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Abstract
This paper presents a methodology, called ROBOUT, to identify outliers conditional
on a high-dimensional noisy information set. In particular, ROBOUT is able to iden-
tify observations with outlying conditional mean or variance when the dataset contains
multivariate outliers in or besides the predictors, multi-collinearity, and a large vari-
able dimension compared to the sample size. ROBOUT entails a pre-processing step,
a preliminary robust imputation procedure that prevents anomalous instances from
corrupting predictor recovery, a selection stage of the statistically relevant predictors
(through cross-validated LASSO-penalized Huber loss regression), the estimation of
a robust regression model based on the selected predictors (via MM regression), and
a criterion to identify conditional outliers. We conduct a comprehensive simulation
study in which the proposed algorithm is tested under a wide range of perturbation
scenarios. The combination formed by LASSO-penalized Huber loss and MM regres-
sion turns out to be the best in terms of conditional outlier detection under the above
described perturbed conditions, also compared to existing integrated methodologies
like Sparse Least Trimmed Squares and Robust Least Angle Regression. Furthermore,
the proposed methodology is applied to a granular supervisory banking dataset col-
lected by the European Central Bank, in order to model the total assets of euro area
banks.
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1 Introduction

Data quality is a fundamental prerequisite for any kind of quantitative analysis and the
large datasets which are becoming increasingly available present specific challenges
to the task of monitoring and ensuring data quality. One critical aspect of the data
quality monitoring is outlier detection, i.e. the identification of values which are either
obviously mistaken or seem to be unjustified from an empirical perspective. An outlier
is defined byHawkins (1980) as ‘an observationwhich deviates somuch from the other
observations as to arouse suspicions that it was generated by a different mechanism’.
Similarly, Barnett and Lewis (1994) defines an outlier as ‘an observation (or subset of
observations) which appears to be inconsistent with the remainder of that set of data’.
Classical statistical methods, which underpin analytical tools supporting analysis of
large datasets, are sensitive to the presence of outliers and, consequently, could reach
distorted conclusions (Rousseeuw and Hubert 2018).

In this paper, we focus on outlier detection in high-dimensional datasets, i.e., where
the number of variables p (i.e. the dimension of the data space) is large, possibly larger
than the number of observations n (i.e. the sample size). In this way, we also include
so-called fat datasets, featuring p > n. Such datasets arise in diverse fields, such as
bioinformatics, economics, neuroscience, signal processing and others.

Our aim is to retrieve from such datasets any anomaly in a target variable y with
respect to a set of K related variables (the predictors of y) that constitute a subset of
the p � K variables of the dataset (the candidate predictors of y). The K predictors
of y are ex-ante unknown and need to be identified from the p variables, which are
also usually affected by multicollinearity effects. In addition, we tolerate the presence
in the K predictors of leverage outliers, a feature that typically inflates the predictive
power of irrelevant predictors, as well as the presence of multivariate outliers in the
remaining variables of the dataset.

If the conditional outliers in y are present in the same observation with anomalous
instances of the related predictors, it has been shown that predictors are typically
not identified correctly (see Khan et al. 2007). That is the reason why we develop
a robust preliminary imputation procedure, that prevents such points (i.e. leverage
points) from corrupting predictor recovery, thus restoring the identification of true
predictors. Ensuring the recovery of true predictors and limiting as much as possible
the inclusion of irrelevant predictors is the key to successfully apply a subsequent
robust regression in a consistent way and to identify conditional outliers by means of
the robustly estimated residual scale. Other confounding factors for predictor recovery
are multicollinearity, a high number of variables p compared to the sample size n, and
a small overall signal-to-noise ratio.

The practical relevance of the problem as formulated above can be clarified by
referring to the banking supervisory dataset that is used in this paper to show the
behaviour of the proposed outlier detection method. A bank may present a particularly
high value of e.g. total assets (the variable y in the above formulation), which may be
spotted as an anomalous instance compared to the rest of banks. However, considering
other related bank indicators, such as debt securities and derivatives, we may realize
that the total asset value for the bank in question is perfectly in line with expectations.
On the other hand, a bank with an average value of total assets may be judged as
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anomalous with respect to the predictors. This could be for example the case when for
a specific observation (i.e. bank) a relatively moderate amount of assets corresponds to
a disproportionally high amount of derivatives, a financial instrument that one would
normally expect to be used extensively by the largest banks.

In general, whether an observation of variable y is considered to be an outlier does
not depend solely on the distribution of y but also on the corresponding values of the
most relevant predictors of y. This kind of outlier detection is referred to as conditional
outlier detection (Hong and Hauskrecht 2015), because it focuses on the detection of
improbable values in a target variable given (i.e. conditionally on) the observed values
of a set of related variables.

We propose a new method, called ROBOUT, to solve the problem of conditional
outlier detection in high dimensions. ROBOUT can accommodate diverse statistical
properties of the examined dataset (such as multicollinearity, multivariate outliers in
or out of the predictors and high-dimensional information sets) while at the same time
being computationally efficient. Our specific contributions comprise the separation
of predictor recovery and final model estimation, which renders the identification of
true predictors possible under above mentioned perturbations, the study and recovery
of conditional outliers with perturbed residual variance (beyond the usual ones with
perturbed mean), and the adoption of a preliminary imputation method, which is
effective in preserving model recovery from anomalies in the potential predictors.

The paper is structured as follows. Section2 formulates the problem and moti-
vates its solution. Section3 presents a literature review on high-dimensional variable
selection and robust regression methods. ROBOUT methodology is formally defined
in Sect. 4, entailing a pre-processing, a robust preliminary imputation, a variable
selection, a low-dimensional regression and a conditional outlier detection step. The
wide simulation exercise that we undertake in Sect. 5 aims to test the performance
of ROBOUT, placing emphasis on the versatility of the ensuing conditional outlier
detection under several perturbed scenarios for different p/n ratios. Subsequently,
we apply ROBOUT to a banking dataset collected by the European Central Bank in
Sect. 6, and we provide concluding remarks in Sect. 7.

2 Motivating examples and first formalization

Figure 1 illustrates visually the problem that we aim to solve and the idea of themethod
that we propose. We consider the target variable y and two variables of the dataset x1
and x2 (in principle, the variables of the dataset could be many more than just two). x1
is a predictor of y while x2 is not, however this is not known ex-ante. We assume that
there is an outlier in variable y, namely point 4 which is an outlier of y conditional
on predictor x1. Point 4′ shows the ‘correct’ position that 4 would have occupied if it
followed the same data generating process as the other three points. The perturbation
of point 4 affects the linear relationship between y and x1, as line l0 is shifted below
to line l1, but also affects the relationship between y and x2, potentially leading to a
spuriously statistically significant relationship.

Identifying the perturbation in point 4 requires to solve two tasks: first to identify
that x1 is the relevant conditional variable and second to identify that 4 is an outlier of
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Fig. 1 Identification of conditional outlierswhen the predictors are not known ex-ante. The left panel depicts
the scatter plot of the target variable y and its predictor variable x1, while the right panel depicts the scatter
plot of the target variable y and a non-predictor variable x2. Point 4 is a conditional outlier of y on x1. The
blue line represents the OLS regression line with point 4 in the correct (theoretical) position, that is 4’,
while the red line represents the OLS regression line with point 4 in the perturbed (actual) position

y conditional on x1. Since the presence of outliers in y may disrupt the identification
of the statistical relationship between two related variables (in this case y and x1) and
may generate a misleading statistical relationship between unrelated variables (in this
case y and x2), in this paper we separate the two problems: we first run a robust variable
selection step, with the aim to identify the relevant predictors, andwe subsequently run
a low-dimensional robust regression to identify conditional outliers. As will be argued
in this paper, performing predictor recovery and the model estimation in consecutive
steps has substantial advantages in terms of computational efficiency and effectiveness
in detecting conditional outliers.

Let us formalize the described problem in probabilistic terms. In (Hong and
Hauskrecht 2015), unconditional outliers are defined as instances which fall into a low
probability density region of f(y), where f(y) is the unconditional probability den-
sity function of the scalar target variable y. Instead, conditional outliers are defined as
instances of ywhich fall into a lowprobability density region of f(y|x) = f(y, x)/f(x),
where f(y|x) is the conditional probability density function of the scalar target vari-
able y given a vector of predictors x, and the set of predictors x is a subset of a wider
noisy information set �, which is given at the outset of the problem. In this paper,
we assume that the expected value of f(y|x) is a linear function of the variables in x.
Note that this does not constrain the nature of the prescribed relationships between y
and the initial information set � from which x is identified, because we can always
include e.g. quadratic and exponential functions of specific variables in the vector x.

For the sake of simplicity, let us suppose that for the single observation i ∈
{1, . . . , n} it holds that yi |xD,i ∼ N (ai + x′

D,iβ, σ 2
i ), where, for observation i , yi

is the specific value of y, ai is the intercept term, xD,i is the K × 1 vector of pre-
dictors, β is the K × 1 vector of regression coefficients, and σ 2

i is the variance of yi
conditional on xD,i . We denote by D the set of predictor indices, such that |D| = K
and D ⊆ {1, . . . , p}, and by D̄ the complementary set of D with respect to the set
{1, . . . , p}. The n×K matrixXD contains as columns the predictor variables, indexed
by D, the n × (p − K ) matrix XD̄ contains as columns the non-predictor variables,
indexed by D̄, and the n × p complete matrix X = [XD|XD̄] represents the available
information set �.
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We define a set of outlier indices O with O ⊆ {1, . . . , n} such that |O| = [αn].
The parameter α represents the contamination rate, with α ∈ [0, 0.5]. We assume,
without loss of generality, that for any i ∈ Ō it holds ai = a and σ 2

i = σ 2, i.e. that all
non-outlying observations feature a constant conditional mean and variance.

Definition 1 A conditional outlier in mean is defined as any observation i ′ such that
yi ′ falls in a low probability density region of N (a + x′

D,i ′β, σ 2) because ai ′ � a or
ai ′ � a.

Definition 2 A conditional outlier in variance is defined as any observation i ′ such that
yi ′ falls in a low probability density region of N (a + x′

D,i ′β, σ 2) because σ 2
i ′ � σ 2.

