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Small polarons in transition metal oxides

Michele Reticcioli, Ulrike Diebold, Georg Kresse and Cesare Franchini

Abstract The formation of polarons is a pervasive phenomenon in transition metal
oxide compounds, with a strong impact on the physical properties and functionali-
ties of the hosting materials. In its original formulation the polaron problem consid-
ers a single charge carrier in a polar crystal interacting with its surrounding lattice.
Depending on the spatial extension of the polaron quasiparticle, originating from
the coupling between the excess charge and the phonon field, one speaks of small
or large polarons. This chapter discusses the modeling of small polarons in real ma-
terials, with a particular focus on the archetypal polaron material TiO2. After an
introductory part, surveying the fundamental theoretical and experimental aspects
of the physics of polarons, the chapter examines how to model small polarons us-
ing first principles schemes in order to predict, understand and interpret a variety
of polaron properties in bulk phases and surfaces. Following the spirit of this hand-
book, different types of computational procedures and prescriptions are presented
with specific instructions on the setup required to model polaron effects.
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1 Introduction

Electrons in perfect crystals are adequately described in terms of periodic wave
functions. However, rather than being constituted by a perfect lattice, real materials
are often characterized by the presence of defects, such as point defects (vacancies
or interstitials), impurities, grain boundaries, and dislocations [2, 3]. Defects in the
crystal break the periodicity of the electronic charge density. They can lead to the
formation of localized states [4, 5], which affect the materials properties and, thus,
their performance in applications. Less intuitively, such localized states could exist
also in the absence of any defects in the crystal, i.e., they can form in perfect lattices.
This phenomenon is referred to as polarons. A polaron is a quasiparticle originating
from the interactions between charge carriers (i.e., electrons or holes) and lattice ion
vibrations [6]. More precisely, due to Coulomb forces, the excess charge displaces
the ions in its neighborhood creating a polarization cloud that follows the charge
carrier as it moves through the crystal (see Fig. 1). Such quasiparticles differ from
lattice defect states own peculiar properties and are described by well developed
quantum field theories based on effective Hamiltonians [6, 7].

Fig. 1 Pictorial view of a polaron. An excess charge is trapped in a lattice site (bright) and distorts
the surrounding lattice.

Formation of polarons is particularly favorable in polar semiconductors and tran-
sition metal oxides owing to the strength of the electron-phonon interaction and
is further promoted in the vicinity of a surface, where the crystal lattice is more
flexible and the necessary lattice relaxations cost less energy [8–12]. Polarons play
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a decisive role in a wide range of phenomena, including electron transport [13, 14],
optical absorption, and chemical reactivity, and have crucial implications in high-Tc
superconductivity [15], colossal magnetoresistance [16, 17], thermoelectricity [18],
photoemission [19], and photochemistry [20].

This chapter is mostly focused on the first principles modelling of small polarons
(Ch. 2) and its application to TiO2 (Ch. 3), an archetypal, and widely studied polaron
material. This introduction is complemented with a brief summary of the fundamen-
tal theoretical aspects defining the physics of polarons and with an overview of the
experimental techniques used to dected polaron features in materials.

1.1 Theoretical background

The emergence of polaron theory can be traced back to 1933 when Landau elabo-
rated on the possibility for lattice distortions to trap electrons by means of an intrin-
sic modification of the lattice phonon field induced by the electron itself [21]. The
resulting electron-phonon quasiparticle was later called polaron, a coupled electron-
phonon system in which the polarization generated by the lattice distortions acts
back on the electron renormalizing the electronic properties, for instance the effec-
tive mass. An analogous discussion is valid for holes rather than electrons. A first
formal description of the polaron problem was published in 1946 by Pekar [22], who
considered a free electron interacting with lattice deformations in the continuum ap-
proximation. Therefore, Pekar’s study is limited to the case of polarons with a size
larger than the lattice constant, so that the atomic discreteness is negligible [23].
With the ionic lattice described as a polarizable dielectric continuum, Landau and
Pekar showed that the polaron mass m∗ is enhanced with respect to the “bare“ elec-
tron mass [24], an important result that set the basis for all subsequent theories.

During the 1950s, the second quantization formalism was used to refine the de-
scription of the polaron problem in terms of quantum effective Hamiltonians includ-
ing an electronic term (He), a phonon term (Hph) and the electron-phonon coupling
term (He−ph). The e− ph term is of fundamental importance for understanding the
polaronic states, since it takes into account the type (e.g. short- or long-range) and
intensity (weak to strong) of the mutual interactions between charge carriers and lat-
tice vibrations. However, a complete analytic solution of the polaron Hamiltonian
cannot be achieved and approximations are needed. Fröhlich [25] and Holstein [6]
separately addressed different aspects of the problem and proposed mathematically
more tractable formulations. Fröhlich theory relies on the continuum approxima-
tion and assumes long-range forces (large polarons), whereas Holstein theory takes
into account explicitly the lattice periodicity and treats the electron-phonon cou-
pling as a short-range interaction (small polaron). The distinction between small
and large polaron is defined according to the strength of the electron-phonon cou-
pling (weak/strong) and the extension of the lattice distortion around the electron
(large/small) [23, 26, 27]. The distinct features of small and large polarons are dis-
cussed at the end of this section.
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1.1.1 Fröhlich Hamiltonian

Fröhlich theory treats the situation of long-range coupling between electrons and
phonons, which leads to the formation of large polarons [7, 23, 25] and is formalized
by the Hamiltonian:

H = ∑
k

k2

2
c†

kck +∑
q

b†
qbq +∑

k,q

[
Vd(q)b

†
qc†

k−qck +V †
d (q)bqc†

k+qcq

]
. (1)

where ck and bq are annihilation operators for a particle with wave vector k and a
phonon with wave vector q, respectively, and Vd(q) is the electron-phonon coupling
function for a system in d dimensions, in 3 dimensions:

V3(q) = i

(
2
√

2πα

V

) 1
2 1

q
. (2)

Here V is the volume of the system and α is the dimensionless Fröhlich electron-
phonon coupling constant defined in terms of the reduced Plank constant h̄, the
charge carrier charge e, the phonon frequency ω of the long-wavelength optical-
longitudinal phonon, and the material’s static and high-frequency dielectric con-
stants ε0 and ε∞, respectively (ε0 includes ionic relaxation effects, whereas the ion-
clamped ε∞ accounts only for electronic contributions):

α =
e2

h̄

√
m

2h̄ω
(

1
ε∞

− 1
ε0
). (3)

In real materials α ranges between ≈ 0.02 (InSb) to ≈ 3.8 (SrTiO3). In the weak-
coupling regime (small α), the Fröhlich Hamiltonian can be solved using pertur-
bation theory, and the Feynmann’s path integral approach provides accurate results
for all coupling strengths [28, 29]. In the large polaron Fröhlich picture the spatial
extension of the large polaron is bigger than the lattice constant and the dressed elec-
tron is accompanied by a phonon cloud, whose density determines the size of the po-
laron effectve mass m∗ and the polaron energy [30, 31]. Recently, the Fröhlich prob-
lem has been recasted within a first-principles perspective by F. Giustino, which al-
lows for predictive non-empirical calculations of material’s specific electron-phonon
properties [32].

