ontology schema.

• On the contrary, we call non-conservative updates the ones that would produce ontology

instances non-conformant to the current ontology schema.

1.2. Problems

Non-conservative updates are threatening the ontology consistency (i.e., conformity of

ontology instances w.r.t. their ontology schema) and, thus, cannot be thoroughly executed

without being preceded by an ontology schema change. A commonly adopted approach for

dealing with non-conservative updates consists of simply rejecting them (Heflin & Hendler,

2000a; Flahive et al., 2015; Zablith et al., 2015). To the best of our knowledge, only

conservative updates are allowed and supported in existing ontology evolution/versioning

management tools, like SHOE (Heflin & Hendler, 2000b), OntView (Klein & Fensel, 2001),

PROMPTDiff (Noy & Musen, 2002), SemVersion (Völkel & Groza, 2006), CEX (Konev et

al., 2012), CHRONOS Ed (Preventis et al., 2014), and τOWL-Manager (Zekri et al., 2016).

Nevertheless, in many cases, non-conservative updates have to be executed in order to fulfill

cogent application requirements, like (i) integrating new ontology instances into an ontology

repository although they do not correspond to the current ontology schema (e.g., in a

collaborative environment where there are multiple actors and, thus, multiple points of view,

or when the ontology administrator wants to reuse some old ontology instance collection or

extend the current ontology with new instances found in online Semantic Web repositories

(Tzitzikas et al., 2008; Merrill et al., 2014)), (ii) providing more flexibility to ontology

administrators by allowing them to perform non-conservative updates (e.g., owing to a

decision coming from the managers or the decision makers in the enterprise), or (iii) taking

into account some new knowledge which corrects or expands the current one (e.g., in

5

scientific, biological and medical applications). Therefore, if a non-conservative ontology

instance update must be executed and at the state-of-the-art there are no available tools for

helping him/her in such a task, the ontology administrator has to intervene in an ad hoc

manner in order to carefully construct a new ontology schema version that can consistently

accommodate the new ontology instance resulting from the update.

1.3. Objective and Contributions

Hence, the novel contribution of this work is that we propose that such a task be automated

and, thus, we consider the execution of ontology schema changes driven by ontology instance

evolution and propose practical solutions to deal with them that can be implemented in a

setting where very large (or big) ontology instances (i.e., those with very large sizes) can be

managed: when a new ontology instance created by an insertion or update does not fit into the

current ontology schema (making the current ontology inconsistent), we want an implicit

ontology schema change is triggered to automatically adapt the ontology schema to accept the

new instance.

In particular, as a starting point for the management of non-conservative updates, we consider

the τOWL framework (Zekri et al., 2016; Zekri et al., 2017), which is an environment already

supporting both temporal ontology instance versioning and temporal ontology schema

versioning, in an integrated manner. Hence, in this paper, we propose an approach that

extends τOWL with implicit ontology schema versioning driven by the execution of non-

conservative ontology instance updates. In other words, in our new approach, changes at

instance level not only produce a new ontology instance version but may also lead to the

automatic creation of a new ontology schema version. Moreover, from an engineering point of

view, our approach can serve as an incremental ontology construction method driven by the

ontology instances whose exact nature and structure may not be completely known at the

initial design time.

1.4. Organization

The rest of the paper is organized as follows. Section 2 presents our approach for managing

ontology schema changes that are generated by non-conservative ontology instance updates,

in an environment that supports ontology versioning both at schema and instance levels.

Section 3 applies such an approach to the τOWL framework. Section 4 deals with the

implementation of our proposal through the enhancement of the τOWL-Manager tool,

implementing the original τOWL framework, with new modules that are necessary for

supporting the new proposed functionalities. Section 5 discusses related work and clarifies the

contributions of our approach and of its implementation with regard to the state of the art.

Section 6 summarizes the paper and sketches directions for our future work.

6

2. Ontology Schema Changes Implicitly Triggered by Non-conservative

Updates to Ontology Instances

In this section, we motivate and introduce our approach for automated support of ontology

schema changes which are generated by non-conservative ontology instance updates.

In general, the main difference between the semantics of data in a database and in the

Semantic Web is the fact that the former relies on a Closed World Assumption (CWA),

whereas the latter is traditionally based on an Open World Assumption (OWA) (Patel-

Schneider & Horrocks, 2007). Being the CWA purposely suitable to constraining and

validating data, the OWA is considered more appropriate to describe knowledge in an

extensible way, assuming data to be incomplete by default. In such a way, data intentionally

underspecified can be easily reused and extended by others for their own ontology. Although

the OWA is the “classical” viewpoint in the ontology world, the CWA has been adopted in

several Semantic Web applications (Etzioni et al., 1997; Heflin & Munoz-Avila, 2002) which

require conformance of instances to a set of constraints: with the CWA, ontology definitions

act like database schema specifications, which are rigid constraints on the values data may

assume. The introduction of the CWA in the Semantic Web has been recently investigated

also from a theoretical point of view, assuming the adoption of an instance repository obeying

the CWA, called DBox in (Seylan et al., 2009); also the coexistence of OWA and CWA for

the same ontology has been studied in (Lutz et al., 2012). The main motivation for this

strategic move has to be sought in the convenience to resort to standard database technologies

for efficiently querying very large instance repositories.

Notice that our approach is strictly limited to ontologies with only a DBox, which “basically”

behave like a database and follow the CWA, for which we can talk about an “ontology

schema”.

Besides, although basically sticking to the CWA, our proposed contribution is a way to add

some kind of “openness” to the CWA approach by means of the implicit ontology versioning

triggered by non-conservative updates. In practice, this happens in the same way that, in the

database field, the adoption of a semistructured data model, like XML (Brahmia et al., 2014a)

or JSON (Brahmia et al., 2017), strongly mitigates the inability to represent incomplete data

of the relational model (where the only allowed incompleteness feature is represented by the

controversial use of null values) by allowing the representation of flexible and extensible data

structures. New ontology instances not conforming to the old ontology schema can be merged

with the old ontology instances by creating a new ontology schema (from the old ontology

schema), both compliant with the old and the new instances, by means of implicit schema

changes automatically executed by the system (the ontology administrator must only approve

their application) within the same transaction that adds the new instances. The use of the

schema versioning technique (Brahmia et al., 2018; Roddick, 2018) implies that the old

7

ontology schema version with the old ontology instance is also retained and can be retrieved

on demand (e.g., to be still used by legacy applications or for audit purposes).

More precisely, and in a formal way, the implicit ontology schema changes are triggered by

non-conservative updates to ontology instance documents, in the cases presented below.

Notice that, for the description of these cases, we have used the following variables and

functions:

• Variables:

- C, C′, Q, Q′: classes;

- c, c′: an instance of the class C, C′, respectively;

- q, q′: an instance of the class Q, Q′, respectively;

- DPi: data property i of a class;

- S: current ontology schema;

- ctr: a constraint specified in S.

• Functions:

- value(DPi,c): it returns the value of “Dpi” in “c”;

- type(v): it returns the data type of the value “v”;

- violate(arg, ctr): it returns true, if the argument arg (a value “v”, or an instance “r” of

an object property R) violates the constraint ctr, or false otherwise;

- involve(ctr, x): it returns true, if the definition of the constraint “ctr” takes into

account the argument “x” (i.e., a data property of a class, or an object property) in an

explicit manner, or false otherwise;

- ObjectProperty(C, Q): it returns the object property that links the two classes “C”

and “Q”;

- mandatory(x, y): it returns true, if the argument “x” (i.e., a data property, or an object

property) has been defined as mandatory in the argument “y” (i.e., a class, or an

ontology schema, respectively), or false otherwise.

Case 1: a rename operation, which modifies the name of either the class of a class instance or

the data property of a class instance, has been executed.

Case 2: an insertion operation that adds: (i) a new instance c of a class C that has not been

already defined in the current ontology schema “S” (Case 2.1), (ii) a new instance c

of an already existing class C, which violates some constraint in S, (Case 2.2), (iii) an

instance r of an object property R not belonging to S (Case 2.3), or (iv) a new

instance r of an already existing object property R, which violates some constraint in

S (Case 2.4). These three sub-cases are detailed as follows:

8

Case 2.1: an insertion of a new instance c of a class C not already defined in the current

ontology schema “S”

(c ∈ C ∧ C ∉ S)

Case 2.2: an insertion of a new instance c of an already existing class C, which violates some

constraint(s) in S

(c ∈ C ∧ C ∈ S) ∧

[(∃ 𝑣 = value(DPi, c) ∧ DPi ∉ C) ∨

 (∃ 𝑣 = value(DPi, c) ∧ DPi ∈ C ∧ type(𝑣) ≠ type(DPi)) ∨

 (∃ 𝑣 = value(DPi, c) ∧ DPi ∈ C ∧ ∃ ctr1 ∈ S such that violate(𝑣, ctr1)) ∨

 (∃ ctr2 ∈ S such that violate(𝑐, ctr2))]

Case 2.3: an insertion of an instance r = (c1, c2) of an object property R that does not belong

to the current ontology schema “S”

(c1 ∈ C1 ∧ c2 ∈ C2) ∧

(∄ R ∈ S such that R = ObjectProperty(C1, C2))

Case 2.4: an insertion of a new instance r of an already existing object property R, which

violates some constraint in S

(c1 ∈ C1 ∧ C1 ∈ S ∧ c2 ∈ C2 ∧ C2 ∈ S) ∧

 (∃ R ∈ S such that R = ObjectProperty(C1, C2) ∧ r ∈ R ∧

 ∃ ctr ∈ S such that violate(r, ctr))

Case 3: a modification operation, which replaces: (i) an instance c of a class C with a new

instance c′ of C (Case 3.1) or (ii) an instance r of an object property R with a new

instance r′ (Case 3.2), while violating some constraint already defined in the current

ontology schema “S”. The two sub-cases are detailed in the following:

Case 3.1: a modification operation that replaces an instance c of a class C with a new instance

c′ of C, which violates some constraint in S

(C ∈ S ∧ DPi ∈ C ∧ ∃ 𝑛𝑒𝑤𝑉 = value(DPi, c′) such that

[type(𝑛𝑒𝑤𝑉) ≠ type(DPi) ∨

 ∃ ctr ∈ S such that involve(ctr, DPi) ∧ violate(𝑛𝑒𝑤𝑉, ctr)])

Case 3.2: a modification operation that replaces an instance r of an object property R with a

new instance r′ = (c′, q′), which violates some constraint in S

(c′ ∈ C′ ∧ C′ ∉ S) ∨ (q′ ∈ Q′ ∧ Q′ ∉ S) ∨

9

(c′ ∈ C′ ∧ C′ ∈ S ∧ q′ ∈ Q′ ∧ Q′ ∈ S) ∧

 [(∄ R ∈ S such that R = ObjectProperty(C′, Q′) ∧ (R ∈ S)) ∨

 (∃ R ∈ S such that R = ObjectProperty(C′, Q′) ∧ (R ∈ S) ∧

 ∃ ctr ∈ S such that involve(ctr, R) ∧ violate(𝑟′, ctr))]

Case 4: a deletion operation, which removes: (i) the value 𝑣 of a data property DPi (Case

4.1), (ii) an instance c of a class C (Case 4.2), or (iii) an instance r of an object

property R (Case 4.3), while violating some constraint (explicitly) specified in the

current ontology schema “S”. These three sub-cases are detailed below.

Case 4.1: a deletion operation that removes the value of a data property from an instance c of

a class C, which violates some constraint in S

(c ∈ C ∧ C ∈ S ∧ DPi ∈ C ∧ ∃ 𝑣 = value(DPi, c) such that mandatory(DPi, C))

Case 4.2: a deletion operation that removes an instance c of a class C, which violates some

constraint in S

(C ∈ S ∧ ∃ Q ∈ S ∧ ∃ R ∈ S such that

 R = ObjectProperty(Q, C) ∧ mandatory(R, S))

Case 4.3: a deletion operation that removes an instance r of an object property R, which

violates some constraint in S

(R ∈ S ∧ mandatory(R, S))

To illustrate our approach, we provide in the following two examples.