Definition 3 A leverage outlier is defined as any observation i ′ such that its vector of
predictors xD,i ′ is perturbed by replacing xD,i ′k with xD,i ′k +m,m ∈ R

K , |mk | � 0,
k = 1, . . . , K .

Definition 4 A rowwise outlier is defined as any observation i ′ such that a subset of
its vector of non-predictors, say, xD̃,i ′ , with D̃ ⊂ D̄, is perturbed by replacing xD̃,i ′k′

with xD̃,i ′k′ + m, m ∈ R
|D̃|, |mk′ | � 0, k′ ∈ D̃.

In practice, Definitions 1 and 2 may reflect that the target variable y is affected
by measurement errors, idiosyncratic events, unpredictable shocks etc., as well as
structural differences in the data generating mechanism. Definitions 3 and 4 represent
the same situations in the matrix of predictors XD and in the matrix of non-predictors
XD̄ , respectively. Conditional outlier recovery is critical to spot hidden inconsistencies
or frauds in y, and cannot be performed properly if the unknown predictors of y,
contained in XD , are not identified.

Few integrated methods have been presented in the literature that recover simul-
taneously both the K predictors of the response variable y (out of the p candidate
predictors) and the conditional outliers in y, such as Sparse Least Trimmed Squares
(SPARSE-LTS, Alfons et al. 2013) and Robust Least Angle Regression (RLARS,
Khan et al. 2007). To the best of our knowledge, their performance as conditional out-
lier detection methods in the presence of conditional outliers in variance in the sense
of Definition 2 has not been explored yet. Another existing method, called SNCD
(Semismooth Newton Coordinate Descent) algorithm (Yi and Huang 2017), provides
a fast and reliable solution to the recovery of predictors, by minimizing a Huber or
a Least Absolute Deviation (LAD) loss of the residuals penalized by an elastic net
(Zou and Hastie 2005). However, SNCD has a significant drawback: it is not robust
to leverage outliers, as shown in Alfons et al. (2013).

For this reason, we propose in Sect. 4.2.2 a preliminary imputation procedure which
is robust to potentially disruptive outliers in X while being computationally efficient.
In the following, we apply SNCD to the clean imputed dataset to identify the right
predictors, on which a robust regression model is finally calculated to spot conditional
outliers. The described method, which we call ROBOUT, is very efficient as regards
computational cost, which is a direct function of the degree of perturbation in the
dataset. ROBOUT improves existing methods in the literature by enhancing both
predictor recovery and conditional outlier detection performance in high dimensions
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also under challenging conditions,when othermethodsmay fail. This result is achieved
by exploiting the large cross section to setup the preliminary imputation procedure,
whose accuracy benefits from the presence ofmanypairs of highly correlated variables,
thus turning the curse of dimensionality to a blessing.

3 State of the art

Large and high-dimensional datasets appear very suitable for conditional outlier detec-
tion in the regression context (Rousseeuw and Leroy 1987). As Varian (2014) notes,
the large size of the data requires automated techniques for the identification of sub-
sets of variables which are statistically linked. In such datasets, the challenge is to
identify the critical predictors and then to perform a conditional outlier detection for
the variables of interest. To this end, we need to define both a variable selection and a
robust regression procedure, in order to recover consistently both the true set of pre-
dictors and the regression coefficients. This type of outlier detection may spot outliers
which could remain unnoticed if single variables are considered separately, thus taking
advantage of the information content present in a large cross section.

The original idea of robust regression is based on the application of a weighting
scheme to observations, with the aim to dampen the influence of outlying points on
regression estimates, both in y (conditional outliers) and in X (leverage outliers). Two
established methods for low-dimensional robust regression are:

• least trimmed squares (LTS) estimation (Rousseeuw 1984), which identifies the
100 × (1 − α)% most concentrated observations and estimates the regression
coefficients on those via ordinary least squares;

• MM-estimation (Yohai 1987), which is a three-stage procedure that minimizes
a Tukey’s bisquare function of the residuals using a robust initialization of the
coefficients in β (obtained by S-regression) and of the residual scale σ (obtained
by M-estimation).

In the p > n case, the mentioned traditional robust regression techniques no longer
work, because they simply are weighted versions of the least squares method. Filz-
moser andNordhausen (2021) provides an exhaustive literature review on robust linear
regression for high-dimensional data and describes the different strategies that have
been consequently proposed to perform robust regression in high dimensions.

There are few methods proposed in the literature that perform simultaneously vari-
able selection and conditional outlier detection. A first group is based on LASSO
regression (Tibshirani 1996). A robust LASSO regression method performing both
variable selection and conditional outlier detection is SPARSE-LTS (Alfons et al.
2013), that is based on the simultaneous optimization of a trimmed least squares loss
and a LASSO penalty. The coefficient estimates are derived by performing at each iter-
ation aLASSOestimation on the 100×(1−α)%observationswith the smallest squared
residuals. Another robust LASSO regression method is MM-LASSO (Smucler and
Yohai 2017). Building on the S-ridge approach to high-dimensional regression model
estimation in Maronna (2011), MM-LASSO combines (adaptive) MM-regression and
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LASSO penalization to provide consistent identification of predictors and estimation
of coefficients under fat tailed distributions.

A previous relevant solution of different nature is plug-in RLARS (Khan et al.
2007), that is the robustified version of LARS (Efron et al. 2004) where the covari-
ance matrix of the features is robustly estimated via an adjusted Winsorization step.
RLARS manages to deal with outliers by rendering them uninfluential in the iterative
computation of the covariances that are needed to retrieve predictors. Predictor selec-
tion is then performed by iteratively selecting the best angle to update coefficients, as
in LARS, and the MM regression is used as final step.

A further approach to identify predictors and spot conditional outliers in highdimen-
sions is by robustifying the elastic net regression. In this respect, a robust solution is
ENET-LTS (Kurnaz et al. 2018), that provides the trimmed version of the elastic net.
In Freue et al. (2019), the penalized elastic net S-estimator PENSE and its refine-
ment, the penalized elastic net M-estimator PENSEM, provide a consistent solution
to conditional outlier detection, with the relevant advantage for PENSEM to provide
the most precise τ -estimate of the residual scale.

Forward Search (seeAtkinson et al. 2004) is a fascinatingmethod to iteratively iden-
tify the subset of the least anomalous observations from a multivariate dataset, which
are ranked according to their degree of outlyingness. This method has been scaled to
very large samples (Riani et al. 2015) via a fast calculation of robust Mahalanobis
distances. A Bayesian version of it has been presented in Atkinson et al. (2017).

The SNCD algorithm (Yi andHuang 2017), that minimizes simultaneously a Huber
loss or a LAD loss of the residuals and the elastic net penalty by explicitly deriving
the Karush-Kuhn-Tucker (KKT) conditions of the objective function, is instead not
robust to leverage outliers, even if it is scalable to both large sample sizes and high
dimensions, as its computational cost is O(pn).

Another related strand of the literature concerns the cellwise contaminated outliers:
Rousseeuw and Bossche (2018) identifies deviating data cells, Bottmer et al. (2022)
adapts the sparse shooting S-estimator of Öllerer et al. (2016) in the presence of cell-
wise outliers, Filzmoser et al. (2020) proposes cellwise robustM regression. Even if the
performed task is similarwith that of ROBOUT (sparse regressionmodel identification
and estimation in a perturbed context), the perturbations which we consider in the data
matrix are somewhat different, as we consider the presence of multivariate outliers
in the true predictors (similarly to SPARSE-LTS and RLARS) as well as beyond the
true predictors, with the aim to extend as much as possible robustness to multivariate
outliers. In addition, our method avoids running pairwise robust regressions in order
to keep computational cost low and aiming to be fit for high-dimensional data. We
leave to future studies a formal comparison with the sparse shooting S-estimator and
a modification of ROBOUT able to deal with randomly scattered individual outliers.1

1 Our approach distinguishes between a response variable and the conditional information set while
(Rousseeuw and Bossche 2018) scans the whole original dataset for cell-wise outliers. This difference
however can be reconciled by running the proposed ROBOUT method consecutively defining each column
of the dataset as the response variable.
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4 ROBOUT: a comprehensive approach for conditional outlier
detection

In this section, we describe ROBOUT procedure. We first present the data model
behind its usage in Sect. 4.1 and we elaborate on its five steps in Sect. 4.2.

4.1 Model

Let us consider n numerical observations of one response variable y and p additional
variables. We call the unknown set of conditional outlier indices O with |O| = [αn]
and α ∈ [0, 0.5], and Ō the index set of non-outlying points. The response variable
vector y may be expressed in terms of the following regression model

y = a + XDβ + ε, (1)

where y is the n×1 vector of the response variable, a is the n×1 vector of intercepts,
XD is the n × K matrix of predictors (whose columns are indexed by D), β is the
K ×1 vector of regression coefficients and ε is the n×1 vector of residuals. The same
regression model for the single observation i ∈ {1, . . . , n} can be written as

yi = ai + x′
D,iβ + εi , (2)

where ai denotes the intercept and xD,i denotes the K × 1 vector of predictors. We
name RX the p × p covariance matrix of X, and we identify the covariance matrix of
the K predictors as RD , of the p − K non-predictors as RD̄ , of the variables in D̃ as
RD̃ .

For each non-outlier index i ∈ Ō , we assume that ai = a, εi ∼ N (0, σ 2), xD,i ∼
MV N (0K ,RD) and xD̄,i ∼ MV N (0p−K ,RD̄), where xD̄,i is the vector of non-
predictors (D̄ stores the indices of non-predictor variables). We distinguish in the
outlier set O: the index sets of conditional outliers in y, Oy , with size [αyn]; of
leverage outliers in the predictors, Olev , with size [αlevn]; of rowwise outliers out of
the predictors, Orow, with size [αrown]. Note that the proportions of index sets αy ,
αlev , αrow are allowed to vary, and we allow Oy , Olev , and Orow to overlap.