1.1.2 Holstein Hamiltonian

Holstein considered the polaron determined by a short-range strong-coupling regime,
the so-called small polaron, spatially confined within a radius of the order of the lat-
tice constant, described by the general Holstein Hamiltonian [6, 33]:
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H =−t ∑
<i j>

c†
i c j +ω ∑

i
b†

i bi +g∑
i

ni(b
†
i +bi) (4)

where t is the hopping amplitude between neighboring sites, ci(bi) and c†
i (b†

i ) are
fermionic (bosonic) creation and annihilation operators acting on the site i, ω the
phonon frequency, g the electron-phonon coupling strength, and ni = c†

i ci is the
fermionic particle number operator. As opposed to the Fröhlich model, the Hol-
stein model only considers electron-phonon interactions at a single lattice site,
greatly simplifying the model. In the simplified case of a polaron trapped in a lin-
ear molecule, hopping between different molecular sites [6, 34], the Hamiltonian in
Eq. 4 reduces to a two-site Hamiltonian describing the electron hopping between
two sites, interacting with an ion placed in between via its vibrational mode [23]:

H = t(c†
1c2 + c†

2c1)−
1

2M
∂ 2

∂x2 +
γx2

2
+gx(c†

1c1 + c†
2c2) (5)

with M the ion mass, γ = Mω2 the spring constant and x the linear ion displacement
from the equilibrium position. The state |ψ〉 with an extra electron introduced into
the unperturbed system |0〉 and localized at the site 1 or 2 with amplitude probability
u(x) and v(x), respectively, is written as

|ψ〉=
[
u(x)c†

1 + v(x)c†
2

]
|0〉 . (6)

Despite the simplicity of this model, an analytic solution for the Schrödinger equa-
tion Hψ = Eψ can be found only in special cases (e.g. ionic vibration perpendicular
to the hopping direction), and one has to rely on numerical approximations or restrict
the study to the nonadiabatic (t� ω) or adiabatic (t� ω) limits. The modelling of
small polaron within a first principles picture is addressed in Sec. 2.

At this point, the distinction between polarons and electrons trapped at lattice
defect sites stands out clearly by inspecting the Fröhlich’s and Holstein’s analysis.
First of all, as already mentioned above, polaron formation occurs even in absence
of defects, i.e., in the perfect crystal. Moreover, polarons are not stuck to a specific
lattice site, rather they can move around in the system. Both these characteristics,
i.e., spontaneous localization and mobility, were pointed out by Holstein, who sum-
marized the concepts in few brilliant sentences [6]:

“Let us imagine that an electron is momentarily fixed at some point of the crystal. As a
result of electron-lattice interaction, the surrounding lattice particles will be displaced to
new equilibrium positions [. . .] such as to provide a potential well for the electron. If the
well is sufficiently deep, the electron will occupy a bound state, unable to move unless
accompanied by the well, that is to say, by the induced lattice deformation.”

At variance, the physics of an electron attached to a defect is rather different, as
it is typically not mobile and its characteristics strongly depend on the type of de-
fect [35].
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1.1.3 A few additional considerations on small and large polarons

Many other theoretical studies have further developed the ideas of Fröhlich and
Holstein, leading to two alternative (and to some extent more advanced) descriptions
of large and small polarons [26]. Table 1 summarizes the main distinctions between
the large and the small polaron [36].

Large Polaron Small Polaron

Polaron radius� lattice parameter Polaron radius ' lattice parameter
Shallow state (∼ 10 meV below CBM) In-gap state (∼ 1 eV below CBM)

Coherent motion (scattered occasionally by phonons) Incoherent motion (assisted by phonons)
Mobility µ � 1 cm2/Vs Mobility µ � 1 cm2/Vs

Decreasing mobility with increasing temperature Increasing mobility with increasing temperature

Table 1 General properties of large and small polarons.

As already mentioned their names reflect the length scale of the spatial localiza-
tion: while the small-polaron electronic charge is usually confined in the primitive
cell (a few Å), the large polaron extends over several lattice sites (typically about
20 Å). Also, the two types of polaronic states exhibit distinct energy scales. The
large polaron is usually a shallow state, few tens of meV below the conduction band
minimum (CBM). Conversely, the small polaron is firmly trapped by local distor-
tions in a stronger potential well, which determines the formation of a deeper in-gap
state well localized around 1 eV below the CBM (see Fig. 2).

Fig. 2 Polaron in-gap level. Small polaron band-gap states in the surface of rutile TiO2 formed
by excess electrons donated by so-called bridge-bonded oxygen vacancies (VOb ), hydrogen adsor-
bates (Had), or hydrogen hydroxyls (HOb ). Results based on first principles calculations within the
hybrid-DFT approach. This figure is taken from Ref. [37].

The localization process is also different: a charge carrier introduced into a sys-
tem can quickly equilibrate with the lattice and form a large polaron, whereas
the formation of a small polaron occurs only after overcoming an energy bar-
rier [38, 39]. Finally, the two types of polarons are characterized by very different
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transport properties. The large polaron, a heavy quasiparticle, is weakly scattered by
phonons. This weak scattering can compensate the large mass, resulting in a large
mobility for the large polaron. A small polaron instead hops between trapping sites
with a lower mobility. Since its motion is assisted by phonons, the mobility of small
polarons increases with increasing temperature. Both large and small polarons have
been observed in several experiments, as reported in the next section, and studied
by simulations and computational techniques. Historically, large polarons have been
investigated mostly via effective Hamiltonians, in particular by means of variational
treatments solved by Feynmann’s path integral techniques, and by diagrammatic
Monte Carlo [27–29, 40–43] approaches. First principles techniques are more suit-
able for the description of the small polaron, but successful attempts to address the
large-polaron case have been presented in the last few years [11, 44, 45].

1.1.4 How first principles modeling can be used

The Fröhlich and Holstein model Hamiltonians are simplifications of the more gen-
eral electron-phonon Hamiltonian that is discussed in great detail in a recent review
of Giustino [32]. Giustino also explains, how the individual terms can be derived by
first principles density functional theory, as briefly recapitulated below. (i) The first
term describes the one-electron band structure, and that can obviously be calculated
and parameterized using density functional theory, hybrid functionals or the GW ap-
proximation. The original Fröhlich and Holstein Hamiltonian involve only a single
band, with a parabolic dispersion in the Fröhlich case, and a tight binding form in
the Holstein case. In the case of electron (hole) polarons, one thus needs to parame-
terize the conduction (valence) band. (ii) The second term describes the vibrational
frequencies of the optically active mode. The frequencies as well as the eigenmodes
can be calculated by density functional perturbation theory. The Fröhlich Hamilto-
nian involves only a single dispersion free phonon mode, which couples with a wave
vector dependent coupling term q. The functional form used by Fröhlich is exact in
the long wave length limit. The Holstein model involves a single local mode, where
the local displacement couples (somehow) to the electronic bands. (iii) The coupling
between the electronic and phononic subsystem are described by the last term. The
matrix elements in Fröhlich model can be exactly calculated using density func-
tional perturbation theory [44]. The Holstein model is somewhat too simplistic and
can not obviously be mapped onto first principles calculations.