Illustrative example no. 1: it deals with the addition of a new instance “c11” of a class “C1”,

to the current ontology instance document version “D1_V1” that is conformant to the current

ontology schema version “S1_V1”, while “c11” has a value “v” for a data property “DPx”

that does not belong to “C1” in “S1_V1”. This scenario is similar to the above Case 2.2. To

satisfy this requirement, an ontology schema change must be executed before performing the

addition operation. Indeed, first “S1_V1” must be changed through an operation that adds a

new data property “DPx” (whose data type is deduced from the type of the value “v”) to the

class “C1”. Since we are in a multi-schema-version environment, changing “S1_V1”

generates two components: “S1_V2”, the new/second ontology schema version, and

“D1_V2”, the new/second ontology instance document version that is conformant to “S1_V2”

and that is automatically created as a copy of “D1_V1”. After that, “c11” is stored in

“D1_V2”, as it could be added to this latter without problems. At instance level, one of the

two following situations will occur:

• If the new data property “DPx” has been declared, by the ontology administrator, as

mandatory (in “C1”), the previous instances of “C1”, which have been initially inserted

10

under “S1_V1” and have “logically” migrated from “D1_V1” to “D1_V2” during the

execution of the ontology schema change, are not conformant to “S1_V2” and therefore

one of the two following situations will happen for each previous instance

“prev_inst_C1” of “C1”, in order to preserve the consistency of the new ontology

version:

- if the ontology administrator provides a value for “DPx”, this instance

“prev_inst_C1” will be updated and kept in “D1_V2”;

- else, if the ontology administrator could not supply a value for “DPx”, this instance

“prev_inst_C1” will be removed from “D1_V2”.

• Else, if “DPx” has been specified as optional, the previous instances of “C1” are

conformant to both “S1_V1” and “S1_V2”.

Illustrative example no. 2: it deals with the addition of a new instance “c21” of a class “C2”,

to the current ontology instance document version “D2_V1” which is conformant to the

current ontology schema version “S2_V1”, while “c21” has not a value for a mandatory data

property “DPy” that belongs to “C2” in “S2_V1”. This scenario is also similar to the above

Case 2.2. To fulfill this requirement, an ontology schema change must be carried out before

adding the new class instance. In fact, first “S2_V1” has to be changed via one of the

following three operations:

• an operation that drops, from “C2”, the axiom that defines “DPy” as a mandatory data

property;

• an operation that changes, in “C2”, the axiom that specifies “DPy” as a mandatory data

property to an axiom that declares it as an optional one;

• an operation that drops, from “C2”, the data property “DPy” (and implicitly all axioms

that are related to it).

This ontology schema change gives rise to two ontology components: “S2_V2”, the second

ontology schema version, and “D2_V2”, the second ontology instance document version that

is conforming to “S2_V2” and that is built as a copy of “D2_V1”. Thereafter, “c21” is added

to “D2_V2”, since it could be stored in this latter without any problem. At instance level, one

of the three following situations will occur:

• If the axiom that defines “DPy” as a mandatory data property, has been dropped from

“C2” or if the axiom that specifies “DPy” as a mandatory data property of “C2”, has

been changed to declare it as an optional one, then the previous instances of “C2”,

introduced under “S2_V1” and migrated from “D2_V1” to “D2_V2” when executing

the ontology schema change, are conformant also to “S2_V2” (by default, a data

property is considered as optional).

• If the data property “DPy” has been dropped from “C2”, the previous instances of “C2”,

11

stored in “D2_V1” and copied in “D2_V2” during the accomplishment of the ontology

schema change, are not conforming to “S2_V2” and, as a consequence, each previous

instance “prev_inst_C2” of “C2” will be removed from “D2_V2”, in order to preserve

the whole consistency of the new ontology version.

As for the ontology schema change operations that are implicitly triggered by the system to

force the execution of the non-conservative ontology instance updates, they should be

correctly generated, based on the details of the instance update operations and on the

environment in which these updates are performed. Indeed, we propose two methods that

allow a multi-version ontology system to generate the sequence of ontology schema change

operations that is necessary for applying a sequence of non-conservative updates to an

ontology instance document version while preserving the consistency of the new ontology

version: the interactive and the non-interactive method. (i) The interactive method is based

on the interaction of the ontology administrator with the system, while he/she is updating

ontology instances through a suitable graphical user interface (GUI). The necessary ontology

schema change operations are implicitly generated by a specific module, named the “Instance

Update Interface Manager”. Such a module continuously collects all information supplied or

chosen by the ontology administrator on the GUI, detects any possible ontology schema

constraint violation, and automatically produces a valid sequence of ontology schema change

operations whose execution (and the automatic propagation of their effects to the

corresponding ontology instances) enables a consistent execution of the ontology instance

update(s). (ii) The non-interactive method is based on the provision, by the ontology

administrator, of a new entire ontology instance document version that has to be integrated

into the current ontology version. The ontology schema change operations that are necessary

to accommodate the new instance document version in the current version of the

corresponding ontology, are implicitly triggered by a specific module, named the “Conformity

Checker”. This module checks the conformity of the ontology instances, stored in the

provided ontology instance document version, with respect to the current version of the

ontology schema. If all instances are conforming to it, they are automatically integrated. In

case there are some instances that are not conforming to the current ontology schema version,

the “Conformity Checker” module generates a sequence of ontology schema change

operations whose execution (and the propagation of their effects to the corresponding

ontology instances) permit the addition of the new ontology instance document version to the

current ontology schema version, in a consistent manner.

Notice that, in our present work, we consider only the first method (i.e., the interactive one),

and apply it to the τOWL framework and to its τOWL-Manager tool, as shown in the next two

sections, respectively. The second method will be studied in a future work.

12

3. Extension of the τOWL Framework to Support Implicit Ontology Schema

Changes

In this section, we first present the τOWL framework (Zekri et al., 2014; Zekri et al., 2016).

Then, we apply our approach to τOWL by extending it to support non-conservative updates to

ontology instances, which require the execution of implicit ontology schema changes.

3.1. The τOWL Framework

In this subsection, first we provide the requirements that are satisfied through the building of

τOWL. Then, we present the architecture of this framework, in a detailed way.

3.1.1. Requirements

The τOWL framework fulfills the following set of requirements:

• to make easy the management of time for ontology administrators and to allow him/her

specifying and changing the temporal format of any OWL 2 ontology component;

• to support valid time and transaction time, for the management of the evolution over

time of OWL 2 ontologies;

• to support both ontology instance versioning and ontology schema versioning, in an

integrated manner;

• to keep compatibility with existing OWL 2 W3C recommendations, and editors, without

any need to modify them;

• to support existing applications that exploit OWL 2 ontologies;

• to guarantee logical data independence (Burns et al., 1986) for temporal OWL 2

ontologies by isolating changes to logical annotations from those to physical ones, and

vice versa;

• to provide several physical representations for the same logical specification of a

temporal OWL 2 ontology.

3.1.2. Architecture

τOWL allows an ontology administrator to create a temporal OWL 2 (W3C, 2012a) schema

and manage the corresponding temporal OWL 2 instances from a conventional OWL 2

schema, logical annotations, and physical annotations. In doing that, the τOWL approach

separates the ontology instances (assertional component) from the ontology schema

(terminological component) by storing them as distinct OWL 2 documents; such a separation

is usually considered as a good ontology design practice (Bergman, 2009). To this purpose, all

the data instances belonging to an ontology are stored together in what we call an ontology

instance document. The ontology instance document is assumed to be an OWL 2 file in

RDF/XML format (W3C, 2004b), which is, according to the OWL 2 specification (W3C,

13

2012b), the only syntax that must mandatorily be supported by OWL 2 tools. However, for

future releases of the τOWL framework, it is also planned to support a different serialization

format (e.g., JSON files or relational tables) in order to enable a more efficient processing of

very large ontology instances.

Figure 1 illustrates the architecture of τOWL. Rectangular boxes represent documents,

hexagonal boxes represent tools, solid arrows denote input/output data flows, dotted arrows

link documents to namespaces and dashed arrows stand for “references” relationships.

Moreover, the meaning of the color and the border pattern of rectangular boxes is as follows:

pink box with bold border for documents created/added by the ontology administrator (7, 9,

10, 11 and 12), blue box with dotted border for documents automatically generated by the

system (8, 13, 14, and 15), green box with dashed border for predefined documents making

part of the framework (2, 3, 4, 5 and 6), and white box with thin border for reference

documents released by the W3C (0 and 1).

Figure 1. The overall τOWL architecture.

In order to create a new ontology, the ontology administrator starts by creating the

conventional ontology schema (box 7), which is an OWL 2 ontology document that models

the concepts of a particular domain and the relations between these concepts as usual, without

taking into account any temporal aspect. To each conventional ontology schema corresponds

a set of conventional (i.e., non-temporal) OWL 2 instances that are stored in a conventional

ontology instance document (box 12). Any change to the conventional ontology schema is

propagated to its corresponding conventional ontology instances.

14

After that, the ontology administrator augments the conventional ontology schema with

logical and physical annotations, which allow him/her to express, in an explicit way, all

requirements dealing with the representation and the management of temporal aspects

associated to the components of such a schema, as described in the following.

• Logical annotations, which are inspired from those proposed in (Snodgrass et al., 2008),

allow the ontology administrator to specify (i) whether a conventional ontology schema

component varies over valid time and/or transaction time, (ii) whether its lifetime is

described as a continuous state or a single event, (iii) whether the component may

appear at certain times (and not at others), and (iv) whether its content changes. If no

logical annotations are provided, the default logical annotation is that anything can

change. However, once the conventional ontology schema is annotated, components

that are not described as time-varying are static and, thus, they must have the same

value across every conventional ontology instance document (box 12).

• Physical annotations, which are inspired from those introduced in (Snodgrass et al.,

2008), allow the ontology administrator to specify the chosen timestamp representation

options, such as where the timestamps are located, their kind (i.e., valid time or

transaction time), and their representation. The location of timestamps is largely

independent of which ontology components vary over time. Timestamps can be located

either on time-varying components (as specified by the logical annotations) or

somewhere above such components (i.e., on the components (grand) parents of these

components). Two temporal OWL 2 documents with the same logical information will

look very different if the ontology administrator changes the location of their physical

timestamps. Changing an aspect of even one timestamp can make a big difference in the

representation. τOWL supplies a default set of physical annotations, which is to

timestamp the root element with valid and transaction time. However, explicitly

defining them can lead to more compact representations (Snodgrass et al., 2008).

In order to improve conceptual clarity and also to enable a more efficient implementation, a

“separation of concerns” principle is adopted in τOWL: since the entities, the axioms and the

expressions of an OWL 2 ontology evolve over time independently, the authors of τOWL

distinguish between three separate types of annotations to be defined and to be associated to a

conventional ontology schema: the entity annotations (box 9), the axiom annotations (box 10)

and the expression annotations (box 11).

Entity annotations describe the logical and physical characteristics associated to the

components of an OWL 2 ontology: classes, relations, and properties. They indicate for

example the temporal formats of these components, which could be valid-time, transaction-

time, bi-temporal or snapshot (by default). The schema for the logical and physical entity

annotations is given by EntASchema (box 4). Axiom annotations and expression annotations

15

describe the logical and physical aspects of axioms and expressions defined on classes or on

properties. The schema for the logical and physical axiom annotations is given by

AxiASchema (box 5) and the schema for the logical and physical expression annotations is

given by ExpASchema (box 6).

Notice that EntASchema, AxiASchema, and ExpASchema, which all contain both logical and

physical annotations, are XML Schemas (W3C, 2004a). The annotations associated to the

same conventional schema can evolve independently. Any change to one of the three sets of

annotations does not affect the two other sets.

Finally, when the ontology administrator finishes annotating the conventional ontology

schema and asks the system to commit his/her work, the system creates the temporal ontology

schema (box 8) in order to provide the linking information between the conventional ontology

schema and its corresponding logical and physical annotations. The temporal ontology

schema is a standard XML document, which ties the conventional ontology schema, the entity

annotations, the axiom annotations, and the expression annotations together. In the τOWL

framework, the temporal ontology schema is the logical equivalent of the conventional OWL

2 schema in a non-temporal context. This document contains sub-elements that associate a

series of conventional ontology schema definitions with entity annotations, axiom

annotations, and expression annotations, along with the time span during which the

association was (or is) in effect. The schema for the temporal ontology schema document is

the XML Schema Definition document TOSSchema (box 3).