Let us define for any x ∈ R the sign operator sgn, such that sgn(x) = 1, if x > 0,
sgn(x) = 0, if x = 0, sgn(x) = −1, if x < 0. Then, for each outlier index i ′ ∈ O ,
we fix ai ′ = a, and we generate the four types of outliers (Definitions 1-4) in the
following way:

1) conditional outliers in mean are generated consistently with Definition 1 as εi ′ ∼
N ((m − 1)a, σ 2), i ′ ∈ Oy , m ∈ R, m > 1;

2) conditional outliers in variance are generated consistently with Definition 2 as
εi ′ ∼ N (0,m2σ 2), i ′ ∈ Oy , m ∈ R, m > 1;

3) the vector of predictors is generated consistently with Definition 3 as xD,i ′ ∼
MV N (0K ,RD), and leverage outliers are generated by replacing a posteriori
xD,i ′k with the perturbed values xD,i ′k + (m + 2) × sgn(Unif[−1, 1]), i ′ ∈ Olev ,
k = 1, . . . , K , m ∈ R, m > 1;
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4) the vector xD̃,i ′ is generated consistently with Definition 4 as xD̃,i ′ ∼ MV N (0K ,

RD̃), and rowwise outliers are generated by replacing a posteriori xD̃,i ′k′ with

the perturbed values xD̃,i ′k′ + (m + 2) × sgn(Unif[−1, 1]), i ′ ∈ Orow, k′ ∈ D̃,

D̃ ⊂ D̄, m ∈ R, m > 1.

Normality is assumed to ensure the validity of residual diagnostics andmodel inference
(also see Sect. 4.2.1). The multiplier m is the outlyingness parameter, and the value
m+2 is chosen in 3) and 4) to ensure that non-robust correlation estimates are impacted
by those outliers, as well as the randomized sign on individual perturbations obtained
by the uniform distribution Unif[−1, 1] contributes to ensure.

In all the above cases of outliers, the parameter m > 1 represents the degree of
perturbation. Because more than one type of outliers can co-exist within the given
observation (row), there are in total nine outlier schemes for each i ′ ∈ O:

(1–2) “Only mean" or “Only variance" cases: only response variable outliers (in mean
or variance) are present. The outliers i ′ are only generated in yi ′ according to
Definition 1 or 2.

(3–4) “Mean-leverage" and “Variance-leverage" cases: simultaneous presence of con-
ditional outliers (inmean or in variance) and leverage outliers, where the outliers
i ′ are generated in yi ′ according to Definition 1 or 2, and in xi ′k according to
Definition 3, k ∈ D.

(5–6) “Mean-row" and “Variance-row" cases: simultaneous presence of conditional
outliers (in mean or in variance) and rowwise outliers, where the outliers i ′
are generated in yi ′ according to Definition 1 or 2, and in xi ′k′ according to
Definition 4, k′ ∈ D̃.

(7–8) “Mean-leverage-row" and “Variance-leverage-row" cases: simultaneous pres-
ence of conditional outliers (in mean or in variance), leverage outliers and
rowwise outliers, where the outliers i ′ are generated in yi ′ according to Defini-
tion 1 or 2, in xi ′k according to Definition 3, k ∈ D, and in xi ′k′ according to
Definition 4, k′ ∈ D̃.

(9) "Leverage-row" case: simultaneous presence of leverage outliers and rowwise
outliers, where the outliers i ′ are generated in xi ′k according to Definition 3,
k ∈ D, and in xi ′k′ according to Definition 4, k′ ∈ D̃.

The technical derivations of expected perturbations in the expected value and in the
variance of εi are reported in supplement Sect. 1 for each outlier scheme. They allow
us to define Oall = Oy for the cases where outliers in the response variable coexist
with only one other type of outlier in the remaining variables (i.e., scenarios from 1
to 6), Oall = Oy + Olev for cases where all three types of outliers co-exist (scenarios
7–8), Oall = Olev for the case where rowwise and leverage outliers occur without
any outlier in the response variable (scenario 9). We then define α = |Oall |, where
Oall is the set of actual conditional outliers to be recovered. Note that leverage outliers
become conditional outliers under cases 7–9 (i.e., all “...leverage-row" cases), due to
the contemporaneous presence of rowwise outliers and outliers in the predictors.

In the end, we can derive the expected overall Signal-to-Noise Ratio SN R =√
ESS/RSS of model (2) under the different cases, where ESS, the expected

Explained Sum of Squares, is constant across cases and equal to ESS = nβ ′RDβ =
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n
∑K

k=1 βk[βk+Rkk′
∑

k′ 
=k βk′ ], and the formula for RSS, the expectedResidual Sum
of Squares, varies under each case (see Supplement Sect. 1). We highlight that ESS
depends on the coefficient vector β (signs and magnitudes), the covariance matrix of
predictors RX , and the number of predictors K , while RSS may depend on the out-
lier proportion α, the outlyingness parameter m, the intercept a, the residual variance
σ 2, the number of predictors K , the perturbations occurred in the predictors, and the
coefficient vector β, according to the underlying outlier scheme.

4.2 Methodology

We present here our proposed conditional outlier detection method, ROBOUT, con-
sisting of five robust steps, namely, preprocessing (Sect. 4.2.1), preliminary imputation
(Sect. 4.2.2), variable selection (Sect. 4.2.3), low-dimensional regression (Sect. 4.2.4)
and conditional outlier detection (Sect. 4.2.5). Approximate normality is needed both
in the target variable and in potential predictors, to make a linear model meaningful
and to rely on residual diagnostics tools. The preliminary imputation procedure is
needed to prevent anomalous points in potential predictors from corrupting predictor
recovery, which is then performed via SNCD, applied to the robustly imputed dataset.
In the end, a low-dimensional regressionmethod likeMM,which is doubly robust with
respect to y andXD , is applied to spot conditional outliers. Note that ROBOUT, unlike
SPARSE-LTS and RLARS, separates the steps of variable selection and conditional
outlier detection, because this leads to a better performance for predictor selection and
conditional outlier identification, as it is shown by our simulation study in Sect. 5.

4.2.1 Pre-processing

A pre-screening based on a robust correlation measure aimed at excluding one of
two very correlated variables (say, more than 0.8 in absolute value) is first performed
to detect nearly identities (see also Sect. 6) and to annihilate the impact of possibly
masked bivariate outliers (see Sect. 4.2.2). For this purpose, we calculate robust pair-
wise correlations �̂ j ′ j ′′ for each pair j ′ j ′′ of variables, j ′, j ′′ = 1, . . . , p, j ′ 
= j ′′.
One can consider Spearman’s rho (Spearman 1904), Kendall’s tau (Kendall 1938), or
Huber correlation (as employed in Khan et al. 2007), or other robust measures (see
Raymaekers and Rousseeuw 2021).

If the model is intrinsically non-linear, polynomial effects could be included in the
data matrix if known. Otherwise, as suggested by Rousseeuw and Bossche (2018),
one can operate a pre-processing of the single variables in X by applying a non-linear
transformation (like Box-Cox, Yeo-Johnson, etc.) able to ensure at least the symmetry
of predictors, in order to avoid the insurgence of non-linear effects. The same holds
a fortiori for the target variable y, for which residual normality must hold in order to
justify residual diagnostic analysis. In the empirical application of Sect. 6, applying
the logarithmic transform is enough to obtain a normal y and a valid linear model. In
general, the R function bestNormalize may be of great help.

If the variables in the dataset are intrinsically non-symmetric, then different specific
procedures apply to determine the relevant outlyingness cut-offs (see for instance
Rousseeuw and Hubert 2018). We do not include this case in the present paper.
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4.2.2 Preliminary imputation

Let us consider the n× pmatrix of potential predictorsX. First, we identify univariate
outliers in that matrix. We calculate the median and the unbiased median absolute
deviation of each variable. This means that, for each j = 1, . . . , p, we compute
xmed, j = med(x j ) and xmad, j = 1.4826mad(x j ).2 Then, relying on xmed, j and

xmad, j , we derive a robust z-score for each entry i j ofX: zi j = xi j−xmed, j
xmad, j

, i = 1, . . . , n,
j = 1, . . . , p. In the end, we flag as outliers the entries that present an outlying zi j ,
i.e. we set wi j = 0 if |zi j | > φ−1

z (1− δ̃/2), where φ−1
z is the inverse standard normal

distribution function and δ̃ is the significance level of the outlyingness test, usually set
in a first run as 0.01 or 0.05, and wi j = 1 otherwise.

Second, we impute values to the previously identified univariate outliers, utilising
the information present in the whole matrix of potential predictors. Then, for each
entry i j , i = 1, . . . , n, j = 1, . . . , p, we apply Algorithm 1.

Algorithm 1 Algorithm for preliminary imputation (depending on the outlyingness
test level δ ∈ [0, 0.1], and the minimum neighbor set size ζ ∈ Z

+ ∪ 0).
For each i j , i = 1, . . . , n, j = 1, . . . , p, such that wi j = 0:

1. derive the set of ordered variable indices D̃ j by sorting |�̂ j ′ j |, j ′ 
= j , in decreasing order;

2. find the first index in the ordered set D̃ j , j̃ , such that wi j̃ = 1, if it exists;

3. if j̃ does not exist, impute x∗
i j = med(X. j ) and exit, otherwise, go to step 4;

4. identify among all the points i ′ 
= i the set I M AD
i j of all the neighbours of xi j̃ with wi ′ j̃ = 1 such that

|xi ′ j̃ − xi j̃ | ≤ xmad, j̃ ;

5. calculate χ
j j̃
i ′,C = z′

i ′, j j̃ R̂
−1
j j̃

zi ′, j j̃ for all points i
′ ∈ I M AD

i j ;

6. derive the set I N B
i j of points i ′ ∈ I M AD

i j such that χ j j̃
i ′,C ≤ φ−1

χ (1 − δ, 2) and wi ′ j = 1;

7. if |I N B
i j | ≥ ζ , go to step 8, otherwise, increase j̃ till wi j̃ = 1, and go to step 3;

8. impute x∗
i j = med(XI N B

i j j ) and exit.

For each i j , i = 1, . . . , n, j = 1, . . . , p, such that wi j = 1, set x∗
i j = xi j .