The main issue with both approaches is two fold. (i) In many cases, the restriction
to a single band and phonon mode is a too severe a simplification, (ii) and even for
a single band and a single phonon mode the solution of the full many body problem
can be formidable. This is the main reason why realistic modeling of polarons in
real materials has hereto hardly been attempted. Nevertheless, the single band and
single phonon model might be very accurate for many simple polar semiconductors
and insulators. In this case, all one needs to determine are the effective masses, the
phonon frequencies, and the dielectric constants. Then the solution of the Fröhlich
model is fairly straightforward and expected to be accurate. Furthermore, there is
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little reason to invoke first principles calculations for large polarons, if all materials
parameters are experimentally established.

The situation is more complicated for small polarons. As already mentioned the
Holstein model is a too simplistic approach: for a small polarons, the lattice dis-
tortions are usually large around an atom, and it is not obvious how to map the
distortions to a single effective mode, furthermore the implicitly assumed harmonic
approximation might not be accurate if the distortions are large. However, small po-
larons often involve fairly large energy scales around 1 eV. In this case, one might
consider to treat the ionic degrees of freedom as classical particles. In many transi-
tion metal oxides this should be a valid approximation, since the typical vibrational
frequencies are small compared to the considered energy scales. In other words,
quantum fluctuations of the ions can be disregarded. The second crucial approxima-
tion is to treat the electronic degrees of freedom using a mean field theory, such as
DFT. There is no need to discuss the accuracy of DFT, it often works exceedingly
well. Polarons though pose a particular challenge, since they involve localization of
the electrons, which many density functionals fail to describe accurately because of
self-interaction errors (see Sec. 2). Compared to the model approach the full first-
principles approach is much simpler. One simply choses a large unit cell, adds an
electron, and lets the system evolve into the groundstate. The disadvantage com-
pared to the model approach is about giving up on the quantum nature of the ions,
and restricting the treatment of the electrons to a mean field approximation. The ad-
vantages are, however, numerous. The model Hamiltonians are obtained by expand-
ing the full electron-phonon Hamiltonian around a reference groundstate to second
order in the ionic displacements (recall, one can use density functional perturbation
theory to calculate the vibrational frequencies, as well as the electron-phonon cou-
pling). Anharmonicities are therefore implicitly neglected in the model approach. In
this respect the simplistic, brute force approach certainly excels the model approach.

1.2 Experimental observations of polarons

Several years after the first theoretical predictions, experimental observations based
on different techniques started to detect the presence of polarons in real materials
and to study their properties. Nowadays, it is a common practice to complement
experimental data with theoretical interpretations based on electronic structure sim-
ulations. Table 2 lists significant experimental studies revealing polaron formation
in oxide materials. This list also represents the variety of experimental techniques
used to observe both small and large polarons, formed by both negative (electron)
and positive (hole) excess charges in oxide materials.
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Type Material Source Exp. technique Publication

hole, small
polaron UO2 oxidation conductivity

measurement 1963 [46]

hole, small
polaron MnO Li doping conductivity

measurement 1970 [13]

electron, small
polaron CeO2 O vacancies conductivity

and Seebeck 1977 [47]

electron, small
polaron BaTiO3 Nb doping EPR 1994 [48]

electron, small
and large polaron

a-TiO2 and
r-TiO2

Nb doping conductivity and op-
tical measurements 2007 [49]

electron, small
polaron r-TiO2 O vacancies

Resonant
photoelectron
diffraction

2008 [50]

electron, small
polaron r-TiO2 O vacancies EPR 2013 [51]

electron, large
polaron a-TiO2 O vacancies ARPES 2013 [14]

electron, small
polaron r-TiO2 O vacancies STM and STS 2014 [11]

electron, small
polaron r-TiO2

UV irradiation
or H adatom IR spectroscopy 2015 [52]

hole, small
polaron LiNbO3 Visible light IR spectroscopy 2016 [35]

electron, small
polaron r-TiO2 O vacancies IR spectroscopy

on adsorbates 2017 [53]

electron and
hole, large
polaron

lead halide per-
ovskites laser pulse TR-OKE 2017 [45]

Table 2 List of experimental observations of polarons in oxide materials using different type of
techniques.

1.2.1 Conductivity measurements

The first observation of polarons is attributed [54] to an experimental study pub-
lished in 1963 [46]. Experiments on oxidized uranium dioxide reported an increas-
ing hole conductivity with raising temperature, following a behavior well described
by the formula:

µ ∼ 1
T

exp
(
− ∆E

kBT

)
, (7)

indicating small polaron hopping from U5+ to U4+ sites upon thermal activation, an
interpretation further substantiated by the observation that the activation energy ∆E
decreases with increasing oxygen concentration.

Experimental confirmations of Eq. 7 were obtained for a wide range of materi-
als, with charge carriers injected by different types of defects. Examples are given
by the hole small polarons observed in Li-doped MnO [13], and by the electron
small polarons in oxygen deficient cerium dioxide [47]. In the latter example, two
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excess electrons originate from every oxygen vacancy present in the system. Each
excess electron localizes at one Ce4+ site forming a Ce3+ ion. Hopping is activated
by temperature, and the conductivity measurements confirmed the expected trend
for polarons (Eq. 7). Moreover, by measuring the Seebeck coefficient for thermo-
electricity, the number of carriers was found to be temperature independent. This
is in contrast with the band model for the conductivity, which predicts an increas-
ing number of charge carriers with raising temperature. On the contrary, according
to the polaron hopping model, the charge carriers are introduced in CeO2 only by
defects, and the mobility increases with raising temperature due to the increased
phonon populations.

1.2.2 Electron paramagnetic resonance

Electron paramagnetic resonance (EPR) is another experimental technique able to
identify lattice ions with unpaired electrons, a distinct feature of the polaron state. In
EPR experiments, an external magnetic field splits the energy level of the unpaired
electrons (Zeeman effect), thus determining energy levels available by emitting or
absorbing a photon at a specific frequency: the sample is illuminated by light, typi-
cally at constant frequency, while the magnetic field varies and the resonance peaks
are measured as function of the magnetic field when the conditions for the level
transitions are satisfied. The shape, intensity and energy values of the resonance
peaks determine the electronic states of the atoms in the sample where charge trap-
ping can be detected. Small polarons were identified by EPR in Nb doped BaTiO3
samples [48, 55], and other materials including oxygen-deficient rutile TiO2 sam-
ples [51].