To complete the picture in the considered temporal context, after creating the temporal

ontology schema, the system creates a temporal ontology document (box 14) in order to link

each conventional ontology instance document (box 12), which is conformant to a

conventional ontology schema (box 7), to its corresponding temporal ontology schema (box

8), and more precisely to its corresponding logical and physical annotations (which are

referenced by the temporal ontology schema). A temporal ontology document is a standard

XML document that maintains the evolution of a non-temporal ontology instance document

over time, by recording all of the versions (or temporal slices) of the document with their

corresponding timestamps and by specifying the temporal ontology schema associated to

these versions. This document contains sub-elements that associate a series of conventional

ontology instance documents with logical and physical annotations (on entities, axioms, and

expressions), along with the time span during which the association was (or is) in effect.

Thus, the temporal ontology document is very important for making easy the support of

temporal queries working on past versions or dealing with changes between versions. The

schema for the temporal ontology document is the XML Schema Definition document

TODSchema (box 2).

Notice that, whereas TODSchema (box 2), TOSSchema (box 3), EntASchema (box 4),

16

AxiASchema (box 5), and ExpASchema (box 6) have been developed by us, OWL 2 (box 0)

and XML Schema (box 1) correspond to the standards endorsed by the W3C.

In a way similar to what happens in the τXSchema framework (Snodgrass et al., 2008) from

which τOWL is inspired, the temporal ontology schema document (box 8) is processed by the

temporal ontology schema validator tool in order to ensure that the logical and physical entity

annotations, axiom annotations and expression annotations are (i) valid with respect to their

corresponding schemas (i.e., EntASchema, AxiASchema, and ExpASchema, respectively),

and (ii) consistent with the conventional ontology schema. The temporal ontology schema

validator tool reports whether the temporal ontology schema document is valid or invalid.

Once all the annotations are found to be consistent, the representational ontology schema

generator tool generates the representational ontology schema (box 13) from the temporal

ontology schema (i.e., from the conventional ontology schema and the logical and physical

annotations); it is the result of transforming the conventional ontology schema according to

the requirements expressed through the different annotations. The representational ontology

schema becomes the schema for temporal ontology instances (box 15). These latters are

stored in a document, called the “squashed ontology document”; they are created

automatically from the temporal ontology document (box 14), i.e., from the conventional

ontology instances (box 12) and the temporal ontology schema (box 8), using the temporal

ontology instances generator tool (such an operation is called “squash” in the original

τXSchema approach). Moreover, the temporal ontology instances are validated against the

representational ontology schema through the temporal ontology instances validator tool,

which reports whether the temporal ontology instances document or the squashed ontology

document (box 15) is valid or invalid.

Notice that the τOWL framework has been implemented within a tool, named τOWL-

Manager (Zekri et al., 2015b; Zekri et al., 2016). It is programmed in Java (JDK 1.7) within

the IDE Eclipse Mars, using the OWL API (Horridge & Bechhofer, 2011) for creating and

manipulating OWL 2 ontology files, and the JDOM API for creating and manipulating XML

files. The first version of this tool, presented in (Zekri et al., 2015b), (i) allows constructing a

temporal ontology schema, by specifying some logical and physical annotations on an

existing valid conventional ontology schema, and (ii) supports only temporal versioning of

temporal ontology instances. The second version of this tool, presented in the subsection 4.3

of (Zekri et al., 2016), supports temporal versioning of the conventional ontology schema.

3.2. Extension of τOWL to Support Implicit Ontology Versioning

As ontology instances evolve over time to reflect the dynamics of the modelled reality,

corresponding ontology instance documents are also being updated to put into effect such a

dynamics. In the τOWL environment, instances updates are applied only on the current

17

version of the corresponding ontology instance document, since both instance updates and

schema changes are managed along transaction time, which means that only the current

instance document version can be changed by adding new instances, or by modifying or

deleting already existing instances.

The τOWL-Manager tool provides a GUI that allows the ontology administrator to

interactively update ontology instances. By receiving a command from the ontology

administrator involving the commit of the performed update operation(s), τOWL-Manager

launches the execution of the “Ontology Instance Document Update Processor” module

whose pseudo-code algorithm is given in Figure 2.

Algorithm Ontology_Instance_Document_Update_Processor

Inputs: ConvOntDoc_CV, ConvOntSch_CV, OIU_Ops, OSC_Ops, TempOntDoc,

 TempOntSch

Outputs: ConvOntDoc_NV, ConvOntSch_NV, SquashOntDoc_NV

Begin

1. CopyOntInstDoc(ConvOntDoc_CV, ConvOntDoc_NV);

2. ExecuteOntInstanceUpdates(ConvOntDoc_NV, OIU_ops);

3. resultComp := CompareOntInstDoc(ConvOntDoc_NV, ConvOntDoc_CV);

4. If (resultComp) Then

5. RemoveOntInstDoc(ConvOntDoc_NV);

6. Display(“In reality, no instance updates have been executed on

the current version of the conventional ontology instance

document”);

7. Else

8. UpdateTemporalOntologyDoc(TempOntDoc, ConvOntDoc_NV);

9. If (!Empty(OSC_Ops)) Then /* ConvOntDoc_NV is not

 conformant to ConvOntSch_CV */

10. CopyOntSchema(ConvOntSch_CV, ConvOntSch_NV);

11. ExecuteOntSchemaChanges(ConvOntSch_NV, OSC_Ops);

12. PropagateOntSchemaChangesTo(ConvOntDoc_NV);

13. UpdateTemporalOntologySchema(TempOntSch, ConvOntSch_NV);

14. End If

15. GenerateSquashedOntologyDoc(SquashOntDoc_NV, TempOntSch,

ConvOntDoc_NV);

16. End If

End

Figure 2. The algorithm executed by the “Ontology Instance Document Update Processor”.

18

This pseudo-code algorithm uses the following variables, functions, and procedures.

• Variables:

- ConvOntDoc_CV: the current version of the conventional ontology instance

document;

- ConvOntDoc_NV: the new version of the conventional ontology instance document;

- ConvOntSch_CV: the current version of the conventional ontology schema;

- ConvOntSch_NV: the new version of the conventional ontology schema;

- OIU_Ops: a valid sequence of update operations to conventional ontology instances,

which is generated by the “Instance Update Interface Manager”;

- OSC_Ops: a valid sequence of change operations to conventional ontology schema,

which is generated by the “Instance Update Interface Manager”;

- SquashOntDoc_NV: the new squashed ontology document, associated to the updated

temporal ontology document TempOntDoc;

- TempOntDoc: the temporal ontology document that links together the conventional

ontology instance document versions and the temporal ontology schema;

- TempOntSch: the temporal ontology schema that links together the conventional

ontology schema versions and the temporal ontology annotation document versions.

• Functions:

- CompareOntInstDoc(oid1, oid2): it compares two ontology instance documents (oid1

and oid2) and returns true if they have the same contents, or false otherwise;

- Empty(osc_ops): it returns true if the sequence of ontology schema change

operations (osc_ops) passed as argument is empty, or false otherwise.

• Procedures:

- CopyOntInstDoc(oid_cv, oid_nv): it creates a new conventional ontology instance

document (oid_nv) as a copy of the one passed as argument (oid_cv);

- ExecuteInstanceUpdates(conv_oid, oiu_ops): it executes the sequence of ontology

instance update operations (oiu_ops) on the conventional ontology instance

document passed as argument (conv_oid);

- RemoveOntInstDoc(conv_oid): it removes, from the disc, the conventional ontology

instance document passed as argument (conv_oid);

- Display(msg): it displays the message passed as argument (msg);

- CopyOntSchema(os_cv, os_nv): it creates a new conventional ontology schema

(os_nv) as a copy of the one passed as argument (os_cv);

- ExecuteOntSchemaChanges(conv_os, osc_ops): it executes the sequence of ontology

schema change operations (osc_ops) on the conventional ontology schema passed as

19

argument (conv_os);

- UpdateTemporalOntologyDoc(tod, conv_oid): it adds, to the temporal ontology

document passed as argument (tod), a new slice associated to a new conventional

ontology instance document version (conv_oid);

- PropagateOntSchemaChangesTo(conv_oid): it propagates the conventional ontology

schema change operations executed so far to the conventional ontology instance

document passed as argument;

- UpdateTemporalOntologySchema(tos, conv_os): it adds, to the temporal ontology

schema passed as argument (tos), a new slice associated to a new conventional

ontology schema version (conv_os);

- GenerateSquashedOntologyDoc(sod, tos, conv_oid): it creates a new squashed

ontology document (sod) based on a new conventional ontology instance document

version (conv_oid) and its temporal ontology schema (tos).

In general, our approach simplifies the checking of ontology instance conformity and the

generation of implicit ontology schema change operations, which are then performed in an

efficient way, since the system relies on both the current ontology schema version and the full

sequence of instance update operations (which have been executed on the current ontology

instance document version), to detect the ontology administrator’s operations (i) which move

inside this ontology schema version (i.e., conservative updates to ontology instances) or (ii)

which cross its borders (i.e., non-conservative updates to ontology instances) and

consequently require implicit changes to be done on the current ontology schema. More

precisely, we describe below how ontology instances are updated through the GUI of the

τOWL-Manager tool. To this purpose, τOWL-Manager is based on two main components: the

“Instance Update Interface Manager” and the “Ontology Instance Document Update

Processor”.

To add a new class instance, the ontology administrator starts by selecting the target class

from the class hierarchy to the left of the GUI (as shown in Figure 3) and clicking on the

contextual menu “Create instances” or by writing the class name in a suitable text field. If the

entered name actually does not correspond to an existing class, the “Instance Update Interface

Manager” assumes the ontology administrator wants to create a new class (i.e., it detects a

non-conservative ontology instance update) and, after asking for confirmation, asks the

ontology administrator where the new class should be put in the hierarchy (i.e., to indicate its

superclass); once the superclass of the new class is provided, the “Instance Update Interface

Manager” generates the corresponding ontology schema changes:

AddClass(newClassName);

AddSubClass(newClassName, superClassName);

After that, the “Instance Update Interface Manager” shows the Data Property Assertions

20

displaying the data properties of the selected class, or the data properties that are inherited

from the superclass in case of a new subclass, that the ontology administrator can use to fill in

the slots in order to specify values for the existing data properties.

Notice here that when adding a new instance of an existing class, the ontology administrator

could also perform the following tasks:

• to add new data properties, by clicking on the link “Add Data Property Instance(s)” and

specifying a data property name and possibly a set of values for the new data property;

thus, a non-conservative ontology instance update is detected and the required ontology

schema changes is generated:

AddDataProperty(className, newDataPropertyName);

Confirmation is then asked to the ontology administrator whether the new data property

has to be defined as optional and/or the number of inserted values has to be taken as a

cardinality constraint; in the former case the following ontology schema change has to

be added

SetCardinality(className, newDataPropertyName, minCard, 0);

whereas in the latter case the following ontology schema change has to be added

SetCardinality(className, newDataPropertyName, maxCard,

numberInsertedValues);

• to change the data type of existing data properties (e.g., from xsd:integer to

xsd:string), since the inserted data property values may be non compatible with the

type currently defined for that data property; hence a new data type is derived from the

inserted values and, after asking confirmation to the ontology administrator, the

following ontology schema change is generated:

ChangeDataPropertyType(className, dataPropertyName, newDataType);

• to rename existing data properties, since data properties names, which come either from

the selected class or from the specified superclass, are editable; hence, the “Instance

Update Interface Manager” detects a non-conservative ontology instance update and

generates the corresponding ontology schema change:

RenameDataProperty(className, dataPropertyName, newName);

• to change the minimum cardinality of existing data properties (e.g., to change the data

property from mandatory to optional), by deleting one or more values from those

currently defined for the data property such that the remaining values are under the

current minimum cardinality constraint (including deleting the single value of an

existing mandatory data property); hence, the “Instance Update Interface Manager”

detects a non-conservative ontology instance update and builds the corresponding

ontology schema change:

21

SetCardinality(className, dataPropertyName, minCard,

newNumberOfValues);

• to change the maximum cardinality of existing data properties (e.g., to change the data

property from functional to generic), by adding one or more values to those currently

defined for the data property such that the resulting values are over the current

maximum cardinality constraint (including adding a second value to an existing

functional data property); hence, the “Instance Update Interface Manager” detects a

non-conservative ontology instance update and builds the corresponding ontology

schema change:

SetCardinality(className, dataPropertyName, maxCard,

newNumberOfValues);

• to remove some existing data properties, by clicking on the link “Remove Data Property

Instance(s)”; consequently, in case the data property was currently defined as

mandatory, a non-conservative ontology instance update is detected and the

corresponding ontology schema changes are generated but confirmation is asked to the

ontology administrator whether the data property has to be removed from the class

definition or it has simply to be made optional: in the former case the generated

ontology schema change is

RemoveDataProperty(className, dataPropertyName);

whereas in the latter case the generated ontology schema change is

SetCardinality(className, dataPropertyName, minCard, 0);

• to specify some instances of the object properties (i.e., relationships) of this class, by

clicking on the button having the symbol “+” as a name and located to the right on top

of the table reserved to Object Property Assertions, while some range values correspond

to classes that do not exist in the current conventional ontology schema version (using

the graphical editor, the domain of an object property instance cannot be changed since

it corresponds to the chosen class on which the ontology administrator is working). In

such a case, the “Instance Update Interface Manager” infers that the ontology

administrator wants to change the range of some object property and the ontology

administrator is interactively asked where to put the new classes in the class hierarchy;

according to the ontology administrator’s answers, the “Instance Update Interface

Manager” generates, for each changed range, the following required ontology schema

changes:

AddClass(newClassName);

AddSubClass(newClassName, superClassName);

ChangeRange(objectPropertyName, newClassName);

Automatic change of cardinality constraints of object properties, triggered by non-

22

conservative insertions, deletions or modifications of object property instances, is managed

similarly to changes of cardinality constraints of data properties, explained above.