Let us explain Algorithm 1 in more detail. We first identify univariate outliers in
each variable by robustified z-scores with median and MAD. For any outlying cell
(i, j), we use the robust correlation measure �̂ j j ′ , j ′ 
= j , to obtain a ranking of the
most correlated variables with x j . We consider the first one in the ranking such that
wi j ′ = 1, and we call it j̃ . We derive the set of nearest neighbors Ii j,MAD to be used for
imputation by including all the points i ′ presentingwi ′ j̃ = 1with xi ′ j̃ within oneMAD
from xi j̃ . At this stage, since bivariate outliers may impact on the predictor set choice,

we calculate theMahalanobis distances of any point i ′ ∈ I MAD
i j bymeans of the vector

of robustified scores zi ′, j j ′ and the estimated covariance matrix R̂ j j̃ =
[

1 �̂ j j ′
�̂ j j ′ 1

]

and we identify the set of bivariate outliers I B I Vi j with a significance level equal to δ,

2 In R, the function mad automatically calculates the re-scaled MAD xmad, j .
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typically fixed to 0.01 or 0.05. In the end, we derive the set I N B
i j = I MAD

i j \I B I Vi j and
we obtain the imputed value x∗

i j as the median value med(XI N B
i j j ).

Three relevant features of Algorithm 1 need to be stressed. First, the computational
cost is a direct function of

∑n
i=1

∑p
j=1 1(wi j = 0), that represents the degree of

dataset perturbation. Second, Algorithm 1 exploits the multicollinearity structure of a
large cross section, such that a large p and a richmulticollinearity structure are actually
improving the imputation procedure systematically. Third, the procedure adapts the
number of neighbors to the distribution of the closest related variable, by allowing all
the points within one MAD in the neighbor set. The overall computational cost of the
imputation step is thus proportional to O(pn log n) as p and n diverge.

At this stage, it may still be objected that Algorithm 1 may miss a fraction of
bivariate outliers, namely, all bivariate outliers xi, j ′ j ′′ such that both wi j ′ = 1 and
wi j ′′ = 1. Although this occurs very rarely in practice, it is indeed true, and the size of
this set of masked bivariate outliers is actually enlarging if sgn(xi j ′) = sgn(xi j ′′) and
� j ′ j ′′ is strongly negative, or if sgn(xi j ′) 
= sgn(xi j ′′) and � j ′ j ′′ is strongly positive.

The practical remedy for this potential drawback is to re-apply Algorithm 1 with
larger levels δ̃ and δ. In particular, it can be noted that setting δ̃ = 0.1 is enough to
obtain a bivariate outlyingness test level δ = 0.01 when sgn(xi j ′) = sgn(xi j ′′) and
� j ′ j ′′ = −0.4125 (or sgn(xi j ′) 
= sgn(xi j ′′) and � j ′ j ′′ = 0.4125). This means that
if the predictor set retrieved in Sect. 4.2.3 changes abruptly when δ̃ is lower than a
certain level, one should stop the descent of δ̃ at the previous value. We suggest trying
δ̃ = δ = 0.1, 0.05, 0.01 and verifying the stability of the recovered predictor set, as
we do in Sect. 6. In the supplement, at the end of Sect. 6, we have devoted a specific
experiment to this limit case.

Concerning potential outliers in more than two dimensions, we can note that their
impact on predictor selection by LASSO-penalized robust regression (see Sect. 4.2.3)
is actually negligible, becauseAlgorithm1 preserves the correct estimation of pairwise
correlations, which is crucial to solve iteratively reweighted least squares problems
like (3). For this reason, Algorithm 1 is effective for the purpose of preserving the
true predictor recovery in the presence of outliers such as those of Definitions 3 and
4, under which SPARSE-LTS and RLARS break down (see Sect. 5). In the robust
regression step (see Sect. 4.2.4), a doubly robust method like MM is employed, so that
those points can eventually be recovered as conditional outliers in y.

Given that we allow for the presence of bivariate outliers, we should wonder if the
three considered robust correlation measures, Spearman, Kendall and Huber, are sen-
sitive to bivariate outliers and how much. This additional simulation study is reported
in Supplement Sect. 4. We discover that, among the three measures, Kendall correla-
tion is the most biased, followed by Spearman and Huber. At the same time, once fixed
Ri j = �|i− j |, even Kendall correlation correctly selects the most correlated variable
almost always, unless � is very small, like the other two measures. This means that,
even using a correlation measure which is non-robust to bivariate outliers, the identi-
fication of the closest variable is not affected. This is why in the simulation study of
Sect. 5 we employ Kendall correlation, thus proving that the most biased correlation
measure among the three still produces excellent results for ROBOUT, although the
calculation of χ -score at step 5 may be biased. What is more, a large � enlarges the

123



ROBOUT: a conditional outlier detection...

set of possibly masked bivariate outliers, but at the same time ensures the selection
of the closest variable via any correlation measure (although not robust to bivariate
outliers) under any p/n ratio.

Algorithm 1 is also equipped with systematic protections against mis-imputation.
In particular, step 4 selects the neighbor set as the one containing all points within
one MAD in the closest variable, in order to prevent overfitting. Then, the minimum
neighbor set size ζ can further control at step 7 that the neighbor set is large enough
to avoid overfitting. Throughout the paper we set ζ = 3, but ζ may also be selected
by cross-validation. A large p increases prediction informativeness (thus decreasing
imputation bias), and a large n prevents overfitting (thus decreasing imputation vari-
ance). Increasing both p and n concurs to prevent any point to be imputed by the
general median of x j , which occurs at step 3 if no close variables are available for
imputation. That situation is very unlikely to occur, unless p and n are really small.
For these reasons, our method is a large p large n one, where multicollinearity actually
improves imputation accuracy, because it increases the probability to select the closest
variable in step 2. We stress that Algorithm 1 analogously functions when applied to
missing data entries.

Alternativemethods include employing a correlationmeasure proved to be robust to
any bivariate outlier, like the one in Raymaekers and Rousseeuw (2021), or computing
a fast MCD as proposed in Riani et al. (2015). These two alternatives would not help
anyway overcome the current limitations of ROBOUT, which require to have less than
50% univariate outliers per variable, or bivariate outliers per variable pair, and require
that all points have enough variable values to exploit for a safe imputation, which
means that the maximum number of variables involved in outliers per each row must
be limited, and enough close points for imputation must be present (that is, we need
approximately symmetric distributions). This is the reason why randomly scattered
outliers in the style of Rousseeuw and Bossche (2018) and Bottmer et al. (2022) are
not well managed by Algorithm 1. We leave to future studies to modify Algorithm 1
to overcome these limitations, in order to compare theoretically and empirically its
performance to the shooting S-estimator proposed by Bottmer et al. (2022).

4.2.3 Variable selection

Starting with our target response variable yi , i = 1, . . . , n, we aim to consistently
select the relevant set of its predictors from a large set of variables under the presence
of conditional outliers in mean or variance. Consequently, we aim to identify a model
such as (2) from the data. Importantly, the focus of this step is on the selection of
predictors rather than on the estimated coefficients and residual scale. This is a core
idea of ROBOUT, i.e. that a robust predictor selection step is distinguished from
the robust regression step, as this renders the method more reliable in challenging
situations compared to the existing methods that combine these two steps.

Predictor retrieval receives as input the dataset imputed by Algorithm 1 without
further standardization or normalization.3 Two options are considered for this step.

3 The pre-processing operations of Sect. 4.2.1 prevent the variables to have tremendously different scale.
If the variables are of different nature, a preliminary robust standardization is adviced.
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The first is based on Yi and Huang (2017):

min
β0,β1,...,βp

n∑

i=1

ρH ,θ (εi ) + λ

p∑

j=1

|β j |, (3)

where εi = yi − β0 − ∑p
j=1 β j x∗

i j , i = 1, . . . , n, j = 1, . . . , p, λ is a penalization
parameter, and

ρH ,θ (t) =
{

t2
2θ , |t | ≤ θ

|t | − θ
2 , |t | > θ,

is the Huber weight function (Ronchetti and Huber 2009), where θ is a tuning param-
eter. Henceforth, we call (3) SNCD-H objective function.

SNCD-H estimates an elastic-net penalized Huber loss regression, optimized by
using the semi-smooth Newton coordinate descent algorithm presented in Yi and
Huang (2017). SNCD has a computational cost proportional to O(pn), i.e. linear in
both p and n. Weighting observations is precisely what renders the results robust in
the face of conditional outliers in y, because it annihilates their influence.

The other robust alternative that we consider in the simulation study substitutes
ρH ,θ (εi ) in (3) with the absolute loss ρL(εi ), where

ρL(t) = t

(
1

2
− I(t < 0)

)

, t ∈ R.

We call that version the SNCD-L objective function. SNCD-L estimates an elastic-net
penalized absolute loss regression, optimized in the same way.

The minimization of (3) with ρH ,θ (t) or ρL(t) is practically performed for a
decreasing sequence of values λ = λt , t = 1, . . . , T , such that λ0 = λmax and
λT = λmin , where λmax returns no predictors, and λmin returns Kmax predictors (we
set Kmax = [p/10]). Predictor selection is performed by the adaptive version of the
strong rule of Tibshirani et al. (2012), proposed in Yi and Huang (2017). At each
value of λt , that rule exploits the coefficient estimates at λt−1. The optimal λ is then
selected by cross-validation, using as Out-Of-Sample (OOS) metric the loss ρH ,θ (t)
for SNCD-H or the loss ρL(t) for SNCD-L.

Following Friedman et al. (2010), two optimal values ofλ can be selected. The value
λ0SE is the one returning the minimum OOS loss ρmin

H ,θ or ρmin
L along the sequence λt .