1.2.3 Optical measurements

The difference between small and large polarons manifests itself prominently in the
optical properties of materials. An example is the response of two different poly-
morphs of TiO2, rutile and anatase, to (electron) doping with Nb, reported by Zhang
et al. [49]. Epitaxial thin films of the two different polymorphs were grown on ap-
propriate substrates, SrTiO3(001) or LaAlO3(001) for anatase and Al2O3(r and c-
cut) for rutile. By substituting 4-valent Ti with 5% of 5-valent Nb, electrons were
added to the system. The two types of films showed contrasting behavior in conduc-
tivity measurements: anatase films were metallic while rutile films semiconducting.
Together with the similar carrier density observed in both films, this is consistent
with the formation of large and small electron polarons, respectively. The optical
transmittance of 80% in the visible range for epitaxial anatase films shows that these
films can be characterized as transparent conductive oxides [56].
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1.2.4 Resonant photoelectron diffraction

The charge distribution in reduced TiO2 rutile (110) single crystals was first de-
termined by Krüger et al. [50, 57]. Their experiment is based on angle-resolved
x-ray photoemission (XPS). Intensity variations in a specific photoelectron peak
(here Ti-2p) are recorded while changing the polar and azimuthal emission angle.
Since forward-focusing dominates the scattering of electrons with kinetic energies
of a few hundred eV, the configuration of near-range atomic neighbors can be ac-
cessed in a rather direct manner, and modeled in a simple cluster geometry [58]. In
their work, the authors took advantage of the fact that the Ti-2p XPS peak shows a
clear shoulder that is attributed to Ti3+, the intensity of this feature was additionally
increased by tuning the photon energy to a resonance condition [59]. The photo-
electron diffraction pattern of the Ti4+ peak (from Ti4+ at regular lattice sites) and
the reduced Ti3+ signature turned out to be drastically different, and the best fit was
obtained by attributing the excess electrons to the subsurface Ti atoms. This is true
independently of the way the excess electrons are introduced into the lattice, either
by creating O vacancies [50] or by adding electrons via Na deposition [57]. This
points to the fact that the location of polarons in subsurface position is an intrinsic
feature of rutile TiO2.

1.2.5 Angle resolved photoemission spectroscopy

TiO2 has been investigated by numerous different experimental techniques in addi-
tion to the methods mentioned above. Angle resolved photoemission spectroscopy
(ARPES) [14] was used to identify the presence of large polarons in the anatase
polymorph of titanium dioxide. The energy dispersion close to the Fermi level mea-
sured by ARPES experiment shows satellite (shallow) states below the conduction
band, corresponding to large electron polarons, brought about by the oxygen va-
cancies present in the sample. By tuning the amount of oxygen vacancies (via UV
irradiation [60]), the density of charge carriers can be controlled. At high vacancy
concentrations, the satellite states disappear, due to the overlap of the polaronic
wavefunctions, giving rise to a metallic behavior indicated by the crossing of the
conduction band with the Fermi energy.

1.2.6 Scanning tunneling microscopy and spectroscopy

A direct view at the polaronic states in TiO2 can be achieved by using scanning tun-
neling microscopy (STM) and spectroscopy (STS) [11]. In-gap states stand clearly
from the STM and STS studies on both anatase and rutile TiO2 polymorph, due to
charge carriers (electrons) induced by oxygen vacancies or Nb doping. However,
the two polymorphs present quite different polaronic states: while rutile TiO2 is a
prototypical small-polaron material, anatase was found to host predominantly large
polarons. STM is capable to provide information on the spatial distribution of the
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polaronic charge at the surface, which is helpful for the identification of small and
large polarons.

1.2.7 Infrared spectroscopy

Small polaron states have been detected in TiO2 also by absorption infrared (IR)
spectroscopy experiments [52]. The vibrational energies of the lattice bonds are
typically in the infrared regime. Therefore, by exposure of the sample to IR light,
resonance peaks appear in the measured transmitted and reflected beams. In pres-
ence of small polarons, the localized charge together with the local lattice distortions
contribute to form resonant peaks at characteristic vibrational frequencies. Interest-
ingly, the polaron peaks in TiO2 were found to be independent on the source of
charge carriers, H adsorption and UV irradiation, a strong evidence of the polaron
nature of the peaks. The characteristic vibrational spectra of a defect state, at a donor
would, in fact, be susceptible to the type of the donor.

Infrared spectroscopy can also be used to detect polarons indirectly, by inspecting
the vibrational properties of bonds in the vicinity of the trapping site. Electron small
polarons were found to redshift the stretching frequency of NO molecules adsorbed
on reduced TiO2 surfaces with respect to the pristine samples [53]. Analogously,
hole small polarons modify the vibrational frequency of the OH impurities at Li
vacancies in LiNbO3 samples [35]. In the latter study, irradiation in the visible region
was used to generate hole small polarons at O sites, and electron polarons at Nb
sites. The hole polarons localize in the vicinity of the Li vacancies, due to the a more
favorable electrostatic potential, and therefore strongly contribute to the frequency
shift of the OH impurities. Once the source is turned off, hole and electron polarons
recombine, since their mobile character, and the original vibrational frequency is
restored.

1.2.8 Time-resolved optical Kerr effect

Recently, the time-resolved optical Kerr effect (TR-OKE) was used to investigate
polaron formations in CH3NH3PbBr3 and CsPbBr3 perovskites [45]. In a TR-OKE
experiment, a laser pulse is sent to the material and the polarization rotation is de-
tected. With laser pulses of energy larger than the energy-gap value, the experi-
ment probes the TR-OKE response upon charge injection. In these lead halide per-
ovskites, the detected signals are compatible with a description of the altered phonon
dynamics in terms of the formation of hole and electron, large polarons in the PbBr3
sublattice. This TR-OKE study reported also interesting insights on the polaron-
formation dynamics. In fact, the two materials show different rates for the polaron
formation. This is attributed to the reorientations of the cations in CH3NH3PbBr3,
which determine a faster polaron formation than in CsPbBr3.
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2 Modeling small polarons by first principles

The electronic structure community has been quite active in the study of polarons
in real materials. Simulations can be helpful to understand and interpret the experi-
mental findings or to predict the formation of polaronic states. This section provides
a short overview of the first principles methods generally used to model polarons in
materials and discusses different computational procedures to acquire information
on the formation and dynamics of polarons and on their mutual interaction.