In order to update existing class instances (with their data property instances and object

property instances), the ontology administrator has to go to the menu “Ontology Instance

Document” and to click on the submenu “Evolve Ontology Instances”. Hence, the “Instance

Update Interface Manager” will let him/her choosing a conventional ontology schema (e.g.,

PersonFOAF in our example), or more precisely and implicitly the current version of this

ontology schema, and according to the choice of the ontology administrator, the current

version of the conventional ontology instance document, associated to the chosen

conventional ontology schema, will be displayed. The ontology administrator could then

update (in a broader sense) data property instances and/or object property instances of each

class instance, either these updates are conservative or not. Everything the ontology

administrator may choose, modify, delete or insert, that violates a constraint specified in the

current version of the involved conventional ontology schema, the “Instance Update Interface

Manager” assumes that he/she wants to perform a non-conservative ontology instance update

that consequently requires an ontology schema change. Hence, the “Instance Update Interface

Manager” uses the specifications and values provided by the ontology administrator to

compile the required sequence of all necessary implicit ontology schema changes. Notice that

the ontology schema changes generated during the interaction are similar to those presented

above for the insertions of class instances.

When the ontology administrator finishes updating conventional ontology instance(s) and

asks τOWL-Manager to commit his/her work, the “Instance Update Interface Manager”

receives his/her order and calls the module “Ontology Instance Document Update Processor”

(whose pseudo-algorithm is listed in Figure 2), while passing to it four arguments: the current

conventional ontology schema version (ConvOntSch_CV), the current conventional ontology

instance document version (ConvOntDoc_CV) which is being “updated”, the final sequence

of ontology instance update operations that have been made by the ontology administrator

(OIU_Ops), and the complete sequence of generated ontology schema change operations

(OSC_Ops); the former sequence constitute a log of the operations executed by the ontology

administrator in the whole conventional ontology instance update session and the latter has

been automatically generated during the interaction of the ontology administrator with

τOWL-Manager as detailed above. Being called, the module “Ontology Instance Document

Update Processor” executes the actions presented in the pseudo-algorithm of Figure 2. Indeed,

it generates a copy of ConvOntDoc_CV, executes the sequence of ontology instance update

operations (OIU_Ops) on this copy, and compares the updated copy to ConvOntDoc_CV; if,

there is no difference between them, it removes the updated copy and informs the ontology

administrator that actually no changes have been made. However, if the updated copy

ConvOntDoc_NV is different from ConvOntDoc_CV, it updates the temporal ontology

23

document corresponding to ConvOntDoc_CV, to take into consideration the new ontology

instance document version ConvOntDoc_NV, and checks the conformity of

ConvOntDoc_NV with respect to ConvOntSch_CV, by verifying if OSC_Ops is empty or

not. In case OSC_Ops is not empty, then the module “Ontology Instance Document Update

Processor” applies OSC_Ops on ConvOntSch_CV and obtains the new conventional ontology

schema version ConvOntSch_NV. If necessary, it also propagates (under the interactive

guidance of the ontology administrator) the conventional ontology schema changes

(OSC_Ops) to the conventional ontology instances stored in ConvOntDoc_CV, which have

not been affected by the ontology instance updates (OIU_Ops). After that, it updates the

corresponding temporal ontology schema to include ConvOntSch_NV, and generates the new

squashed ontology document version corresponding to ConvOntSch_CV.

It is worth mentioning that we have chosen to present the ontology schema change operations

generated by the “Instance Update Interface Manager” (OSC_Ops) as high-level operations

(Brahmia et al., 2014b), since they correspond to frequent ontology schema evolution needs

and allow to express intuitive ontology schema changes in a compact and user-friendly way.

However, each one of these operations can easily be mapped onto a valid sequence of

primitive operations for changing ontology schemas, which have been proposed in previous

works (Zekri et al., 2015a; Zekri et al., 2016; Zekri et al., 2017).

4. Implementation

Since the τOWL-Manager prototype tool (Zekri et al., 2015b; Zekri et al., 2016) already

supports the τOWL approach, we have decided to show the feasibility of our proposal through

its implementation as an extension of such a tool. This extension has consisted mainly in the

two following tasks:

• We have revised the “Ontology Instance Document Change Manager” module so that it

can also manage non-conservative ontology instance updates by allowing the creation of

a new version of the conventional ontology instance document, which is not conformant

to the current version of the conventional ontology schema; notice that such a

conventional ontology instance document version was automatically rejected, in the

previous releases of τOWL-Manager.

• We have built a new module, called “Implicit Ontology Schema Change Manager”,

which generates, in an automatic and transparent manner, a new version of the

conventional ontology schema and evolves its temporal ontology schema, every time

the “Ontology Instance Document Change Manager” module calls it.

In order to clarify the usage of the new release of the τOWL-Manager tool, we provide below

two examples that show how this tool manages non-conservative updates to ontology instance

documents. We assume to work on an ontology PersonFOAF, whose schema is initially a

24

copy of the well-known FOAF definition1.

In the first example (see Figures from 3 to 11), the non-conservative update consists in a new

instance of the class “Person” with two new instances for two data properties (i.e., “address”

and “phone” properties), which do not belong to the current PersonFOAF ontology schema

version. Notice that in this version, the class “Person” has only three data properties (for the

sake of simplicity) whose names are “name”, “surname”, and “country”, and which are all

mandatory.

In the second example (see Figures from 12 to 16), the non-conservative update consists in

adding a new instance of the class “Person” that does not include a value for a mandatory data

property (i.e., “phone”).

In the instance update session corresponding to example 1, the creation of a new instance of

the class "Person" is started in Figure 3, and the tool is asked to add new data property

instance(s) in Figure 4. In Figure 5, two new data property instances (address, optional with

the value “24, Avenue of the Revolution, 1000 Tunis”, and phone, mandatory with the value

“1122334455”) are being prepared to be added to the new Person instance. Adding the two

new data property instances (of address and phone) to the new Person instance is then shown:

in Figure 6 the ontology administrator asks the tool to add these two new instances, and in

Figure 7 the two new property instances are shown at the end of the list of property instances

of the new Person instance. In Figure 8, the tool is asked to save the new Person instance and

informs the ontology administrator that a new conventional ontology schema version will be

added to the τOWL repository and asks him/her to continue (i.e., saving the new Person

instance while adding a new ontology schema version) or to cancel the work. There is also an

option to view this new ontology schema version. Figures from 9 to 11 show the creation of

the new conventional ontology instance document version (OD_PersonFOAF_V2.rdf) and the

new conventional ontology schema version (PersonFOAFSchema_V2.owl), while updating

the temporal ontology document and the temporal ontology schema. In particular, in Figure 9,

the tool provides this information, in Figure 10 it informs the ontology administrator that

he/she has defined the phone property as mandatory and asks him/her supplying values for

this property in old instances if he/she wants that they also conform to the new ontology

schema version (the ontology administrator has not supplied any value), and in Figure 11 the

tool displays the code of the new ontology instance document version and the code of the new

ontology schema version.

1 http://xmlns.com/foaf/spec/

25

Figure 3. Step 1 of the ontology instance update process session of example 1. The ontology

administrator starts the addition of a new instance of the class “Person” with the following

data property values: "name"="Ahmad", "surname"="Layla", and "country"="Tunisia".

26

Figure 4. Step 2 of the ontology instance update process session of example 1. The ontology

administrator requests the addition of new data property instance(s), for the new “Person”

instance, and the tool informs him/her that he/she will add new data properties that do not

belong to the definition of the class “Person”, in the current ontology schema version.

27

Figure 5. Step 3 of the ontology instance update process session of example 1. The ontology

administrator specifies, for the same “Person” instance, the name, the value, and the

cardinality constraint of each new data property (“address”, and “phone”), and asks the

tool to save such a new instance.

28

Figure 6. Step 4 of the ontology instance update process session of example 1. The tool informs the

ontology administrator that the new data property instances will be added at the end of the

data property assertion list associated to the new instance of the class “Person”.

29

Figure 7. Step 5 of the ontology instance update process session of example 1. The tool displays all

data property instances that have been previously specified by the ontology administrator for

the new instance of the class “Person”.

30

Figure 8. Step 6 of the ontology instance update process session of example 1. The tool informs the

ontology administrator that a new version of the conventional ontology schema

PersonFOAF will be created (as a result of the specification of a non-conservative insertion

operation of a “Person” instance) and provides the full sequence of the ontology schema

change operations that will be executed to produce this new schema version (by adding, to

the class “Person”, the two new data properties “address” and “phone”).

31

Figure 9. Step 7 of the ontology instance update process session of example 1. The tool informs the

ontology administrator that (i) both a new conventional ontology instance document version

(that stores the new “Person” instance) and a new conventional ontology schema version,

corresponding to this instance document version, have been created, (ii) the temporal

ontology document has been updated to include the new slice corresponding to the new

conventional ontology instance document version, and (iii) the temporal ontology schema

has been updated to take into account the new conventional ontology schema version.

32

Figure 10. Step 8 of the ontology instance update process session of example 1. The tool informs the

ontology administrator that the data property “phone” of the class “Person” is mandatory,

and asks him/her to provide values for this data property in instances of the class “Person”,

which have been defined according to the previous version of the conventional ontology

schema (i.e., without the two data properties “address” and “phone”), if he/she would like

that these old “Person” instances also conform to the new conventional ontology schema

version. Notice that the ontology administrator has chosen not to supply values for these

instances.

33

Figure 11. Step 9 of the ontology instance update process session of example 1. The tool displays the

code of the new conventional ontology instance document version and the code of the new

conventional ontology schema version.

In the instance update session corresponding to example 2, Figure 12 shows the class

expression “DataMinCardinality” (with cardinality = 1) specified on the data property

“phone” of the class “Person”, in the second conventional ontology schema version

“PersonFOAFSchema_V2.owl”. In Figure 13, while creating a new instance of the class

“Person”, without a value for the data property “phone”, and asking the tool to save the new

Person instance, the tool informs the ontology administrator that the data property “phone”

should do not have a null value, since a class expression “DataMinCardinality” has been

defined on the class Person in the current conventional ontology schema version, and asks

him/her to continue or to cancel the work. In Figure 14, the tool informs the ontology

administrator that a new version of the conventional ontology schema PersonFOAF, which

changes the class expression “DataMinCardinality” previously defined on the data property

“phone” of the class “Person” from 1 to 0, will be generated and added to the τOWL

repository, and asks him/her to continue (i.e., saving the new Person instance while adding a

new ontology schema version) or to cancel the work. Figures 15 and 16 show the creation of

the new conventional ontology instance document version (OD_PersonFOAF_V3.rdf) and the

new conventional ontology schema version (PersonFOAFSchema_V3.owl), while updating

34

the temporal ontology document and the temporal ontology schema. In particular, in Figure

15 the tool provides this information and in Figure 16 the tool displays the code of the new

ontology instance document version and the code of the new ontology schema version.