The value λ1SE is the maximum value along the sequence λt such that the OOSmetric
ρH ,θ or ρL stands within one standard error by ρmin

H ,θ or ρmin
L . In this application, we

use λmin = λ0SE , and then we apply a screening rule on the selected predictors by
trimming the relative estimated coefficients β̂min as follows: β̂∗

min = β̂min1(|β̂min| >

φ−1
z (1− δ/2)ρmin

H ,θ ) for SNCD-H, or β̂∗
min = β̂min1(|β̂min| > φ−1

z (1− δ/2)ρmin
L ) for

SNCD-L (δ is typically set to 0.01 or 0.05). The predictor indices corresponding to
the non-null entries of β̂∗

min constitute the set D̂ of selected predictor indices, and the
estimate of K is the size of D̂, K̂ = |D̂|. This screeningprocess is able to systematically
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avoid redundancy in the predictor set, which is typical of existing procedures such as
SPARSE-LTS and RLARS, by killing irrelevant predictors while keeping the right
predictors contained in D into D̂.

4.2.4 Robust regression

Once identified in the previous step the predictors of y in the matrix XD̂ , we apply a
robust low-dimensional regression method in order to robustly estimate coefficients,
residuals, and residual scale. To this aim, we utilise MM regression (Yohai 1987). In
the simulation study, we also test the performance of Least Trimmed Squares (LTS)
(Rousseeuw 1984). Concerning computational cost, we know that both LTS and MM
share a burden of O(n) operations, due to the use of Fast-LTS (Rousseeuw and Van
Driessen 2006) for LTS, and of Fast-S (Salibian-Barrera and Yohai 2006) for the
initial scale in MM. Residual indipendence, homoscedasticity, and normality must be
appropriately verified by residual diagnostics, and must hold in the recovered non-
outlier set. At the end of this step, we get the estimated K̂ × 1 vector of coefficients
β̂, the estimated n × 1 vector of residuals ε̂, and the residual scale estimate σ̂ .

4.2.5 Outlier detection

As a last step, we recover the vector Ô of conditional outlier indices as the set of all the
points i ∈ {1, . . . , n} with robustly rescaled residuals ε̂i/σ̂ larger than φ−1

z (1 − δ/2)
in absolute value, where δ is typically set to 0.01 or 0.05 (see for instance Atkinson
and Riani 2000; Rousseeuw and Van Driessen 2006; Rousseeuw and Bossche 2018;
Alfons et al. 2013, or Khan et al. 2007).

5 A comparative simulation study

In this section, we conduct simulation experiments aiming both to compare the perfor-
mance of ROBOUT to competitor methods but also to identify the optimal design of
ROBOUTwith respect to its constituent components. The competitor methods against
which the ROBOUT versions are tested are SPARSE-LTS and RLARS.4

5.1 Parameter settings

We test the performance of the four variants of the ROBOUT methodology, distin-
guished on the basis of the variable selection and robust regression estimation options,
as presented in Sect. 4.2. Specifically, in the first step, either the SNCD-H or the
SNCD-L objective function can be used, while in the second step either LTS or MM

4 We also experimented with additional competitor methods, namely MM-LASSO, ENET-LTS and
PENSEM, on the same simulation scenarios, but the results were clearly worse compared to the rest of
the methods we tried, therefore we do not present the results for simplicity. More, we did not implement
(Bottmer et al. 2022) because of computational cost, difficult parameter tuning, and different underlying
assumptions.
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can be used to estimate the regression equation. We call the ensuing four variants of
ROBOUT as H+LTS, L+LTS, H+MM and L+MM, where H and L refer to SNCD-H
and SNCD-L, respectively. We provide detailed information about the parameterisa-
tion of the various methods in the Sect. 2 of the supplementary material.

Both competitors are run with the default preprocessing step for all the poten-
tial predictors: unit-norm normalization for SPARSE-LTS, robust standardization for
RLARS. The intercept is included for all estimations, and the levels δ and δ̃ are fixed
to 0.01. Note that, according to the above settings, H+MM, H+LTS, and SPARSE-
LTS present a breakdown point equal to 25%, L+MM, L+LTS, and RLARS present a
breakdown point equal to 50%.

5.2 Data settings

To fully define the scenarios that we use in the simulation study, we complement the
nine outlier schemes presented in Sect. 4 with specifications of the dataset dimensions
and parameters.

The set of predictors D is randomly generated with K = 3. The intercept is
ai = 10 for all i = 1, . . . , n. The coefficients are generated in the following way:
β1, β3 ∼ U (15, 20), β2 ∼ U (−20,−15), with residual variance σ 2 = 1. Accord-
ing to the definitions provided in Sect. 4.1, we generate the data from model (1) for
m = 1, 5, 9, 13, 17, 23, 29, 37, 45, 55,wherem represents the outlyingness parameter
(the larger it is, the more perturbed the data setting). In practice, we generate leverage
outliers i ′ as xD,i ′ ∼ MV N (m,RD/m), where m ∈ R

K , |mk | � 0, k = 1, . . . , K ,
to obtain some (small) variability among outliers.

Each scenario is further defined by the relative size of thematrix (i.e., the p/n ratio).
We examine four different settings for the dimensions and the ensuing p/n ratio of
the dataset: “Very fat" (VF), with p = 300, n = 60 (i.e. p/n = 5, p � n); “Fat" (F),
with p = 200, n = 100 (i.e. p/n = 0.5, p < n); “Tall" (T), with p = 100, n = 200
(i.e. p/n = 2, p > n); “Very tall" (VT), with p = 60, n = 300 (i.e. p/n = 0.2,
p � n). As suggested by Alfons (2021), we set the p × p covariance matrix RX as
R j ′ j ′′ = 0.5| j ′− j ′′|, j ′, j ′′ = 1, . . . , p, j ′ 
= j ′′.

The rationale for differentiated scenarios with respect to the p/n ratio is that relative
dimensions affect the performance of the various methods that are tested, for example
by impacting on the effectiveness of the selection of predictors.

The contamination rates αy , αlev , and αrow and the number of variables in the set
of perturbed predictors D̃, |D̃|, vary according to the outlier scheme and the dimen-
sion setting. The general idea behind the choice of αy , αlev , αrow and |D̃| is that a
larger contamination rate is expected as n increases because more reasons for outlying
behaviour may materialise (e.g., presence of sub-populations generated by a different
statistical process). More details about the contamination rates and the signal-to-noise
ratios across scenarios are provided in the Supplementary material (Sect. 3).

Henceforth, we refer to scenarios by combining the name of the outlier scheme,
e.g., “mean-row" and the dimensional set-up, e.g., “tall" dataset. Each scenario is run
100 times for each value of m and the various performance metrics, presented in the
next section, are calculated by averaging across these 100 replications.
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5.3 Performancemetrics

Performance metrics, as stated in the introductory section, pertain to three different
dimensions: outlier detection, predictor recovery, and predictors’ coefficient estima-
tion.

Let us define Dk as the k-th predictor in the set D and \ as the set difference. To
measure the performance with respect to predictor recovery, we calculate for each
scenario, each value of parameterm, each outlier detection method, and each iteration
r = 1, . . . , 100, the set of recovered predictors D̂(r). D̂(r) could be in general either
a subset, superset or non-overlapping set with respect to D, ideally however the two
sets should be identical. Consequently, we calculate the following metrics:

• masked predictor rate, MPRr = K−1|D\D̂(r)|, which is the false negative rate
of recovered predictors;

• swamped predictor rate, SPRr = |D̂(r)|−1|D̂(r)\D|, which is the false positive
rate of recovered predictors;

• recovered predictor ratio, RPR(r) = K−1|D̂(r)|, which is ameasure of the propen-
sity to recover irrelevant predictors;

• true predictor rate, defined as T PR(r) = 1(MPR(r) = 0), which is the predictor
set recovery rate;

• true predictor rate for each predictor Dk , k = 1, . . . , K , defined as T PR(r)
k =

1(Dk ∈ D̂(r));
• adjacent predictor rate, defined as APR(r) = 1 if K−1 ∑K

k=1 1(Dk ∈ D̂(r)|(Dk −
1) ∈ D̂(r)|(Dk + 1) ∈ D̂(r)) = 1, APR(r) = 0 otherwise, which is a measure
of the propensity to recover wrong models having strongly correlated predictors
with the true ones.

To quantify the performance of coefficient estimation, we obtain estimated intercept
β̂

(r)
0 and coefficient vector β̂(r), and we calculate:

• for each coefficient βk , k = 1, . . . , K , the coefficient squared error, defined as
CSE (r)

k = (β̂
(r)
k − βk)

2 if T PR(r)
k = 1, CSE (r)

k = 0 if T PR(r)
k = 0;

• the intercept squared error, I SE (r) = (β̂
(r)
0 − β0)

2.

The two indicators are then averaged as follows:

• the average root relative coefficient squared error, RCSE = K−1 ∑K
k=1 |βk |−1

√
(
∑R

r=1 T PR(r)
k )−1

∑R
r=1 CSE (r)

k ;

• the average root relative intercept squared error,RISE = |β0|−1
√
R−1

∑R
r=1 ISE

(r).

To assess performance with regard to conditional outlier detection, we derive for
each iteration r = 1, . . . , 100 the set of recovered outliers Ô(r). Then, we calculate
the following performance metrics:

• outlier rate ratio, defined as the ratio OR(r) = [αn]−1|Ô(r)|;
• zero-outlier indicator, defined as OZ (r) = 1 if |Ô(r)| = 0, 0 otherwise;
• the masking rate MR(r), defined as the proportion of masked outliers (i.e. false
negatives) over the true number of outliers: MR(r) = [αn]−1∑

i∈O 1(i /∈ Ô(r));
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• the swamping rate SR(r), defined as the proportion of swamped outliers (i.e. false

positives) over the number of recovered outliers: SR(r) = |Ô(r)|−1 ∑
i∈Ô(r) 1

(i /∈ O);
• the F1 score, defined as 2 PREC(r)×REC(r)

PREC(r)+REC(r) , where the precision PREC (r) is equal

to PREC (r) = 1 − MR(r), and the recall REC (r) is equal to REC (r) = 1 −
SR(r), which is an overall performance measure incorporating both masking and
swamping effects.

The above measures are averaged across the 100 replications of each scenario
and value of m for each method, and their standard deviation is calculated where
appropriate.