2.1 Theories and methods

Density functional theory (DFT) has been largely applied as a starting point to study
polarons in materials. However, common schemes used to describe the exchange-
correlation functional in DFT simulations, such as the local density and generalized
gradient approximations (LDA and GGA, respectively), fail to describe properly
the charge localization at atomic sites. By using LDA or GGA, the excess charges
are delocalized overall in the lattice and partial occupations of the available elec-
tronic levels is favored against integer occupations. Therefore, the modeling of po-
larons requires a correction in order to overcome the drawback of standard local and
semilocal exchange-correlation approximations.

Fig. 3 Total energy vs. occupation in DFT and HF. Total energy as a function of the electronic
occupation in DFT (convex function) and HF schemes (concave function).

According to the Janak’s theorem [61], variations of the total energy E due to
the electronic occupation (ni) of the state i are given in terms of the DFT Hamilto-
nian eigenstates εi, as dE/dni = εi, independently of the exchange-correlation ap-
proximation. The expected behavior of the exact total energy is a piecewise linear
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function of the electronic occupation, with discontinuities in the first derivative for
integer values (ni = N) [62, 63], that is d2E/dn2

i = 0 except at integer occupancies.
Therefore, the energy of the state i remains constant during electron addition or
removal.

At variance with the expected behavior, LDA and GGA generally result in a con-
vex function for the total energy, i.e., d2E/dn2

i > 0. This is schematically shown in
Fig. 3. The energy change of the state i upon its own occupation reflects a spurious
self-interaction effect, introduced by the type of exchange-correlation approxima-
tion. As a consequence of the convexity of the calculated energy, partial occupations
are preferred over integer occupations. This leads to well known failures of DFT
simulations including the underestimation of the energy band gaps, the description
of strongly-correlated insulators as metals, and the difficulty to account for charge
localization.

The tendency of DFT to delocalize charge can be corrected via modifications
of the exchange-correlation approximations [64]. An efficient remedy is to con-
struct hybrid functionals by mixing LDA or GGA with the Hartree Fock (HF) ex-
change [65], following the general formula

EHybrid
XC = α1EHF

X +α2ELDA/GGA
X +α3ELDA/GGA

C , (8)

The mixing ratios α’s (and in some screened hybrids the screening length) can
be tuned to match physical quantities determined empirically, such as the energy
band gap [66]. Alternatively, the hybrid-functional parameters can be determined
ab initio by requiring the linearity of the total energy [67, 68] or following a self-
consistent procedure [69] or fitting the parameters to the dielectric function of the
material [70, 71] . This is possible since HF theory predicts an opposite result as
compared to DFT: The energy change upon electronic occupation is described by a
concave function of the electronic occupation, d2E/dn2

i < 0, thus, the charge local-
ization is overestimated by HF. This overestimation is due to neglecting screening
effects, which are usually not negligible in solids.

As an alternative to hybrid functionals, which are usually computationally quite
demanding, corrections can be applied to the standard formulation of the density
functional theory in order to restore the expected behavior for the charge localiza-
tion [72, 73]. To this class of methods belongs the DFT+U method, where an addi-
tional term is added to the expression for the total energy. The DFT+U total energy
EDFT+U is given by

EDFT+U = EDFT +EU(U,J) , (9)

where EDFT is the energy obtained by standard DFT, while EU is an on-site cor-
rection arising from a local Hubbard-like Coulomb repulsion (U) and an Hund’s
parameter (J), including double-counting corrections. Various expressions for EU
have been proposed [74–78], such that the integer occupation of electronic states is
energetically favored. Clearly, the results depend on the choice of U and J, which
is not trivial, and, as a matter of fact, these quantities are typically treated as fitting
parameters, by adjusting their values such that a specific quantity (e.g. the band gap)
is predicted accurately. In order to maintain the ab initio character of DFT, proce-
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dures have been defined to calculate the DFT+U parameters from first principles
such as the constrained local-density approximation [79, 80], where the interaction
parameters are obtained by considering the total-energy variation with respect to the
occupation number of localized orbitals, and the constrained random-phase approx-
imation (cRPA), which allows for an explicit calculation of the matrix element of
the screened interactions U and J [81]. Alternatively, in the specific case of excess
charge introduced by impurities, the EU(U,J) term can be substituted by a on site
angular dependent potential that does not affect the states of the defect-free system.
The potential depends on parameters which are tuned to restore the linearity of the
total energy [82, 83].

2.2 Polaron formation: energetics and structural distortions

In the framework of DFT, regardless of the specific choice for the correction to the
local/semi-local exchange-correlation approximation (DFT+U or hybrids), the sta-
bility of polarons is analyzed in terms of a set of different energies. Unfortunately,
the notion of the polaronic energies is not well standardized, and it varies accord-
ing to the authors’ preferences. The important ingredients to consider in order to
characterize a polaron system are:

1. Type of electronic state: (a) excess charge localized in a lattice site (polaron so-
lution with integer particle occupation on an energy level localized at one lattice
site), or (b) delocalized in the entire sample (no polaron, fractional occupation
on several lattice sites).

2. Type of structural solution: (a) local distortions at the trapping site (polaron solu-
tion) or (b) absence of local distortions (uniform lattice, no polaron). The lattice
distortions are obtained fully self-consistently through the minimization of the
forces acting on the ions1.

Considering that the polaron represents an unpaired electron, DFT-based calcu-
lations have to be performed taking spin-polarization into account. In order to force
the system to relax into a delocalized solution, it is necessary and often sufficient to
use a non spin-polarized setup (this prescription is valid for both DFT+U and hybrid
runs). By selectively switching on or off charge localization and/or lattice distor-
tions, it is possible to compute the total energy of the system in different regimes
(see Fig. 4):

E loc
dist: Total energy of the polaron state: charge localization plus lattice distortions;

Edeloc
unif : Total energy of the system with delocalized charge carriers and uniform lat-

tice;

1 To avoid any confusion, we specify that also in the non-polaron state the forces are minimized,
but, since the excess charge is delocalized in the lattice, the structural changes are uniform and
generally very small and become zero for very large supercells.
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Edeloc
dist : Total energy of the system with delocalized charge constrained into the lattice

structure of the polaron state. Since that solution is only meta-stable, it might be
difficult to realize it in practice (for instance by enforcing a non-spinpolarized
groundstate).

In order to compare these energies with each other the computational setup must
be kept fix (except for the spin degree of freedom) in all type of calculations, in
particular the total number of electrons (including excess electrons), the unit-cell
size and the value of U and J (or the value of the mixing parameter in hybrid-DFT).

Fig. 4 Polaron energies. Sketch of the polaron formation energy (EPOL), the structural energy
cost (EST) and the electronic energy gain (EEL) obtained as combinations of the calculated total
energies in the localized and delocalized solutions (E loc

dist, Edeloc
unif and Edeloc

dist ). The delocalized and
localized electronic charge densities are also shown for rutile TiO2, together with the polaronic
lattice distortions ∆i.