Figure 12. Step 1 of the ontology instance update process session of example 2. The tool shows that,

in the code of new conventional ontology schema version, a class expression

“DataMinCardinality”, with the value “1” assigned to the attribute “cardinality”, has been

defined on the data property “phone” of the class “Person”, as a sub-class of this latter.

35

Figure 13. Step 2 of the ontology instance update process session of example 2. The tool (i) informs

the ontology administrator that the data property “phone” of the class “Person” is

mandatory, and therefore should not have a Null value in the new instance of the class

“Person” (having the following data property values: "name"="Rossi",

"surname"="Mario", "country"="Italy", and "address"="Porta Grenada 6, 20100 Milano"),

and (ii) asks him/her to press either the button “OK”, if he/she wants to force the execution

of this (non-conservative) insertion operation and to continue in this direction, or the

button “CANCEL”, if he/she does not want to add this new instance.

36

Figure 14. Step 3 of the ontology instance update process session of example 2. The tool (i) informs

the ontology administrator that a new conventional ontology schema version will be

created, corresponding to the new “Person” instance and changing the data property

“phone” of the class “Person” from mandatory (cardinality = "1") to optional (cardinality

= "0"), and (ii) asks him/her to press either the button “OK” to continue the execution of

the ontology instance insertion operation (which is implicitly accompanied with an

ontology schema change), or the button “CANCEL” otherwise.

37

Figure 15. Step 4 of the ontology instance update process session of example 2. The tool informs the

ontology administrator that (i) both a new conventional ontology instance document

version (to store the new “Person” instance) and a new conventional ontology schema

version, corresponding to this conventional ontology instance document version, have

been created, (ii) the temporal ontology document has been updated to take into account

the new slice corresponding to the new instance document version, and (iii) the temporal

ontology schema has been also updated to include the new schema version.

38

Figure 16. Step 5 of the ontology instance update process session of example 2. The tool displays both

the code of the new conventional ontology instance document version and that of the new

conventional ontology schema version.

Besides, it is worth mentioning that the effectiveness of our τOWL-Manager tool has also

been evaluated by several colleagues, through several and different examples; it has given

always the expected results. Therefore, we think that we achieved the objective stated in

Section 1.3, and that our tool behaves as expected in order to interactively accomplish implicit

ontology versioning driven by the modifications to the ontology instances, effected by the

ontology administrator.

5. Related Work Discussion

Managing changes to ontologies is an important and challenging topic that has been widely

studied in the literature. In (Flouris et al., 2008), the authors provide a good survey of all

aspects related to the ontology change issue. They first define this issue as the generic process

of modifying an ontology in response to a certain need and managing the effects of such a

modification on all depending components (data, services, applications, agents, other

ontologies, etc.). After that they identify and study eleven subfields of ontology change:

ontology mapping, morphism, matching, alignment, articulation, translation, evolution,

39

debugging, versioning, integration and merging. Our work is closely related to the subfields

“ontology evolution”, which means keeping always a single ontology schema version (i.e., the

last updated one) with its set of ontology instance versions (all ontology instance versions that

were conforming to the previous ontology schema version are automatically adapted to the

new ontology schema version), and “ontology versioning”, which consists in keeping all

ontology schema versions with their corresponding ontology instance versions. Notice that in

that survey, the authors have not mentioned any work that deals with non-conservative

updates or with ontology schema changes triggered by ontology instance updates.

In a recent work, Zablith et al. (2015) have given an excellent literature review on the

“ontology evolution” topic in the broad sense of this term: from ontology

change/adaptation/evolution (e.g., (Noy & Musen, 2002; Klein, 2004; Plessers et al., 2007;

Papavassiliou et al., 2013)) to ontology versioning (e.g., (Heflin & Hendler, 2000a; Klein &

Fensel, 2001; Klein et al., 2002; Redmond et al., 2008; Allocca et al., 2009a; Grandi, 2009)).

The authors present and compare approaches for managing ontology updates, at ontology

instance level and/or at ontology schema level, while maintaining or not ontology versions.

However, none of the reviewed proposals has tackled ontology instance updates that lead to

ontology schema changes or to ontology schema versions.

Hence, all works presented and discussed in (Zablith et al., 2015) and dealing with ontology

instance updates and/or ontology schema change/evolution/versioning could be considered as

related to our work. In the following, we will discuss only works that have dealt with

ontology instance/schema change/evolution/versioning and that either have not been covered

by such a survey or have been published after 2015.

Grandi (2009) proposes a multi-temporal RDF database model and provides a set of

manipulation operations which allow the management of temporal versions of an ontology.

Grandi (2011) extends such a model to support temporal versioning of light-weight RDF(S)

ontologies and introduces a set of change operations for defining and managing temporal

schema versions of an RDF(S) ontology. Similarly to (Grandi, 2009) and to (Grandi, 2011),

our present work handles temporal versioning of ontology instances and temporal versioning

of ontology schemas, respectively, but in a different temporal Semantic Web framework.

However, both (Grandi, 2009) and (Grandi, 2011) have not studied ontology instance updates

that require ontology schema changes.

Grandi (2013) provides primitive operations that can be used for the maintenance of the class

structure of a multi-version ontology (embodying a tree-shaped class hierarchy). Grandi

(2016) extends this work by considering ontologies with a class hierarchy structured as a

general directed graph, that is also supporting multiple inheritance and intersection classes,

and showing how multi-version ontologies must be dealt with for the processing of ontology-

based personalization queries. Contrarily to (Grandi, 2013) and (Grandi, 2016), we focus on

40

changes to ontology instance documents, which give rise to implicit and automatic ontology

schema changes.

Jaziri et al. (2010) introduce a tool-supported approach for ontology evolution (i.e., keeping

always the last ontology version) which allows adapting an ontology while preserving its

consistency. This work has been extended by the authors of (Sassi et al., 2016) who have

proposed an ontology versioning approach and a tool, called Consistology, which support (i)

the management of ontology versions based on their relevance, which is evaluated according

to four criteria (i.e., conceptualization, usage frequency, abstraction, and completeness), and

(ii) the definition of a process that “reduces” the number of stored ontology versions: when a

maximum is reached, the least relevant ontology versions are removed. Notice here that the

maximum number of ontology versions and the selection of relevance criteria to be applied

are managed by the tool user. In our current paper, we do not study ontology version

relevance or reduction of ontology version number. Besides, we think that removing ontology

versions is a dangerous action since it leads to ontology loss and therefore to several problems

in all components (applications, agents, services, other ontologies …) depending on the

removed ontology. Furthermore, in our environment, we consider that any ontology version

has been created as a response to some actual requirement(s) and thus all ontology versions

are important and have the same relevance.

Im et al. (2012) propose a framework for managing ontology versioning in RDF triple stores.

Their approach is based on (i) storing the original RDF data version and the deltas between

each two consecutive versions, in a relational database, and (ii) constructing any version, on

the fly, through an SQL statement that applies the corresponding deltas to the original version.

The main advantage of this approach is the reduction of the storage space. Contrarily to this

work, we keep all versions of any manipulated ontology. Moreover, our proposal allows the

ontology administrator/user performing any change to an ontology instance document

whereas the framework proposed in (Im et al., 2012) considers only insert and delete

operations. The authors consider that a triple update operation could be effected through a

deletion of the old triple followed by an insertion of the new triple. Notice that while this

modeling of the triple update operation could be acceptable at instance level, as it is safe, it

may give rise to some problems at schema level.

In (Khattak et al., 2013), the authors propose a tool-supported framework for managing

change history in evolving web ontologies. It supports features related to ontology change like

ontology versioning, change provenance, ontology consistency, ontology recovery, change

representation, and change visualization. Ontology changes are stored in a temporal triple

store, named the Change History Log (CHL), which is a main component of the framework.

Logged ontology changes allow recovering any previous ontology version in the case of

unauthorized changes, version conflicts, or an inconsistent/incomplete ontology version

41

resulting e.g. from an accidental closing of the ontology editor. Our approach does not include

an ontology change log but it stores all ontology instance/schema versions while

timestamping them with their transaction times (thanks to the temporal ontology schema and

the temporal ontology document components). Therefore, our proposal allows the ontology

administrator to obtain any previous ontology instance/schema version that has been valid at a

given instant or during a given time interval.

Taleb et al. (2014) propose and implement a method for comparing OWL ontology versions

and extracting differences between them. Our approach compares both ontology instance

versions and ontology schema versions, before recording them; if a new ontology

instance/schema version is identical to the previous one, it is not accepted.

The paper of Flahive et al. (2015) has dealt with updating or adapting large ontologies in a

semantic grid environment. The authors have formalized and validated the ontology update

process while some sections of one ontology are replaced by a subset extracted from another

ontology. However, the authors have not talked about ontology instance updates that require

ontology schema changes.

In the context of ontologies that are defined under the RDF model, Kondylakis and Papadakis

(2018) have proposed EvoRDF, a framework to explore ontology evolution through

provenance queries. It is based on a high-level language for changing ontologies and allows

answering three types of queries: (i) “when” queries, looking for the introduction time of a

resource, (ii) “how” queries, seeking by which change operations a resource has been

introduced, and (iii) “why” queries, searching the sequence of change operations that led to

the creation of a resource in the current ontology version. Further, Taelman et al. (2019) have

proposed a technique for indexing RDF archives, which allows storing datasets with a low

storage overhead, through the compression of consecutive versions and the addition of

metadata to reduce lookup times. They have also defined algorithms, which are based on this

technique, to evaluate queries in such a multi-version environment.

Kozierkiewicz and Pietranik (2019) have studied revalidation of ontology alignment (i.e.,

mapping defined between two ontologies), which is triggered by evolution of one or both of

the participating ontologies, and more precisely by changes performed on concepts of these

ontologies. However, the environment in which the study has been effected does not support

ontology versioning. Besides, it is worth mentioning that in our present work, we have not

dealt with the impact of ontology changes on ontology alignment.

In (Bayoudhi et al., 2019), the authors have proposed an approach and a Protégé plug-in for

versioning of OWL 2 DL ontologies, while applying an a priori consistency management

technique (i.e., checking ontology consistency before applying ontology changes) and storing

ontology versions in a temporal object-oriented database whose (temporal) schema is based

on both the direct model-theoretic semantics for OWL 2 (W3C, 2012c) and on the proposal of

42

Zhang et al. (2015) dealing with the storage of OWL 2 ontologies in object-oriented

databases. However, the approach of Bayoudhi et al. (2019) does not support implicit schema

changes triggered by non-conservative instance updates (not taken into account in this

approach).

Bürger et al. (2020) have proposed an approach implemented in a system prototype for the

detection of occurrences of semantic editing patterns, defined as graph transformation rules,

between two versions of an OWL ontology. Moreover, they have evaluated their proposals in

a medical information system, while considering ontologies for software security.

Nevertheless, this approach supports neither ontology schema versioning (only the last

version of the ontology is kept), nor ontology instance versioning.

In (Cardoso et al., 2020), first a new technique, named the historical knowledge graph (HKG),

has been proposed to store into one single knowledge graph all versions of an ontology along

with a log of corresponding changes (which includes all changes applied on each version of

this ontology). After that, the authors have experimentally evaluated the HKG through three

use-cases in the biomedical area. Contrarily to the approach of Cardoso et al. (2020), ours

stores ontology versions in files that are independent on those that store ontology change

operations. We think that although the HKG could reduce the storage space associated to

multi-versions ontologies and their changes logs, it introduces new difficulties like: (i) the

necessity to define new efficient indexes for HKG files that are in general very large, and (ii)

the need to revise specifications of existing ontology query/update languages and ontology

tools, which were designed to work on files that only contain ontologies created with one of

the existing ontology languages like OWL, OWL 2, RDF, RDF/XML or RDFS. Besides,

Cardoso et al. (2020) have considered neither non-conservative ontology instance updates,

nor implicit ontology schema changes.

In (Priya and Kumar, 2020), the topic of ontology merging has been dealt with while focusing

on the ontology heterogeneity that does not allow interoperability between heterogeneous

ontologies. More precisely, the authors have proposed an algorithm, named “pseudo-intent

with backtracking-based FCA-Merge”, for ontology merging through the use of formal

concept analysis (FCA) (Ganter and Wille, 2012). This algorithm executes four processes in

order to merge two ontologies (inputs) into a single ontology (output). These processes are as

follows: (i) identification of decision tree-based attributes, (ii) generation of linked lists to

increase the sparse matrix size, (iii) performing backtracking to reduce the combinatorial

problems, and (iii) execution of merging based on the generated linked lists. The proposed

algorithm has been experimentally evaluated with respect to three existing methods for

ontology merging (FCA-Merge, OntEx, and FCA-Map); it provides 97% of precision, 82% of

recall, and 89% of accuracy, which are all higher than the other existing methods.