5.4 Simulation results

Our simulations, presented in this and the next Sect. 5.5 and complemented by the
supplementarymaterial, show that the ROBOUT approach compares favourably to the
competitors, as it is not plagued by the systematic predictor redundancy of RLARS
and the systematic sub-optimal estimation of regression coefficients of SPARSE-LTS.
We also find that overall H+MM is the most reliable ROBOUT option because it is
expected to recover predictors, estimate coefficients and identify outliers in a sys-
tematically better and more stable way than competitors. In other words, the optimal
ROBOUT version utilises the MM regression as the final robust regression step, sim-
ilarly to RLARS, while modifying RLARS predictor selection procedure to be robust
to multivariate outliers and parsimonious.

Inmore detail, under all scenariosROBOUTperforms better thanSPARSE-LTSand
RLARS with respect to coefficient estimation (see Table 1). The competitor methods
exhibit relatively highvalues of RCSE ; SPARSE-LTSeven exceeds 60%, especially as
p/n decreases, i.e., as the dataset becomes “taller", and as the outlier scheme becomes
more complex, e.g., in the case of the outlier scheme 7. RLARS faces problems in
avoiding the inclusion of irrelevant predictors, presenting RPR much larger than 1
(see Fig. 2 and also Sects. 6 and 7 in the supplementary material). The above patterns
hold both for scenarios with conditional outliers in mean and in variance.

Concerning outlier detection, the performance of ROBOUT is clearly superior in
the more complex outlier scheme “mean/variance-leverage-row" (schemes 7 and 8),
see, e.g., Fig. 3. SPARSE-LTS is doing systematically worse than competitors when
conditional outliers in variance are present (see the results for the outlier schemes 2,
4 and 6 in Table 2). RLARS faces challenges in recovering the true predictors and the
same holds for SPARSE-LTS when p/n < 1 for “tall" and “very tall" datasets (see
the supplementary material for the respective T PR scores).

We also observe a difference between the ROBOUT versions SNCD-H and SNCD-
L, in that the former is slightly more parsimonious than the latter in predictor recovery
for the “very fat" dataset as reflected in the RPR metric (see Sects. 6 and 7 in the
supplementary material). Concerning outlier detection, a difference between MM and
LTS emerges, that is, the LTS options of ROBOUT are systematically more erratic
when the “very fat" dataset is used (see Table 2).
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Table 1 Average root relative coefficient squared error RCSE across all scenarios and for all methods
considered

Scenario H+MM H+LTS L+MM L+LTS S-LTS RLARS

“Very fat"

Scheme

1 0.024 0.035 0.041 0.047 0.081 0.027

2 0.009 0.010 0.009 0.010 0.205 0.009

3 0.028 0.050 0.046 0.040 0.074 0.040

4 0.007 0.008 0.007 0.008 0.065 0.008

5 0.016 0.018 0.036 0.038 0.080 0.010

6 0.020 0.019 0.024 0.024 0.212 0.009

7 0.056 0.060 0.074 0.098 0.070 0.171

8 0.010 0.010 0.011 0.012 0.103 0.140

9 0.004 0.005 0.004 0.005 0.048 0.005

“Fat"

Scheme

1 0.007 0.008 0.007 0.008 0.053 0.007

2 0.007 0.007 0.007 0.007 0.063 0.007

3 0.006 0.007 0.006 0.007 0.054 0.011

4 0.007 0.008 0.007 0.008 0.065 0.008

5 0.007 0.007 0.007 0.007 0.052 0.007

6 0.007 0.007 0.007 0.007 0.061 0.008

7 0.006 0.007 0.006 0.007 0.206 0.215

8 0.006 0.007 0.006 0.006 0.042 0.046

9 0.004 0.004 0.004 0.004 0.044 0.008

“Tall"

Scheme

1 0.004 0.005 0.004 0.005 0.049 0.007

2 0.006 0.006 0.006 0.006 0.060 0.006

3 0.004 0.004 0.004 0.004 0.048 0.005

4 0.006 0.006 0.006 0.006 0.080 0.006

5 0.004 0.005 0.004 0.005 0.048 0.005

6 0.005 0.005 0.005 0.005 0.056 0.005

7 0.005 0.005 0.005 0.005 0.643 0.336

8 0.005 0.005 0.005 0.005 0.031 0.052

9 0.004 0.004 0.004 0.004 0.044 0.006

“Very tall"

Scheme

1 0.004 0.004 0.004 0.004 0.044 0.008

2 0.004 0.004 0.004 0.004 0.055 0.004

3 0.004 0.004 0.004 0.004 0.044 0.006

4 0.004 0.004 0.004 0.004 0.055 0.004

5 0.004 0.004 0.004 0.004 0.045 0.009
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Table 1 continued

Scenario H+MM H+LTS L+MM L+LTS S-LTS RLARS

6 0.005 0.005 0.005 0.005 0.055 0.004

7 0.005 0.005 0.005 0.005 0.630 0.291

8 0.005 0.005 0.005 0.005 0.044 0.230

9 0.004 0.004 0.004 0.004 0.045 0.009

The results are obtained when the perturbation factor is m = 23, i.e., in the middle of the considered range.
Each scenario is characterised by the dimensions of the dataset (“Very fat”, “Fat”, “Tall” and “Very tall”)
and the outlier scheme numbered as in Sect. 4.1, e.g., Scheme 1 corresponds to the “Only mean” outlier
scheme

Furthermore, under scenarios featuring the outlier scheme “leverage-row" (case 9),
SPARSE-LTS and RLARS do not perform well under the “very fat" case and their
performance improves as the dataset becomes “taller". Finally, all ROBOUT options
are more effective than competitors also in the absence of outliers.

We now report in detail the results for scenarios featuring outliers in mean (schemes
1, 3, 5 and 7), which provide a representative overview of the relative performance of
the various methods. We refer to supplementary material for the results of all other
scenarios.

5.5 Scenarios with outliers in mean

We first examine the cases where a maximum two types of outliers are present, one
of them in being outliers in mean for the response variable. Specifically, this applies
for the outlier schemes 1, 3 and 5. A representative sample of these findings is shown
in Fig. 4, for the scenario with the “very fat" dataset and the “mean-leverage" outlier
scheme. In these scenarios and irrespective of the p/n dimensions, the average of
T PR is around 1 for all methods, meaning that all methods perform satisfactorily
with respect to predictor identification in these relatively simple scenarios. Concerning
outlier detection, the F1 score of all methods is very close to 1, however we note that
H+LTS and L+LTS are slightly more erratic than the competitors, reflected in their
somewhat elevated standard deviation across iterations.

In general and especially as the p/n ratio increases, the performance of ROBOUT
stands out compared to the competitor methods, which face challenges regarding
predictor recovery and coefficient estimation. This is shown clearly in Fig. 4 where
the “very fat" dataset is used. These challenges are caused by the relatively high
dimensions of the potential predictors set. For example, SPARSE-LTS faces severe
challenges as regards the coefficient estimation, performing systematically worse than
other methods with respect to the RCSE and RI SE indicators. The SPARSE-LTS
estimated coefficients are structurally worse: on average, RI SE is around 4% for
SPARSE-LTS, while all the other methods stand below 1%. Furthermore, RLARS
performs worse than the other methods with regard to predictor recovery: the RPR
indicator for RLARS is well beyond 1. Finally, for high values of m RLARS often
crashes, due to multicollinearity issues.
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Table 2 F1 score (mean and standard deviation), considering outlier schemes 1 to 6 as in Sect. 4.1, e.g.,
the number 1 corresponds to the “Only mean” outlier scheme

Scenario H+MM H+LTS L+MM L+LTS S-LTS RLARS

“Very fat"

Scheme

1 Mean 0.987 0.973 0.986 0.964 0.973 0.987

Std 0.035 0.142 0.037 0.172 0.063 0.029

2 Mean 0.921 0.909 0.921 0.909 0.726 0.923

Std 0.084 0.094 0.084 0.094 0.233 0.082

3 Mean 0.983 0.967 0.981 0.967 0.971 0.986

Std 0.037 0.172 0.041 0.172 0.064 0.033

4 Mean 0.936 0.911 0.936 0.911 0.857 0.934

Std 0.047 0.066 0.047 0.066 0.078 0.045

5 Mean 0.983 0.985 0.984 0.965 0.973 0.989

Std 0.036 0.101 0.036 0.172 0.053 0.028

6 Mean 0.923 0.915 0.923 0.915 0.737 0.933

Std 0.109 0.123 0.111 0.121 0.242 0.075

7 Mean 0.992 0.950 0.991 0.955 0.985 0.943

Std 0.050 0.219 0.049 0.199 0.085 0.126

8 Mean 0.961 0.934 0.949 0.938 0.911 0.914

Std 0.047 0.108 0.108 0.108 0.150 0.158

9 Mean 0.981 0.986 0.975 0.983 0.919 0.959

Std 0.046 0.042 0.052 0.043 0.203 0.146

“Fat"

Scheme

1 Mean 0.995 1 0.995 1 0.997 0.995

Std 0.013 0 0.013 0 0.011 0.014

2 Mean 0.939 0.919 0.939 0.919 0.845 0.939

Std 0.048 0.052 0.048 0.052 0.082 0.049

3 Mean 0.997 1 0.997 1 0.997 0.998

Std 0.009 0 0.009 0 0.012 0.008

4 Mean 0.936 0.911 0.936 0.911 0.857 0.934

Std 0.047 0.066 0.047 0.066 0.078 0.045

5 Mean 0.997 1 0.997 1 0.997 0.996

Std 0.009 0 0.009 0 0.009 0.011

6 Mean 0.934 0.913 0.934 0.913 0.864 0.932

Std 0.053 0.059 0.053 0.059 0.075 0.052

7 Mean 0.999 1.000 0.998 0.998 0.955 0.926

Std 0.007 0.000 0.006 0.010 0.118 0.125

8 Mean 0.967 0.952 0.969 0.953 0.941 0.944

Std 0.026 0.036 0.026 0.036 0.041 0.083
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Table 2 continued

Scenario H+MM H+LTS L+MM L+LTS S-LTS RLARS

9 Mean 0.984 0.993 0.982 0.996 0.989 0.979

Std 0.031 0.019 0.031 0.013 0.022 0.033

“Tall"