Figure 4 sketches the variations of the energy of the system in the delocalized
and localized solutions as a function of lattice distortions, considering a quadratic
(harmonic) energy versus structure curve. Important insights on the formation of
polarons can be obtained by combining the values of E loc

dist, Edeloc
unif and Edeloc

dist , which
define the set of polaronic energies EPOL(polaron formation energy), EST(strain en-
ergy) and EEL(electronic energy gain):

EPOL = E loc
dist−Edeloc

unif , (10)

EST = Edeloc
dist −Edeloc

unif , (11)

EEL = E loc
dist−Edeloc

dist . (12)

The stability of a polaron solution can be analyzed in terms of the polaron formation
energy. A negative EPOL stands for stable polarons, i.e., the polaronic solution is
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energetically more convenient than a system with delocalized charge carriers. EST
quantifies the structural cost needed to distort the lattice in order to accommodate
the excess charge to form a polaron, whereas EEL is the electronic energy gained
by localizing the charge in the distorted lattice via the electron-phonon interaction.
The values of EST and EEL depend on the degree of charge localization and the size
of the lattice distortion (see the horizontal shift of the parabolas in Fig. 4), and on
the curvature of the parabola in Fig. 4. The three polaronic energies are strongly
connected. For instance, EPOL can be interpreted as the result of the competition
between the structural cost EST and the electronic energy EEL [11]:

EPOL = EEL +EST . (13)

In addition to the polaronic energies, purely structural properties can also pro-
vide important information on the nature and extension of the polaron state. To this
aim one can define the average bond-length distortion D around the polaron site to
quantitatively measure the degree of local structural distortions [84]:

D =
1
n ∑

i=1,n
|∆ i| (14)

where ∆ i = δ dist
i
−δ unif

i
is the change of the bond-length δ for the ion site i between

the polaronic (distorted lattice) and uniform solutions; n indicates the total number
of ions considered in the sum (for small polarons typically first and second nearest
neighbors).

2.3 Site-controlled localization

Typically, charge trapping occurs at different sites of a given material. The various
polaronic configurations are characterized by different energies. In general, there
is no guarantee that a DFT+U or hybrid-functional DFT calculation leads to the
global minimum of the polaronic system. In fact, the formation of polarons could
spontaneously occur at less favorable lattice sites, or occur not at all. Therefore, it
is important to control the site localization of polarons, by inspecting the formation
of polarons at different sites and compare the relative formation energies. For this
purpose it is essential to establish a protocol capable to selectively control charge
trapping at specific sites.

Since charge localization strongly depends on the initial conditions (input) of the
calculation, a selective charge trapping can be achieved by forcing initial perturba-
tions in form of structural distortions or strong on-site Coulomb energy [10, 85, 86].
Starting from a biased setup, it is easier for the system to relax into one desired
configuration at the end of the electronic and structural self-consistent calculation
(output). Structural perturbations can be introduced manually by distorting the local
structure around a given atomic site, resembling the expected polaron-induced lat-
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tice distortions. Alternatively, the initial perturbation can be achieved by chemical
substitution, as explained below for the small electron-polaron case:

Step 1: Chemical substitution at the selected site where charge trapping should occur
with an atom containing one more electron than the original native atom (e.g.,
Ti → V). Structural relaxation performed at spin-polarized DFT+U level will
yield local lattice distortions around the chosen site.

Step 2: The initial element is reinserted at its original position (e.g., V→ Ti). It is often
necessary to use a larger value of U at the selected site, while the other atoms
keep the original value of U . The manual initialization of the local magnetic
moment has to take into account the presence of the localized electron at the
selected site. A new relaxation is performed starting from the optimized structure
obtained in Step 1. The self consistent run should be able to maintain the polaron
solution obtained in Step 1.

Step 3: A final step is necessary, performed by using the original value U for all atoms. In
this case it is recommended to initialize the orbitals with the one obtained in Step
2. In fact, by using a random initialization it can happen that the self-consistent
loop will end up in a different polaron solution (different polaron site) or in a
delocalized solution [8, 87–89].

The effective final localization of the electron at the end of each step can be verified
by analyzing the local magnetic moment at the selected site. Step 2 (i.e., using a
larger U) usually helps to localize the electron at the selected site. However, it is
possible, in simple problems, to skip this step and obtain charge localization at the
selected site by simply performing steps 1 and 3. This strategy can be extended to
the hybrid-DFT level, by using the orbitals and the optimized structure obtained
in step 3 as an input for the hybrid functional calculations. In case more than one
electron needs to be localized at selected sites, the steps 1 to 3 can be performed for
every selected site separately, one after the other, or, alternatively, at the same time.
A systematic use of this strategy allows the identification of the polaronic ground
state (global minimum) of the system [84].

2.4 Polaron dynamics

As mentioned in the introduction, polarons are mobile quasiparticles, whose mobil-
ity can be activated or increased by temperature. Polaron hopping can be modeled
in DFT, by merging first principles total energies to the Marcus [90] and Emin-
Holstein-Austin-Mott (EHAM) formalisms [91–93] or, more effectively, by per-
forming first-principle molecular dynamics (FPMD) [9, 11, 94] or nudged elastic
band (NEB) calculations [95–97].

FPMD data can reveal important insights into polaron dynamics, including site
population analysis (sites visited by the polarons during their hopping motion), tem-
perature and/or concentration dependent polaron-related transitions, and polaron
diffusion trajectories. By means of a detailed statistical analysis, one can acquire
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information on the interaction with specific lattice sites, with lattice or chemical
defects, or on the mutual polaron-polaron interactions [9, 11, 84, 86]. An exam-

Fig. 5 Polaron dynamics. Example of small polaron dynamics in reduced bulk SrTiO3. Two ex-
cess electrons donated by one oxygen vacancy form two polarons whose mobility is temperature
dependent: almost immobile at 700 K and polaron-hopping at 1000 K. The position of the polarons
is given in terms of their distance to the oxygen vacancy, which remains at rest at any temperature.
Figure taken from Ref. [86].

ple of polaron dynamics in oxygen deficient SrTiO3 is given in Fig. 5, showing the
temperature-dependent interaction between two polarons and the (immobile) oxy-
gen vacancy (VO): at T=700 K one polaron remains anchored to VO and the second
one has a reduced hopping activity; at higher T (T=1000 K) both polarons become
very mobile and starts to explore sites far away from VO, but the strong Coulomb
attraction between the negatively charged polaron and the positively charged VO
regularly brings polarons back into the vicinity of VO, forming polaron-VO com-
plexes [86].

The statistical analysis is usually performed by investigating the occurrences of
charge trapping at each lattice site in the simulation cell (site-decomposed popula-
tion analysis), and by computing different types of correlation functions aiming to
describe the interaction of a polaron with other polarons or lattice defects:

(i) Polaron-polaron site correlation function. The polaron-polaron site correla-
tion function Spol−pol can be defined as the distribution of the site distance i along
a particular direction in the crystal, between two polarons at a given time-step t,
averaged over all the FPMD time steps τ:

Spol−pol(i) =
1
N

1
τ

τ

∑
t=0

∑
j

ρ j(t)ρ j+i(t) , (15)
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where N is the number of atomic sites, and ρ j(t) indicates the polaronic site density
at time t, and it is equal to 1 for the j-th site hosting a polaron, and 0 otherwise.