Recently, Santos et al. (2020) have proposed an experimental analysis concerning a set of

43

existing tools that are used for the management of ontology evolution. The tools are:

PromptDiff (Noy et al., 2002), WebProtégé (Horridge et al., 2019), CODEX (Hartung et al., 2012),

KAON (Stojanovic et al., 2002), OWL Diff (Redmond & Noy, 2011), OntoDiffGraph (Lara et al.,

2017), and OIM (Davidovsky et al., 2011). The authors have evaluated them based on the

following four criteria: change detection, complex change detection, change inspection, and

extensibility. As for the “change detection” criterion, it deals with how primitive ontology

changes are detected. Two techniques are identified: (i) keeping track of the history of

ontology changes that are performed by the user using tool, and (ii) generating the difference

between successive ontology versions. As for the “complex change detection”, it concerns the

capability of a tool to (automatically) detect a complex ontology change from a sequence of

primitive ontology changes applied by the user. As for the “change inspection” criterion, it

concerns the representation of the applied ontology changes, which can be either textual (e.g.,

via a log file) or graphical (e.g., as a diagram). The “extensibility” criterion is dealing with the

possibility to extend the provided tool (taking into account facts like the availability of its

source code). Notice that, with regard to these four criteria, the τOWL-Manager tool detects

ontology changes through the history of actions done by the ontology administrator on his/her

GUI used to update ontology instances or ontology schema. Furthermore, in its current

release, τOWL-Manager only allows to explicitly perform complex ontology changes at

schema level, and is not able to detect a complex change from a list of primitive changes

effected at instance/schema levels. As far as the ontology change inspection issue is

concerned, our tool uses a textual format to represent the effected ontology changes.

Considering the fourth criterion, τOWL-Manager is extensible and its source code could be

provided upon request.

In (Bayoudhi et al., 2020), the authors have surveyed (among others) approaches for ontology

versioning while focusing on three research topics: (i) ontology versions pertinence, like in

(Sassi et al., 2016), (ii) ontology versions relationship, like in (Allocca et al., 2009b) and

(Díaz et al., 2011), and (iii) ontology versions storage and querying, like in (Grandi, 2013),

(Grandi, 2016), (Meimaris, 2018), (Bayoudhi et al., 2019), and (Taelman et al., 2019).

The works, which are more strictly related with our approach, are (Zekri et al., 2014), (Zekri

et al., 2015a), (Zekri et al., 2015b), (Zekri et al., 2016), and (Zekri et al., 2017).

Zekri et al. (2014) introduce τOWL, a τXSchema-like framework, which allows creating a

temporal OWL 2 ontology from a conventional OWL 2 ontology and a set of logical and

physical annotations. This framework ensures logical and physical data independence, since it

(i) separates conventional schema, logical annotations, and physical annotations, and (ii)

allows each one of these three components to be changed independently and safely. The

present work extends (Zekri et al., 2014) by (i) proposing an approach for implicit schema

versioning in τOWL and (ii) focusing on non-conservative changes to conventional ontology

44

instance documents, which lead to the versioning of the corresponding conventional ontology

schema. Zekri et al. (2016) extend the work presented in (Zekri et al., 2014) by showing how,

in the τOWL framework, temporal ontology instance versioning could be managed in the

presence of temporal ontology schema versioning, simultaneously and in a consistent manner.

In (Zekri et al., 2015a), the authors propose two complete sets of schema change primitives,

one for changing conventional ontology schema and the other for updating temporal ontology

schema, in the τOWL context. Zekri et al. (2017) propose an approach, which extends the

contribution of Zekri et al. (2016), for managing time-varying knowledge, since an ontology

can be used for knowledge management. Although the proposals presented in (Zekri et al.,

2015a), (Zekri et al., 2016), and (Zekri et al., 2017) have focused on ontology schema

versioning in τOWL, none of them has dealt with ontology schema changes generated by

ontology instance updates. Zekri et al. (2015b) present τOWL-Manager, a prototype tool that

allows defining temporal ontology schema and managing temporal versioning of temporal

ontology instances, in the τOWL framework, while supporting only conservative updates to

ontology instances. Zekri et al. (2016) extend (Zekri et al., 2015b) by adding schema

versioning support to τOWL-Manager and showing its functionalities. Our present work

extends τOWL-Manager to consistently support both non-conservative updates to

conventional ontology instance documents and implicit conventional ontology schema

changes triggered by these instance updates.

Notice that in the XML world, Bouchou et al. (2004) have talked about invalid updates to

XML (instance) documents, which are XML data updates that give rise to XML documents

not valid to their corresponding XML schemas. Invalid documents must be adapted to meet

the changed XML schema, which is a dangerous operation as it could lead to some data loss

when some updates require removing some XML schema components. Although non-

conservative ontology instance updates are similar to invalid XML document updates, they

are studied in different environments: invalid updates have been investigated in a non-

temporal XML environment that supports only schema evolution (i.e., only the last XML

schema version is kept with its XML instances), whereas non-conservative ontology instance

updates have been considered in a temporal and multi-schema-version OWL 2 ontology

environment (i.e., τOWL). Furthermore, our approach does not lead to any data loss, as both

instances and schemas are temporally versioned. Moreover, Bouchou and Duarte (2007) have

talked about non-conservative schema evolution in an XML environment, which means that

XML documents that are valid to an XML schema before its change could become not valid

with respect to such a schema after its change. Similarly to the approach introduced by

Bouchou et al. (2004), the authors of (Bouchou and Duarte, 2007) have also proposed that

existing XML documents, which are no longer valid to the new XML schema, must be

adapted to this latter. Contrarily to the approach of Bouchou and Duarte (2007), which has

some disadvantages like data loss, our approach deals with non-conservative updates to

45

ontology instance documents, in an environment that supports ontology schema versioning,

and therefore, it avoids several problems like loss of data and schemas, and system downtimes

that are necessary to revise source codes of programs that are using the updated ontology

instance documents and/or the changed ontology schemas.

In Table 1, we compare the ontology evolution/versioning approaches of the literature to our

approach, while taking into account the following seven criteria:

• Ontology language (e.g., RDFS, OWL, OWL 2, OWL DL, UML), representing the

ontology definition language on which the approach is based.

• Implementation (Yes or No), telling whether the approach has been implemented.

• Support of temporal aspects (Yes or No), telling whether the approach supports

temporal aspects. If “Yes”, it is also mentioned at which level they are supported

(instance level and/or schema level).

• Ontology instance change technique (Instance Evolution, if only the last instance

version is kept, or Instance Versioning).

• Ontology schema change technique (Schema Evolution or Schema Versioning).

• Support of non-conservative updates to ontology instances (Yes or No).

• Support of implicit ontology schema changes (Yes or No).

Table 1. Comparison of approaches dealing with ontology evolution/versioning.

Approach
Ontology

language

Im
p

le
m

en
ta

ti
o

n

Support of

temporal

aspects

Ontology

instance

change

technique

Ontology

schema

change

technique

Support of

non-

conservative

updates to

ontology

instances

Support

of implicit

ontology

schema

changes

Grandi (2009) RDF No Yes
Instance

Versioning
- No No

Grandi (2011) RDF(S) No Yes
Instance

Versioning

Schema

Versioning
No No

Grandi (2013)

No specific

language;

tree-like

ontology

No No
Instance

Versioning

Schema

Versioning
No No

Grandi (2016)

No specific

language;

general

graph

ontology

Yes No
Instance

Versioning

Schema

Versioning
No No

Jaziri et al.

(2010)
UML Yes No

Instance

Evolution

Schema

Evolution
No No

Sassi et al.

(2016)
UML Yes No

Instance

Versioning

Schema

Versioning
No No

Im et al.

(2012)
RDF No No

Instance

Versioning
- No No

Khattak et al. RDFS, Yes No Instance Schema No No

46

(2013) OWL Versioning Versioning

Taleb et al.

(2014)
OWL Yes No

Instance

Versioning
- No No

Flahive et al.

(2015)
Generic No No

Instance

Versioning
- No No

Kondylakis

and Papadakis

(2018)

RDF Yes No
Instance

Evolution

Schema

Evolution
No No

Taelman et al.

(2019)
RDF Yes No

Instance

Versioning
- No No

Kozierkiewicz

and Pietranik

(2019)

Generic No No
Instance

Versioning

Schema

Versioning
No No

Bayoudhi et

al. (2019)
OWL 2 DL Yes No

Instance

Versioning

Schema

Versioning
No No

Bürger et al.

(2020)
OWL Yes No

Instance

Versioning

Schema

Versioning
No No

Cardoso et al.

(2020)

Historical

Knowledge

Graph

Yes No
Instance

Versioning

Schema

Versioning
No No

Priya and

Kumar (2020)
FCA Yes No

Instance

Evolution

Schema

Evolution
No No

Zekri et al.

(2016), Zekri

et al. (2017)

OWL 2 Yes

Yes; at

both

instance

and

schema

levels

Instance

Versioning

Schema

Versioning
No No

Our approach OWL 2 Yes

Yes; at

both

instance

and

schema

levels

Instance

Versioning

Schema

Versioning
Yes Yes

Moreover, in Table 2, we summarize the features of most popular existing tools for ontology

evolution/versioning and of our τOWL-Manager tool, taking into account the following six

aspects:

• Ontology language (e.g., RDFS, OWL, OWL 2, OWL DL, UML), representing the

ontology definition language on which the approach is based.

• Support of temporal aspects (Yes or No), telling whether the tool supports temporal

aspects. If “Yes”, it is also mentioned at which level they are supported (instance level

and/or schema level).

• Support of ontology instance versioning (Yes or No).

• Support of ontology schema versioning (Yes or No).

• Support of non-conservative updates to ontology instances (Yes or No).

• Support of implicit ontology schema changes (Yes or No).

47

Table 2. Comparison of research tools dealing with ontology evolution/versioning.

Tool
Ontology

language

Support of

temporal

aspects

Support of

Ontology

instance

Versioning

Support of

Ontology

Schema

Versioning

Support of

Non-

conservative

Updates to

Ontology

Instances

Support of

Implicit

Ontology

Schema

Changes

PromptDiff

(Noy et al.,

2002)

OWL No No No No No

OWL Diff

(Redmond &

Noy, 2011)

OWL2 No No No No No

OntoDiffGraph

(Lara et al.,

2017)

VOWL No No No No No

CODEX

(Hartung et al.,

2012)

OBO No No No No No

WebProtégé

(Horridge et al.,

2019)

OWL 2,

OWL 2 EL,

OBO

No No No No No

KAON

(Stojanovic et

al., 2002)

KAON

language
No No No No No

OIM

(Davidovsky et

al., 2011)

OWL No Yes Yes No No

Consistology

(Sassi et al.,

2016)

UML No No Yes No No

Bayoudhi et al.

(2019)’s tool
OWL 2 DL No Yes Yes No No

Our τOWL-

Manager tool

(in its last

release)

OWL 2

Yes; at both

instance and

schema

levels

Yes Yes Yes Yes

6. Conclusion

In this paper, we have proposed a new general approach for managing ontology instance

updates that require ontology schema changes in order to produce a consistent result, in an

environment that supports temporal versioning of both ontology instances and ontology

schemas. We have implemented this approach in the τOWL framework, extending it to

support two new aspects: non-conservative updates to ontology instances and ontology

schema changes that are triggered by such instance updates. In order to show the feasibility of

our approach, we have developed a new version of the τOWL-Manager, which allows

ontology administrators to perform ontology instance updates that require implicit ontology

schema changes. With the developed tool, non-conservative updates can be executed in

τOWL-based Semantic Web repositories, while managing instance and schema changes

consistently and guaranteeing a full history of evolving conventional ontology instances and

48

schemata. The required implicit ontology schema changes are automatically generated and,

upon approval by the ontology administrator, executed.