Scheme

1 Mean 0.999 1 0.999 1 0.999 0.999

Std 0.004 0 0.004 0 0.003 0.004

2 Mean 0.933 0.893 0.933 0.893 0.846 0.933

Std 0.031 0.040 0.031 0.040 0.052 0.030

3 Mean 0.999 1 0.999 1 0.999 0.999

Std 0.004 0 0.004 0 0.003 0.003

4 Mean 0.933 0.894 0.933 0.894 0.844 0.934

Std 0.030 0.041 0.030 0.041 0.050 0.030

5 Mean 0.999 1 0.999 1 1 1

Std 0.003 0 0.003 0 0 0

6 Mean 0.931 0.893 0.931 0.893 0.843 0.931

Std 0.032 0.048 0.032 0.048 0.060 0.032

7 Mean 1.000 1.000 1.000 1.000 0.620 0.650

Std 0.000 0.000 0.000 0.000 0.065 0.158

8 Mean 0.963 0.929 0.963 0.930 0.943 0.919

Std 0.018 0.024 0.018 0.024 0.019 0.123

9 Mean 0.996 0.999 0.995 1.000 0.999 0.971

Std 0.009 0.010 0.009 0.000 0.005 0.136

“Very tall"

Scheme

1 Mean 1 1 1 1 1 1

Std 0 0 0 0 0 0

2 Mean 0.929 0.870 0.929 0.870 0.834 0.929

Std 0.024 0.034 0.024 0.034 0.044 0.025

3 Mean 1 1 1 1 1 1

Std 0 0 0 0 0 0

4 Mean 0.928 0.867 0.928 0.867 0.835 0.928

Std 0.019 0.035 0.019 0.035 0.044 0.019

5 mean 1 1 1 1 1 1

Std 0 0 0 0 0 0

6 Mean 0.927 0.867 0.927 0.867 0.835 0.928

Std 0.023 0.033 0.023 0.033 0.044 0.019

7 Mean 1.000 1.000 1.000 1.000 0.724 0.751

Std 0.000 0.000 0.000 0.000 0.012 0.075
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Table 2 continued

Scenario H+MM H+LTS L+MM L+LTS S-LTS RLARS

8 Mean 0.951 0.899 0.952 0.899 0.874 0.688

Std 0.014 0.023 0.014 0.023 0.014 0.406

9 Mean 0.999 1.000 0.999 1.000 1.000 0.830

Std 0.003 0.000 0.003 0.000 0.001 0.363

The results are obtained when the perturbation factor is m = 23, i.e., in the middle of the considered range.
Results for all four datasets are presented

In the less extreme case of a “fat" dataset, these challenges to the competitors are
attenuated, however ROBOUT remains overall the preferred choice. The metrics for
the scenario with a “fat" dataset and a “mean-row" outlier scheme are shown in Fig. 5.
On the one hand, the RPR of SPARSE-LTS converges to 1, the instability of F1
score for H+LTS and L+LTS disappears, and the patterns of RCSE and RI SE are
much smoother. However, the RPR of RLARS keeps well beyond 1, and the relative
standings of RCSE and RI SE maintain the same pattern,with SPARSE-LTS standing
around 4% and the other methods below 1%. For “tall" and “very tall" datasets, the
patterns remain qualitatively similar.

We now examine the more challenging scenarios featuring all three types of out-
liers, i.e., the “mean-leverage-row" outlier scheme (case 7). In the “very fat" dataset
case, predictor recovery is suffering more than under the simpler schemes 1, 3 and 5
examined previously (see Fig. 6). The ROBOUT versions SNCD-H and SNCD-L are
consistently the best, in all aspects. First, both the two competitor methods underper-
form with respect to predictor recovery. For small values of m, SPARSE-LTS is not
effective, exhibiting values of T PR below 0.8, even if the performance improves for
larger m. RLARS performs even worse with values of the T PR persistently low, irre-
spective of the degree of perturbation.5 Similarly, as regards the coefficient estimation,
we observe that RLARS is standing around 20% for RCSE , while the performance
of SPARSE-LTS improves asm increases, paralleling the Huber options of ROBOUT,
which are the most stable. The competitor methods are also worse than ROBOUTwith
respect to the outlier detection, as can be seen clearly in the F1 score. Based on this
metric, RLARS exhibits by far the worst performance, due to a masking rate which
stabilizes around 20%. SPARSE-LTS starts from a masking and swamping rate above
15% and its performance improves when m increases. The MM-based versions of
ROBOUT are the best performing because the versions using the LTS option present
a small but systematic masking rate (around 5%). Overall, it is found that the H+MM
option of ROBOUT is the most stable and reliable method when predictor selection,
coefficient estimation and outlier detection are jointly considered.

In the milder case where the outlier scheme “mean-leverage-row" (case 7) is com-
bined with a “fat" dataset (see Fig. 7), the pattern of T PR does not qualitatively
change compared to the “very fat" dataset case. Concerning predictor recovery, the

5 When the APR metric is considered, which considers as successes also the cases where the recovered
predictors are contiguous to the true ones, RLARS improves but does not attain values above the range
0.7-0.8.
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Fig. 2 Scenario featuring the “fat" dataset, outliers in variance and row-wise outliers: predictor recovery,
coefficient estimation and outlier detection performance

RPR of SPARSE-LTS converges to Huber and LAD, while RLARS is still clearly
the worse performing. Coefficient estimation metrics RCSE and RI SE show that
coefficients are not recovered well by SPARSE-LTS and RLARS, while all ROBOUT
options are doing almost perfectly. The F1 score of all methods is now fine, apart from
SPARSE-LTS and RLARS when m is small.
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Fig. 3 Scenario featuring the “very fat" dataset, outliers in variance, leverage outliers and row-wise outliers:
predictor recovery, coefficient estimation and outlier detection performance

When the outlier scheme “mean-leverage-row" (case 7) is combined with a “tall"
dataset (see Fig. 8), SPARSE-LTS breaks down. Its T PR metric drops toward zero at
m = 23, because it systematically recovers a contiguous predictor. Its RPR attains
values as high as 20. At m = 23, its RCSE approaches 1, its masking rate 0.4, its
swamping rate 0.25, and its F1 score is as low as 0.7. The other methods do not behave
differently compared to the “fat" dataset case.
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Fig. 4 Scenario “mean-leverage" outliers & “very fat" dataset. Performance metrics for predictor recovery
(RPR mean and standard deviation), coefficient estimation (average coefficient and intercept error) and
outlier detection performance (F1 score mean and standard deviation). RLARS not shown at m = 55
because the method crashes
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Fig. 5 Scenario with a “fat" dataset and a “mean-row" outlier scheme. Performance metrics for predictor
recovery, coefficient estimation and outlier detection are shown

Under the “very tall" dataset, also RLARS crashes (see Fig. 9). Its T PR becomes
close to zero asm approaches 13, descending faster than SPARSE-LTS. RPR remains
very high (above 10) for SPARSE-LTS, and high for RLARS (around 3). It follows that
their estimated coefficients are completely inconsistent. Both methods also present a
masking rate above 40%, which leads to a very poor F1 score across m. We consider
also no-outlier scenarios, that is when m = 1 is combined with the outlier scheme
“only mean" (case 1). The results for this case are presented in the Supplementary
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Fig. 6 Scenario with a “very fat" dataset and a “mean-leverage-row" outlier scheme. Metrics for predictor
recovery, coefficient estimation and outlier detection are shown

material Sect. 5. Finally, the results of scenarios with outliers in variance are also
presented in the Supplementary material Sect. 3 and are consistent with the ranking of
methods with regard to their performance as it has been derived based on the scenarios
examined in this section.
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Fig. 7 Scenario with a “fat" dataset and a “mean-leverage-row" outlier scheme. Metrics for predictor
recovery, coefficient estimation and outlier detection are shown

6 A real banking supervisory data example

In this section, we apply the ROBOUT conditional outlier detection procedure to a real
dataset that contains granular data on the activities of the largest euro area banks, both
on the asset and the liability side of their balance sheet. These data are submitted by
the euro area banks to the European Central Bank in the context of their supervisory
reporting requirements. The dataset in question is compositional, i.e. it includes some
parent categories, like ‘Debt’, and their sub-parent categories like ‘Debt versus other
banks’, ‘Debt versus central government’, etc. In addition, the dataset is very sparse, as
not all banks are engaged in all the activities spanned by the granular set of variables.
The reference date of the data is end-2014.

Since the original scale of the variables is in the order of billions (expressed in
euros), we apply to each entry of the data matrix X a logarithmic transformation of
the following kind:

t(Xi, j ) =
⎧
⎨

⎩

− log(−Xi, j ), if Xi, j < −1;
0, if − 1 ≤ Xi, j ≤ 1;
log(Xi, j ), if Xi, j > 1;
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Fig. 8 Scenario with a “tall" dataset and a “mean-leverage-row" outlier scheme. Metrics for predictor
recovery, coefficient estimation and outlier detection are shown

where i = 1, . . . , 364 banks and j = 1, . . . , 771 variables. This preliminary step is
needed to render the distribution shapes symmetrical. In this way, the few variables
with negative values, representing cost or loss items, are measured in the same scale
of other variables, without neglecting the sign information. Then, we apply a variable
screening based on robust Spearman correlation: we derive the list of all the variable
pairs with Spearman correlation exceeding 0.8, and we exclude from the dataset the
variable with smaller index. At the end of this procedure, 360 variables survive.

Ourfinal datamatrix presents 79.23%of zero entries, 18.86%ofpositive entries, and
2.08%of negative entries. The retained variables show amean Spearman correlation of
0.089 and a mean absolute Spearman correlation of 0.171. The Spearman correlation
matrix displays the presence of a very rich multicollinearity structure, whose pattern
matches the order of the dataset variables. A rich negative correlation is especially
present among the variables related to loans and receivables.