(ii) Radial correlation function Analogously, the polaron-polaron Rpol−pol and
defect-polaron Rdef−pol radial correlation functions can be defined as a function of
the distance r:

Rpol−pol(r) =
1
τ

τ

∑
t=0

∑
(q,p)

δ (|rq− rp|,r, t) ,

Rdef−pol(r) =
1
τ

τ

∑
t=0

∑
(def,p)

δ (|rdef− rp|,r, t) ,
(16)

where the variables δ (|rdef− rq|,r, t) and δ (|rq− rp|,r, t) assume the value 1 if, at
time t, the polaron p is at distance r from the defect at position rdef or from the
polaron q at position rq, respectively, and are 0 otherwise.

These statistical quantities (Spol−pol and Rpol−pol) furnish information on the spa-
tial distribution of polarons in the lattice, by indicating the statistically more favor-
able polaron configurations.

The FPMD calculation is also useful to investigate the stability of the polarons
under different conditions, as an alternative to the site-controlled localization strat-
egy discussed above. In fact, a FPMD run leads to a set of high-temperature struc-
tures, hosting polarons in various configurations, which might be difficult to access
by simple structural relaxations. A useful strategy is to use the high-T structures
obtained by FPMD as starting structures for relaxations, and check their stability
by inspecting the corresponding polaron formation energies EPOL and ultimately
determine the global minimum (polaronic ground state) [11, 98]. This strategy is
obviously similar to simulated annealing.

As mentioned above, in addition to the FPMD approach, polaron dynamics can
be investigated by a sequence of static calculations along pre-defined trajectories,
using a linear interpolation scheme (LIS) [91, 97] or the NEB approach. In the LIS
scheme, the energy barrier for the transition of a polaron between different pola-
ronic configurations can be estimated by static DFT calculations on intermediate
distorted structures [91]. Such intermediate structures q(x) are obtained by a linear
interpolation of the ionic positions assumed at the initial (A) and final (B) polaronic
states, i.e., q(x) = (1− x)qA + xqB, which define the polaron pathway from A to
B [91], see Fig. 6. At each considered configuration, an electronic self-consistent
calculation is performed in order to compute the total energy at each step, and to
construct an energy diagram of the polaron transition as a function of the reaction
coordinate x, as those shown in Fig. 6 [99]. The form of the energy profile deter-
mines whether the polaron transfer is an adiabatic or diabatic (i.e., non-adiabatic)
process [Fig. 6(a)] [91]. If the coupling between the initial and final state VAB is
strong [large VAB, see Fig. 6(a)] the activation barrier for polaron transfer decreases
and the energy curve exhibits a smooth transition: this corresponds to an adiabatic
mechanism which occurs via thermal hopping. The alternative case is when the
interaction between the initial and final states is low and the transfer follows a non-
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Fig. 6 Polaron transfer. (a) General scheme of the Marcus-Emin-Holstein-Austin-Mott theory
showing the adiabatic and the non-adiabatic mechanism, taken from Ref. [91]. First principles re-
sults of polaron transfer in CeO2 based on (b) hybrid-DFT (HSE parametrization) and (c) DFT+U .
Depending on the computational scheme, the polaron transfer is described as an adiabatic (HSE)
or non-adiabatic (DFT+U) process, resulting in different activation barriers. This Figure is adapted
from Ref. [99].

adiabatic process. In this case the energy curve exhibits a cusp at the intermediate
state and the electron transfer occurs via quantum tunneling.

It is important to note that, unfortunately, different functionals can lead to a dif-
ferent description of the polaron transfer process. For instance DFT+U and hy-
brid functional approaches can lead to qualitative different results, as shown in
Fig. 6 [99]. In DFT+U , the partial localization is unfavored, the charge carrier
is strongly localized in one site only, the interaction between the initial and final
configuration is weak and the hopping occurs typically diabatically. In this case
the energy as a function of the lattice distortions resembles the intersection of two
parabola, as shown in Fig. 6(c). The cusp is most likely an artifact of the one-center
terms in the DFT+U approach, which does not allow for localization of the electron
between two lattice sites. Conversely, hybrid functionals predict usually an adia-
batic hopping, with a more realistic gradual transfer of the electronic charge from
one trapping site to the other one, as shown in Fig. 6(b). As a consequence, activa-
tion barriers for polaronic hopping are usually smaller in hybrid-DFT compared to
DFT+U .
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3 Small polarons in TiO2

Charge trapping and the formation of polarons is a pervasive phenomenon in tran-
sition metal oxide compounds, in particular, at the surface. As already outlined,
polaron formation influences the fundamental physical and chemical properties of
materials, manifested by a local alteration of the bond lengths, a change of the for-
mal valence at the specific polaronic site, and the emergence of a characteristic peak
localized in the gap region [35, 44, 46, 52]. These changes affect virtually all func-
tionalities of the material in practical applications. This section is devoted to the
presentation of selected results on polaron effects in TiO2, one of the most studied
transition metal oxides and a prototypical polaronic material. The results are ob-
tained using the array of first principles schemes described in the previous section.
Considering that small polarons show similar properties among transition metal ox-
ides, the methodologies adopted for TiO2 should be representative for this class of
compounds.

TiO2 has been studied by several experimental techniques, making the basic
properties of this material well characterized [100]. TiO2 is used in many appli-
cations, primarily as white pigment in paints and cosmetic products, as physical
blocker for ultraviolet UVA in almost every sunscreen, it is added to cement and
tiles (to give the material sterilizing, deodorizing and anti-fouling properties), it is
utilized in self-cleaning glasses as optical and corrosion-protector (this type of glass
is coated in a thin layer of transparent anatase), it is a component of Grätzel cells (in
nanostructured form), and it can be used as varistor in electric devices.

The first principles modeling of polarons is performed by introducing excess
charge carriers in a variety of ways:

1. Introducing defects, such as oxygen vacancies, interstitial Ti atoms or Nb impu-
rities.

2. By suitably changing (by hand) the number of electrons of the system. In this way
one mimicks excess charges injected by UV-irradiation in perfect (i.e., defect-
free) samples [52] or cases where the donor and excess charge are spatially sep-
arated.