To the best of our knowledge, we are the first to deal with these two interesting issues in an

ontology environment that supports versioning at both instance and schema levels: non-

conservative updates to ontology instances and implicit ontology schema changes. We have

also applied it to an established framework (i.e., τOWL) for managing evolving ontologies

and implemented it within a tool prototype (i.e., τOWL-Manager). We think that our proposal

provides more flexibility in the management of ontology evolution and ontology versioning,

guarantees safety of the updated ontology instance documents and the ontology schema

documents, and makes it easy to ontology administrators, especially if they have no sufficient

skills to extricate themselves with devising and applying ontology schema changes, the task

of effecting non-conservative updates to conventional ontology instance documents.

Moreover, from an ontology engineering viewpoint, the τOWL-Manager provides a practical

environment which can be used to support an incremental ontology construction method

driven by the gradual availability of instance data.

As a part of our future work, we intend to study the interesting second method for updating

ontology instances: the non-interactive one. Such a method is applied when the ontology

administrator would like to integrate, into the τOWL repository, a new conventional ontology

instance document (e.g., which has been prepared offline or which is imported from an

external source), that must be merged with the current ontology instance document to produce

a new ontology instance document version. The works already done by Papavassiliou et al.

(2009), on ontology change detection in knowledge bases, and by Gröner et al. (2010), on

semantic recognition of ontology refactorings, could help us in this direction.

Furthermore, although retroactive and proactive updates to ontology instances are required

(since we are in a temporal environment) to perform some instance updates with retroactive or

proactive effect respectively, they are not allowed by the τOWL-Manager in its current

release, as only transaction-time versioning is supported at both instance and schema levels;

consequently, only on-time updates are allowed. In our future work, we intend to extend both

τOWL and τOWL-Manager to also support valid-time schema versioning and/or bitemporal

schema versioning (De Castro et al., 1997), so that they will also provide appropriate

functionalities to execute such updates.

Moreover, we also plan to extend our current proposal to deal with propagating, in an

automatic and safe manner, the effects of ontology schema changes to the possible other

ontologies that are using or extending the evolved ontology, and to all artifacts (e.g.,

application programs, services, scripts, agents, web pages) that are relying on the ontology

whose schema is changed; such an efficient propagation will be very helpful for ontology

administrators.

49

Last but not least, in the future, we aim at studying the following aspect that is related to our

present work and that we consider very interesting for today’s semantic web applications:

performing on-the-fly ontology schema changes which are necessary to the support of high-

availability applications (like Internet of Things, cloud computing and e-health applications).

References

Al-Jadir, L., Parent, C., & Spaccapietra, S. (2010). Reasoning with large ontologies stored in relational

databases: The OntoMinD approach. Data and Knowledge Engineering, 69(11), 1158-1180.

Allocca, C., d’Aquin, M., & Motta, E. (2009a). Detecting different versions of ontologies in large ontology

repositories. In Proceedings of the 3rd International Workshop on Ontology Dynamics (IWOD 2009).

CEUR Workshop Proceedings, Vol-519. http://ceur-ws.org/Vol-519/allocca.pdf

Allocca, C., d'Aquin, M., & Motta, E. (2009b). Door: Towards a formalization of ontology relations. In

Proceedings of the International Conference on Knowledge Engineering and Ontology Development

(KEOD 2009), pp. 13-20.

Antoniou, G., Groth, P., Harmelen, F. V., & Hoekstra, R. (2012). A Semantic Web Primer (3rd edition). The

MIT Press, Cambridge, London, England.

Artale, A., Kontchakov, R., Kovtunova, A., Ryzhikov, V., Wolter, F., & Zakharyaschev, M. (2017).

Ontology-Mediated Query Answering over Temporal Data: A Survey. In Proceedings of the 24th

International Symposium on Temporal Representation and Reasoning (TIME’2017), Mons, Belgium,

16-18 October 2017, pp. 1:1-1:37.

Bayoudhi, L., Sassi, N., & Jaziri, W. (2019). Efficient management and storage of a multiversion OWL 2

DL domain ontology. Expert Systems, 36(2), e12355.

Bayoudhi, L., Sassi, N., & Jaziri, W. (2020). A Survey on Versioning Approaches and Tools. In

Proceedings of the International Conference on Intelligent Systems Design and Applications (ISDA

2020), pp. 1155-1164. Springer, Cham.

Bergman, M. (2009). The Fundamental Importance of Keeping an ABox and TBox Split - Ontology Best

Practices for Data-driven Applications: Part 2, 17 May 2009.

http://www.mkbergman.com/489/ontology-best-practices-for-data-driven-applications-part-2/

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The Semantic Web. Scientific American, 284(5), 34-43.

Bouchou, B., Duarte, D., Alves, M. H. F., Laurent, D., & Musicante, M. A. (2004). Schema evolution for

XML: A consistency-preserving approach. In Proceedings of the International Symposium on

Mathematical Foundations of Computer Science (MFCS’2004), pp. 876-888. Springer, Berlin,

Heidelberg.

Bouchou, B., & Duarte, D. (2007). Assisting XML Schema Evolution that Preserves Validity. In

Proceedings of the 22nd Brazilian Symposium of Databases (SBBD’2007), pp. 270-284.

Brahmia, S., Brahmia, Z., Grandi, F., & Bouaziz, R. (2017). Temporal JSON Schema Versioning in the

τJSchema Framework. Journal of Digital Information Management, 15(4), 179-202.

Brahmia, Z., Grandi, F., Oliboni, B., & Bouaziz, R. (2014a). Schema Change Operations for Full Support

of Schema Versioning in the XSchema Framework. International Journal of Information Technology

and Web Engineering, 9(2), 20-46.

50

Brahmia, Z., Grandi, F., Oliboni, B., & Bouaziz, R. (2014b). High-level Operations for Creation and

Maintenance of Temporal and Conventional Schema in the τXSchema Framework. In Proceedings of

the 21st International Symposium on Temporal Representation and Reasoning (TIME’2014), Verona,

Italy, 8-10 September 2014, pp. 101-110.

Brahmia, Z., Grandi, F., Oliboni, B., & Bouaziz, R. (2018). Schema Versioning in Conventional and

Emerging Databases. In: Mehdi Khosrow-Pour, (Ed.), Encyclopedia of Information Science and

Technology (4th edition), IGI Global, Hershey, PA, USA, 2018, pp. 2054-2063.

Bürger, J., Kehrer, T., & Jürjens, J. (2020). Ontology Evolution in the Context of Model-Based Secure

Software Engineering. In Proceedings of the 14th International Conference on Research Challenges in

Information Science (RCIS’2020), pp. 437-454. Springer, Cham.

Burns, T., Fong, E., Jefferson, D., Knox, R., Mark, L., Reedy, C., Reich, L., Roussopoulos, N., &

Truszkowski, W. (1986). Reference Model for DBMS Standardization, Database Architecture

Framework Task Group (DAFTG) of the ANSI/X3/SPARC Database System Study Group. SIGMOD

Record, 15(1), 19-58.

Cardoso, S. D., Da Silveira, M., & Pruski, C. (2020). Construction and exploitation of an historical

knowledge graph to deal with the evolution of ontologies. Knowledge-Based Systems, 194, 105508.

Davidovsky, M., Ermolayev, V., & Tolok, V. (2011). Instance migration between ontologies having

Structural Differences. International Journal on Artificial Intelligence Tools, 20(06), 1127-1156.

De Castro, C., Grandi, F., & Scalas, M. R. (1997). Schema Versioning for Multitemporal Relational

Databases. Information Systems, 22(5), 249-290.

Díaz, A., Motz, R., & Rohrer, E. (2011). Making ontology relationships explicit in a ontology network. In

Proceedings of the 5th Alberto Mendelzon International Workshop on Foundations of Data Management

(AMW 2011). CEUR Workshop Proceedings, Vol-749, paper14. http://ceur-ws.org/Vol-749/paper14.pdf

Etzioni, O., Golden, K., & Weld, D. S. (1997). Sound and efficient closed-world reasoning for planning.

Artificial Intelligence, 89(1-2), 113-148.

Flahive, A., Taniar, D., Rahayu, J. W., & Apduhan, B. O. (2015). A methodology for ontology update in

the semantic grid environment. Concurrency and Computation: Practice and Experience, 27(4), 782-

808.

Flouris, G., Manakanatas, D., Kondylakis, H., Plexousakis, D., & Antoniou, G. (2008). Ontology change:

classification and survey. Knowledge Engineering Review, 26(2), 117-152.

Ganter, B., & Wille, R. (2012). Formal concept analysis: mathematical foundations. Springer Science &

Business Media.

Grandi, F. (2009). Multi-temporal RDF ontology versioning. In Proceedings of the 3rd International

Workshop on Ontology Dynamics (IWOD 2009), Washington, D.C., USA, 26 October 2009. CEUR

Workshop Proceedings, Vol-519. http://ceur-ws.org/Vol-519/grandi.pdf

Grandi, F. (2010). T-SPARQL: a TSQL2-like temporal query language for RDF. In Proceedings of the 1st

International Workshop on Querying Graph Structured Data (GraphQ 2010), Novi Sad, Serbia, 20

September 2010, pp. 21-30.

Grandi, F. (2011). Light-weight Ontology Versioning with Multi-temporal RDF Schema. In Proceedings of

the 5th International Conference on Advances in Semantic Processing (SEMAPRO 2011), Lisbon,

Portugal, 20-25 November 2011, pp. 42-48.

51

Grandi, F. (2013). Dynamic multi-version ontology-based personalization. In Proceedings of the 2nd

International Workshop on Querying Graph Structured Data (GraphQ 2013), Genoa, Italy, 22 March

2013, pp. 224-232.

Grandi, F. (2016). Dynamic class hierarchy management for multi-version ontology-based personalization.

Journal of Computer and System Sciences, 82(1), 69-90.

Gröner, G., Parreiras, F. S., & Staab, S. (2010). Semantic Recognition of Ontology Refactoring. In

Proceedings of the 9th International Semantic Web Conference (ISWC 2010), Shanghai, China, 7-11

November 2010, Revised Selected Papers, Part I, pp. 273-288.

Gruber, T. R. (1995). Toward principles for the design of ontologies used for knowledge sharing.

International Journal of Human-Computer Studies, 43(5-6), 907-928.

Guarino, N., (Ed.) (1998). Formal Ontology in Information Systems, IOS Press, Amsterdam, Netherlands.

Hartung, M., Groß, A., & Rahm, E. (2010). Rule-based generation of diff evolution mappings between

ontology versions. arXiv preprint arXiv:1010.0122.

Heflin, J., & Hendler, J. (2000a). Dynamic ontologies on the web. In Proceedings of the 17th National

Conference on Artificial Intelligence and 12th Conference on Innovative Applications of Artificial

Intelligence (AAAI/IAAI 2000), Austin, Texas, USA, 30 July - 3 August 2000, pp. 443-449.

Heflin, J., & Hendler, J. (2000b). Searching the Web with SHOE. In: Artificial Intelligence for Web Search.

Papers from the 2000 AAAI Workshop WS-00-01, 2000, pp. 35-40. Menlo Park, CA: AAAI Press.

Heflin, J., & Muñoz-Avila, H. (2002). LCW-based agent planning for the semantic web. In: Ontologies and

the Semantic Web. Papers from the 2002 AAAI Workshop WS-02-11, pp. 63-70, Menlo Park, CA, 2002.

Heymans, S., Ma, L., Anicic, D., Ma, Z., Steinmetz, N., Pan, Y., Mei, J., Fokoue, A., Kalyanpur, A.,

Kershenbaum, A., Schonberg, E., Srinivas, K., Feier, C., Hench, G., Wetzstein, B., & Keller, U. (2008).

Ontology Reasoning with Large Data Repositories. In: M. Hepp, P. De Leenheer, A. de Moor, and Y.

Sure (Eds.), Ontology Management, CHE 7, Springer-Verlag, Berlin, Germany, 2008, pp. 89-128.

Horridge, M., & Bechhofer, S. (2011). The OWL API: A Java API for OWL Ontologies. Semantic Web,

2(1), 11-21.

Horridge, M., Gonçalves, R. S., Nyulas, C. I., Tudorache, T., & Musen, M. A. (2019). WebProtégé: A

Cloud-Based Ontology Editor. In Companion Proceedings of The 2019 World Wide Web Conference

(pp. 686-689).

Im, D. H., Lee, S. W., & Kim, H. J. (2012). A version management framework for RDF triple stores.

International Journal of Software Engineering and Knowledge Engineering, 22(1), 85-106.