We set the log of bank’s size as the target variable on which we would like to
identify conditionally outlying observations. The distribution of the log of banks’ size
shows that the log-normality assumption on total assets cannot be rejected.6 The fact
that the size follows a log-normal distribution is intuitive, given the high variance, due

6 The p-value of the Jarque-Bera test is 46.72%.
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Fig. 9 Scenario with a “very tall" dataset and a “mean-leverage-row" outlier scheme. Metrics for predictor
recovery, coefficient estimation and outlier detection are shown

Fig. 10 Heat map of the
Spearman correlation matrix
estimated on the data matrix
restricted to the nine predictors
recovered by SNCD-H (see
Table 3)

to the existence of both large and small banks, reinforced by the size dispersion of
home countries in the sample e.g. with respect to their GDP, and the non-negativity of
the size variable. The mean and the median of the log-size are almost equal (23.04 vs
23.14), while the standard deviation is slightly larger than the rescaled MAD (2.14 vs
1.73).
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We apply the four variants of ROBOUT method plus the competitor methods
SPARSE-LTS and RLARS on the final data matrix to identify conditional outliers.
The application of the ROBOUT versions that utilise SNCD-H and SNCD-L is con-
ducted as follows. First, we employ Spearman correlation in Algorithm 1 and we set
δ̃ = δ = 0.01. For the selection of the predictors we experiment with several values of
Kmax: {12, 15, 18, 21, 24, 27, 30}. We note that the are two stability areas, one with
K̂ = 6 and the other with K̂ = 9, and we observe small differences between the
predictor sets returned by SNCD-H and SNCD-L.We select Kmax = 24 (with K̂ = 9)
because all the coefficients estimated byMMand LTS are statistically significant, con-
sidering both predictor sets as returned by SNCD-H and SNCD-L. The adjusted R2 of
theMM and the LTSmodels are both slightly larger when the SNCD-H predictor set is
used, compared to the SNCD-L set. Consequently, we select as the preferred predictor
set that estimated by H+MM and H+LTS, which is the same.7 The nine predictors
identified by the Huber method are reported in Table 3.

As a robustness test, we repeat the same exercise but we set δ̃ = δ = 0.05, 0.1.
Although a larger δ̃ leads to a systematicallymore redundant model, due to the variable
selection procedure of Sect. 4.2.3, we observe that the predictors recovered with δ =
δ̃ = 0.01 always appear when δ̃ = δ = 0.05, 0.1, which is a confirmation that the
predictor set recovered with δ̃ = 0.01 is valid.

In contrast, when RLARS is applied, a substantially larger number of predictors is
returned under all values of Kmax. Similarly when SPARSE-LTS is used, also when
setting α = 0.5 or α = 0.9 instead of α = 0.75.8 These findings seem to be consis-
tent with what is observed in the simulation study under the scenarios with the outlier
scheme “mean-leverage-row", i.e., where the predictor recovery rate for SPARSE-LTS
and RLARS were found to be clearly lower than that of ROBOUT while simultane-
ously their swamping rates was higher.9

The predictor set that we use includes deposits (related to trading), loans and
advances, debt securities and trading items such as interest rate derivatives. These
are all fundamental elements of the banks’ activities, therefore it makes economic
sense that they are chosen as predictors for banks’ total assets. In addition, these are
variables that are expected to appear more frequently in the balance sheets of larger
and more sophisticated institutions, therefore these variables can discriminate banks
with respect to their size.

The application of the ROBOUT method starts with the step comprising the pro-
cedure described in Sect. 4.2.2, applied across the 360 potential predictors. It is found
that approximately one third of the variables presents no flagged outlying cells, and
36 variables out of 360 present more than 6 flagged cells (out of 364).

7 The LTS options of ROBOUT return multi-collinearity warnings when Kmax = 12, 15, 18, because the
MCD covariance matrix is singular, due to the high number of predictors.
8 When the two components of the vector nsamp = c(500, 10), representing subset size and number, are
lowered, SPARSE-LTS may not work, due to the rank deficiency of covariance matrix in the sub-samples.
9 From a robustness perspective it can be noted that when we run the outlier methods inserting a duplicate
row in the 364 × 361 data matrix the predictor sets retrieved by ROBOUT do not change, while SPARSE-
LTS and RLARS still return a massive number of predictors. This suggests that ROBOUT is robust to
possible duplications of specific records.
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Table 3 Description of the predictor set identified, which is used in the model estimated in Table 4

V1 Other demand deposits.

V2 Debt securities. Carrying amount.

V3 Loans and advances. Households. Impaired assets.

V4 Loans and advances. Households. Specific allowances for
financial assets, individually estimated.

V5 Deposits. Current accounts / overnight deposits. Held for
trading.

V6 Deposits. Current accounts / overnight deposits.

Designated at fair value through profit or loss.

V7 Interest rate. Negative value. Trading.

V8 Interest rate. OTC other. Trading.

V9 Equity. OTC options. Financial liabilities held for trading.

Table 4 Output of the MM regression applied to the predictors retrieved by SNCD-H

Estimate Std. error t-value Pr(> |t|)
(Intercept) 21.0829 0.1158 182.041 0.0000 ***

V1 0.0290 0.0073 3.954 0.0001 ***

V2 0.0301 0.0078 3.877 0.0001 ***

V3 0.0291 0.0098 2.976 0.0031 **

V4 0.0238 0.0075 3.185 0.0016 **

V5 0.0342 0.0079 4.351 0.0000 ***

V6 0.0414 0.0063 6.575 0.0000 ***

V7 0.0324 0.0067 4.805 0.0000 ***

V8 0.0357 0.0069 5.134 0.0000 ***

V9 0.0186 0.0075 2.488 0.0133 *

The response variable is the log-size of the banks. The variable legend is reported in Table 3. ‘*’, ‘**’ and
‘***’ denote significance at 5%, 1% and 0.1% respectively
Robust residual standard error = 0.9908
Multiple R-squared = 0.7454
Adjusted R-squared = 0.7389

Table 4 reports the results of theMMregression estimated on the predictors reported
in Table 3. All estimated coefficients are positive and strongly significant. We observe
that extremely significant predictors are V5-V8, that reflect the extent of trading activ-
ities (on the liabilities side). The nine predictors are all positively correlated, with an
average Spearman estimated correlation of 0.4252. The heat map of the Spearman
predictor correlation matrix is reported in Fig. 10. It is remarkable that 63.83% of
entries in the 364 × 9 predictor matrix is zero, with 64 of 364 rows being completely
null.

Starting from the retrieved predictors displayed in Table 3, MM and LTS pro-
vide very similar estimated coefficients, and recover the same outliers, irrespective

123



M. Farnè, A. Vouldis

Fig. 11 Histogram of total log-assets (left) and estimated MM residuals (right). Recovered outliers are
depicted in red, non-outliers are depicted in blue

Fig. 12 Residual diagnostic plots for MM residuals: residuals VS fitted values plot (left panel) and normal
Q-Q plot (right panel)

of whether δ = 0.01 or δ = 0.05. With a level δ = 0.01, the recovered outliers are
eleven, of which seven negative and four positive.

In Fig. 11, two recovered outliers on the right side of the distribution present a
very low value of log-assets, while most of the remaining outliers lie within the range
of intermediate values for the log-assets. While the former two clearly are reporting
errors due to a wrong scale (expressed in 1000s of euros instead of simply euros),
the other outliers correspond to banks with a disproportionately large or small value
of log-assets compared to the values of the predictors, i.e., conditional outliers. As
reported in Table 5, recovered outliers are values with a systematically larger presence
of zeros in the predictors compared to non-outliers, that is, they are banks with a
more sparsely populated balance sheet. The presence of more zero elements has a
bearing on the ability of predictors to explain the observed amount of log-assets.
Upon closer examination, the outliers are mainly idiosyncratic banks such as public
financing institutions, branches of investment banks, or clearing houses, presenting
an anomalous value of total assets with respect to the values recorded in the main
predictors of total assets.

Figure 12 shows residual diagnostic plots for theMM residuals to check the validity
of the estimated model. We can see that the estimated residuals respect the assump-
tions of independence, homoscedasticity and normality, with the only exception of the
two aforementioned strongly negative outliers. Similar plots are observed for the LTS
residuals, which are reported alongside the table of LTS coefficients in the Supple-
mentary material (Sect. 8).
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Table 5 Proportion of zero values on relevant predictors for the set of outliers and non-outliers that is
recovered by H+MM. See Table 3 for the variable legend

V1 V2 V3 V4 V5 V6 V7 V8 V9

NON-OUT 0.691 0.669 0.637 0.717 0.501 0.717 0.504 0.518 0.740

OUT 0.909 0.818 0.727 0.909 0.818 1.000 0.636 0.636 0.909

7 Conclusions

In this paper, we propose a new conditional outlier detectionmethod, called ROBOUT.
ROBOUT is versatile and flexible, as it is able to robustly spot conditional outliers
under many different perturbed conditions and combinations of sample size n and
dimension p. ROBOUT works efficiently on datasets with many observations and
variables and it is able to robustly select the most relevant predictors of any target
variable. Importantly, ROBOUT is effective when the ratio p/n is larger than 1, multi-
collinearity is present, and potential predictors are perturbed.

ROBOUT presents two options to select relevant predictors, based on LASSO-
penalized Huber (SNCD-H) or the Least Absolute Deviation (SNCD-L) loss, and two
options to estimate a robust regression, namely, the LTS and the MM methods. In
a comprehensive simulation study, we have tested perturbation conditions including
conditional outliers in mean or in variance in the response variable, multicollinearity
and multivariate outliers in the potential predictors, and we have considered cases
when the dimension is both (much) smaller and (much) larger than the sample size.
The simulation study shows that when the ROBOUT performance is compared to that
of the competitors such as RLARS and SPARSE-LTS, the option SNCD-H+MM is
overall the most resilient with respect to predictor recovery and conditional outlier
detection across all tested scenarios.

We also test ROBOUT in a large granular banking dataset containing several bal-
ance sheet indicators for euro area banks. We are able to robustly model the log-size
of euro area banks through a set of predictors that includes loans, deposits, securi-
ties, and trading assets, and to identify the banks presenting anomalous values in the
total assets conditional on the identified predictors. The recovered outliers constitute
a set of idiosyncratic banks in comparison to the textbook prototype of traditional
bank, comprising public financing institutions, local branches of investment banks,
and clearing houses. ROBOUT may thus be a useful tool for bank supervisors, who
need to spot hidden anomalies from raw balance sheet data.
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