Jaziri, W., Sassi, N., & Gargouri, F. (2010). Approach and tool to evolve ontology and maintain its

coherence. International Journal of Metadata, Semantics and Ontologies, 5(2), 151-166.

Khattak, A. M., Latif, K., & Lee, S. (2013). Change management in evolving web ontologies. Knowledge

Based Systems, 37, 1-18.

Klein, M. C. A., & Fensel, D. (2001). Ontology versioning for the semantic web. In Proceedings of the 1st

International Semantic Web Working Symposium (SWWS’2001), Stanford University, Stanford, CA,

USA, 30 July – 1 August 2001, pp. 75-91.

Klein, M. C. A., Fensel, D., Kiryakov, A., & Ognyanov, D. (2002). Ontology Versioning and Change

Detection on the Web. In Proceedings of the 13th International Conference on Knowledge Engineering

52

and Knowledge Management (EKAW 2002), Siguenza, Spain, 1-4 October 2002, pp. 197-212.

Klein, M. C. A. (2004). Change Management for Distributed Ontologies, PhD thesis, Vrije University,

Amsterdam, Netherlands.

Kondylakis, H., & Papadakis, N. (2018). EvoRDF: evolving the exploration of ontology evolution. The

Knowledge Engineering Review, 33, e12. doi:10.1017/S0269888918000140

Konev, B., Ludwig, M., & Wolter, F. (2012). Logical Difference Computation with CEX2.5. In

Proceedings of the 6th International Joint Conference on Automated Reasoning (IJCAR 2012),

Manchester, UK, 26-29 June 2012, pp. 371-377.

Konys, A. (2016). Ontology-Based Approaches to Big Data Analytics. In Proceedings of the 20th

International Multi-conference on Advanced Computer Systems (ACS 2016), Międzyzdroje, Poland, 19-

21 October 2016, pp. 355-365.

Kozierkiewicz, A., & Pietranik, M. (2019). Triggering ontology alignment revalidation based on the degree

of change significance on the ontology concept level. In Proceedings of the 22nd International

Conference on Business Information Systems (BIS’2019), pp. 137-148. Springer, Cham.

Kuiler, E. W. (2014). From big data to knowledge: an ontological approach to big data analytics. Review of

Policy Research, 31(4), 311-318.

Lambrix, P., Dragisic, Z., Ivanova, V., & Anslow, C. (2016). Visualization for Ontology Evolution. In

Proceedings of the 2nd International Workshop on Visualization and Interaction for Ontologies and

Linked Data co-located with the 15th International Semantic Web Conference (VOILA@ISWC 2016),

Kobe, Japan, 17 October 2016, pp. 54-67.

Lara, A., Henriques, P. R., & Gançarski, A. L. (2017). Visualization of Ontology Evolution Using

OntoDiffGraph. In Proceedings of the 6th Symposium on Languages, Applications and Technologies

(SLATE 2017), Article No. 14, pp. 14:1-14:8.

Liu, Y., Chen, R., Song, Y., & Deng, W. (2014). A fast approach for querying multiple ontology versions

based on a concept lattice. Journal of Web Engineering, 13(1&2), 97-113.

Lutz, C., Seylan, I., & Wolter, F. (2012). Mixing Open and Closed World Assumption in Ontology-Based

Data Access: Non-Uniform Data Complexity. In Proceedings of the 2012 International Workshop on

Description Logics (DL-2012), Rome, Italy, 7-10 June 2012. CEUR Workshop Proceedings, Vol. 846,

paper 17.

Meimaris, M. (2018). Managing, Querying and Analyzing Big Data on the Web. Ph.D. Thesis, University

of Thessaly, Greece.

Merrill, E., Corlosquet, S., Ciccarese, P., Clark, T., & Das, S. (2014). Semantic Web repositories for

genomics data using the eXframe platform. Journal of Biomedical Semantics, 5(S1), Article no. S3.

Noy, N. F., & Musen, M. A. (2002). PROMPTDIFF: A fixed-point algorithm for comparing ontology

versions. In Proceedings of the 18th National Conference on Artificial Intelligence and 14th Conference

on Innovative Applications of Artificial Intelligence (AAAI/IAAI 2002), 28 July - 1 August 2002,

Edmonton, Alberta, Canada, pp. 744-750.

Noy, N. F., Kunnatur, S., Klein, M. C. A., & Musen, M. A. (2004). Tracking changes during ontology

evolution. In Proceedings of the 3rd International Semantic Web Conference (ISWC2004), Hiroshima,

Japan, 7-11 November 2004, pp. 259-273.

53

O'Connor, M. J., & Das, A. K. (2009). SQWRL: a query language for OWL. In Proceedings of the 5th

International Workshop on OWL: Experiences and Directions (OWLED 2009), Chantilly, VA, USA,

23-24 October 2009. CEUR Workshop Proceedings, Vol. 529, pp. 208-215.

O'Connor, M. J., & Das, A. K. (2011). A Method for Representing and Querying Temporal Information in

OWL. In: Fred A, Filipe J, and Gamboa H (Eds.), Biomedical Engineering Systems and Technologies

(Selected Papers), CCIS 127, Springer-Verlag, Berlin, Germany, 2011, pp. 97–110.

O'Connor, M. J. (2016). SQWRL: a query language for OWL, GitHub Wiki, 12 August 2016.

https://github.com/protegeproject/swrlapi/wiki/SQWRL

Papavassiliou, V., Flouris, G., Fundulaki, I., Kotzinos, D., & Christophides, V. (2009). On Detecting High-

Level Changes in RDF/S KBs. In Proceedings of the 8th International Semantic Web Conference (ISWC

2009), Chantilly, VA, USA, 25-29 October 2009, pp. 473-488.

Papavassiliou, V., Flouris, G., Fundulaki, I., Kotzinos, D., & Christophides, V. (2013). High-level change

detection in RDF(S) KBs. ACM Transactions on Database Systems, 38(1), 1-42.

Patel-Schneider, P. F., & Horrocks, I. (2007). A comparison of two modelling paradigms in the Semantic

Web. Journal of Web Semantics, 5(4), 240-250.

Plessers, P., De Troyer, O., & Casteleyn, S. (2007). Understanding ontology evolution: A change detection

approach. Journal of Web Semantics, 5(1), 39-49.

Preventis, A., Petrakis, E. G. M., & Batsakis, S. (2014). CHRONOS Ed: A Tool for Handling Temporal

Ontologies in Protégé. International Journal on Artificial Intelligence Tools, 23(4), 1460018.

Priya, M., & Kumar, C. A. (2020). A novel approach for merging ontologies using formal concept analysis.

International Journal of Cloud Computing, 9(2-3), 189-206.

Redmond, T., & Noy, N. (2011). Computing the changes between ontologies. In Proceedings of the Joint

Workshop on Knowledge Evolution and Ontology Dynamics, pp. 1-14. http://ceur-ws.org/Vol-

784/evodyn6.pdf

Redmond, T., Smith, M., Drummond, N., & Tudorache, T. (2008). Managing change: an ontology version

control system. In Proceedings of the 5th International Workshop on OWL: Experiences and Directions

(OWLED-08). http://ceur-ws.org/Vol-432/owled2008eu_submission_33.pdf

Roddick, J. F. (2018). Schema Versioning. In: Liu L, and Özsu M. T (Eds.), Encyclopedia of Database

Systems (2nd edition), Springer, New York, NY, USA, 2018. DOI: 10.1007/978-1-4614-8265-9

Santos, J. S., Silva, V. T., Azevedo, L. G., Soares, E. F., & Thiago, R. M. (2020). An Experimental

Analysis of Tools for Ontology Evolution Management. In Proceedings of the 22nd International

Conference on Enterprise Information Systems (ICEIS’2020), Volume 2, pp. 111-121.

Sassi, N., Jaziri, W., & Alharbi, S. (2016). Supporting ontology adaptation and versioning based on a graph

of relevance. Journal of Experimental and Theoretical Artificial Intelligence, 28(6), 1035-1059.

Seylan, I., Franconi, E., & De Bruijn, J. (2009). Effective query rewriting with ontologies over DBoxes. In

Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI 2009),

Pasadena, CA, USA, 11-17 July 2009, pp. 923-929.

Snodgrass, R. T., Dyreson, C. E., Currim, F., Currim, S., & Joshi, S. (2008). Validating Quicksand: Schema

Versioning in τXSchema. Data and Knowledge Engineering, 65(2), 223-242.

Stojanovic, L., Maedche, A., Motik, B., & Stojanovic, N. (2002). User-driven ontology evolution

54

management. In Proceedings of the International Conference on Knowledge Engineering and

Knowledge Management (pp. 285-300). Springer, Berlin, Heidelberg.

Taelman, R., Vander Sande, M., Van Herwegen, J., Mannens, E., & Verborgh, R. (2019). Triple storage for

random-access versioned querying of RDF archives. Journal of Web Semantics, 54, 4-28.

Taleb, N., Tighiouart, B., & Laiche, S. (2014). A method based on OWL schema for detecting changes

between Ontology's versions. Intelligent Decision Technologies, 8(1), 45-52.

Tzitzikas, Y., Theoharis, Y., & Andreou, D. (2008). On storage policies for semantic web repositories that

support versioning. In Proceedings of the 5th European Semantic Web Conference (ESWC 2008),

Tenerife, Canary Islands, Spain, 1-5 June 2008, pp. 705-719.

Völkel, M., & Groza, T. (2006). SemVersion: An RDF-based Ontology Versioning System. In Proceedings

of the IADIS International Conference on WWW/Internet (ICWI 2006), Murcia, Spain, 5-8 October

2006, Vol. 1, pp. 195-202.

W3C (2004a). XML Schema Part 0: Primer Second Edition, W3C Recommendation, 28 October 2004.

http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/

W3C (2004b). RDF/XML Syntax Specification (Revised), W3C Recommendation, 10 February 2004.

http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/

W3C (2012a). OWL 2 Web Ontology Language – Primer (Second Edition), W3C Recommendation, 11

December 2012. http://www.w3.org/TR/owl2-primer/

W3C (2012b). OWL 2 Web Ontology Language – Document Overview (Second Edition), W3C

Recommendation, 11 December 2012. http://www.w3.org/TR/owl2-overview/

W3C (2012c). OWL 2 Web Ontology Language – Direct Semantics (Second Edition), W3C

Recommendation, 11 December 2012. http://www.w3.org/TR/owl2-direct-semantics/

Zablith, F., Antoniou, G., d'Aquin, M., Flouris, G., Kondylakis, H., Motta, E., Plexousakis, D., & Sabou,

M. (2015). Ontology evolution: a process-centric survey. The Knowledge Engineering Review, 30(1),

45-75.

Zekri A, Brahmia Z, Grandi F, & Bouaziz R (2014). τOWL: A Framework for Managing Temporal

Semantic Web Documents. In Proceedings of the 8th International Conference on Advances in Semantic

Processing (SEMAPRO 2014), Rome, Italy, 24-28 August 2014, pp 33-41.

Zekri A, Brahmia Z, Grandi F, & Bouaziz R (2015a). Temporal Schema Versioning in τOWL. In

Proceedings of the 2nd International Conference on Knowledge Management, Information and

Knowledge Systems (KMIKS 2015), Hammamet, Tunisia, 16-18 April 2015, pp. 81-92.

Zekri A, Brahmia Z, Grandi F, & Bouaziz R (2015b). τOWL-Manager: A Tool for Managing Temporal

Semantic Web Documents in the τOWL Framework. In Proceedings of the 9th International Conference

on Advances in Semantic Processing (SEMAPRO 2015), Nice, France, 19-24 July 2015, pp. 56-64.

Zekri A, Brahmia Z, Grandi F, & Bouaziz R (2016). τOWL: A Systematic Approach to Temporal

Versioning of Semantic Web Ontologies. Journal on Data Semantics, vol. 5, no. 3, 2016, pp. 141-163.

Zekri A, Brahmia Z, Grandi F, & Bouaziz R (2017). Temporal Schema Versioning in τOWL: A Systematic

Approach for the Management of Time-varying Knowledge. Journal of Decision Systems, vol. 26, no.

2, 2017, pp. 113-137.

Zhang, F., Ma, Z. M., & Li, W. (2015). Storing OWL ontologies in object-oriented databases. Knowledge-

55

Based Systems, 76, 240-255.