3. In surface environments, by means of adsorbates (e.g. hydrogen).

As already mentioned, the stability of the polaron state depends on many factors,
in particular, the location of the trapping site (a particularly delicate issue at surfaces
where the broken symmetry results in various inequivalent Ti sites), the interaction
with defects and the concentration of charge carriers (polaron-polaron interaction).
The system is generally characterized by an energy profile with several local pola-
ronic minima (even the delocalized solution might trap in a local minimum), and
there is no guarantee that single-shot runs will lead to the identification of the most
favorable configuration; this issue is discussed in Sec. 2.3.
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3.1 Rutile and anatase

TiO2 exists in various crystal structures (polymorphs). Rutile and anatase, the most
common and stable TiO2 polymorphs, bear the formation of polarons [101], with
some important distinctions. The two polymorphs show different properties upon
injection of an excess charge into the system, e.g., anatase becomes metallic, while
rutile remains semiconducting upon Nb doping [49] (as mentioned in Ch. 1), con-
sistent with the formation of large and small polarons, respectively. Large polarons
have been reported in anatase also by ARPES [14] and STM [11] measurements,
and interpreted by first principles calculations [11, 44]. Conversely, small polarons
have been found to localize easily in pristine or defective rutile, while their forma-
tion in anatase is more seldom. Small polarons in anatase have been observed only
in samples containing chemical or structural defects (e.g. oxygen vacancies and step
edges) [11, 12].

The theoretical analysis based on first principles calculations has shed some light
on this distinct behavior of rutile and anatase [11, 93]. In particular it was found that
the trapping energy in rutile is significantly larger than in anatase, where a larger U
(probably unrealistically large) is required to form a small polaron [see Fig. 7(b)].
By considering a realistic U of ≈ 4 eV, obtained fully ab initio by cRPA, small
polarons are formed in rutile but not in anatase [11]. This behavior is explained
by inspecting the density of states, shown Fig. 7(a). The formation of a polaron
involves the perturbation of the conduction band minimum (CBM), which has a
different character in the two TiO2 polymorphs: the CB minimum in anatase lies at
a lower energy than in rutile, and it exhibits a wider bandwidth, suggesting that a
larger U is required to change this favorable configuration [11].

On the other hand, at reducing conditions, i.e., under conditions where O vacan-
cies (VO) are present, small polarons can be formed on the surface of both poly-
morphs, but their degree of mobility is rather different, as demonstrated by the
FPMD analysis shown in Fig. 7(c). In rutile, polarons (orange lines) are very mobile
and hop preferentially among subsurface and surface sites, while in anatase the po-
laron is immobile and it stays attached to the VO, forming a polaron-VO defect-like
complex [11] (the following sections are devoted to a more detailed discussion of
the small polaron properties of rutile TiO2).

The representative examples discussed in this chapter are mostly focused on the
rutile phase, in particular on the the TiO2(110) surface.

3.2 Small polarons on the surface of rutile TiO2

Rutile TiO2 crystallizes in a tetragonal symmetry with each Ti atom surrounded
by six O atoms in a distorted octahedral configuration [102]. Neighboring octahedra
share one corner and are rotated by 90◦. The titanium atoms are in a nominal 4+ ox-
idation state (Ti4+), while the oxygens are in a 2− state (O2−). Rutile can be easily
reduced by intrinsic defects, such as interstitial Ti atoms and double-charged oxygen
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Fig. 7 Small polaron formation in TiO2. Basic polaron properties of rutile and anatase TiO2: (a)
Density of states and (b) polaron formation energies in the bulk phases and (c) FPMD trajectories
for oxygen deficient surfaces. Adapted from Ref. [11].

vacancies, and by doping and molecular adsorption. Regardless of the source used to
obtain charge carriers in TiO2, excess electrons show similar behaviors [37, 97, 103]:
they are trapped at a titanium site, which becomes a Ti3+ site, a hallmark revealed
and confirmed by EPR experiments [51, 104].

DFT-based simulations are capable to describe the formation of small polarons
in rutile, but the stability of the polaronic states, defined in terms of the polaron
formation energy, EPOL, does depend on the computational approach and on the
input parameters [101], such as the on-site Coulomb interaction in DFT+U [11, 105]
and the amount of mixing in hybrid functional DFT [93]. The calculated EPOL values
are spread in a broad range between 0.1 and 0.8 eV [101]. Despite these quantitative
differences, the predicted properties are qualitatively in good agreement among the
various methods and also with the experiments. It has been argued that beyond DFT
methods, such as RPA, could result in a more reliable quantitative determination of
EPOL [93], but the high computational cost of the RPA method and the difficulty to
implement forces at the RPA level [106] (in existing RPA calculations the lattice has
been always relaxed at DFT+U or hybrid-DFT level) have limited its applicability.
In fact, the large size of the cell, needed to accommodate the polaron together with
the induced lattice distortions, prohibits simulations with more advanced quantum
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chemistry methods, and DFT+U and to a lesser extent hybrid-DFT remain the most
popular choice.

Fig. 8 The rutile TiO2(110). Side view of the (1×1) phase of rutile TiO2(110). The atoms marked
by A are the Ti5c atoms on the S0 layer and the atoms below; analogously, the atoms marked by B
are the Ti56 atoms on the S0 layer and the atoms below. This Figure is adapted from Ref. [98].

The rutile surface deserves particular attention in the study of polarons, since
charge trapping is more favored in the proximity of the surface than in the bulk. The
most stable surface of rutile, the TiO2(110) surface, consists of a bulk-terminated
(1×1) surface (see Fig. 8), with large relaxations of the atoms at the surface layers,
predominantly along the [110] direction. The surface slab is formed by a sequence
of tri-layer building blocks, constituted by a central layer comprising an equal num-
ber of Ti4+ and O2− atoms sandwiched between two layers of oxygen atoms. The
topmost (110) layer (the surface layer) is very corrugated since it terminates with
undercoordinated (twofold) oxygen atoms (O2c) arranged in rows along [001]. The
layer below the O2c rows is constituted by tri-fold coordinated oxygen [001] rows
alternated to six-fold coordinated (Ti6c) and five-fold coordinated (Ti5c) titanium
[001] rows, see Fig. 8. Obviously, the surface breaks the symmetry of the Ti and
O atoms and exhibits a higher degree of flexibility and different type of structural
distortions compared to the bulk-like layers.

The O2c atoms are relatively easy to remove by thermal annealing, irradiation,
electron bombardment, or sputtering, because of their coordinative undersaturation,
and this is the main source of excess charge for rutile surfaces. In fact, the propen-
sity to O2c removal reduces the system and each VO results in the injection of two
excess electrons, which are eligible to form small polarons. The ability to control
the amount of defects and the concentration of polarons is extremely important,
as this can be used to tune the chemical and physical properties of the surface.
For instance, under extreme reducing conditions, TiO2(110) undergoes a structural
reconstruction, from the (1×1) to a (1×2) phase, doubling the periodicity along
[11̄0] [98, 107–109]. Different models have been proposed to describe the atomic
structure of this reconstruction. The debate is still open, but the Ti2O3 model pro-
posed by Onishi appears to be the most probable one [98, 110].
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3.2.1 Polaron configurations and properties

Preferable trapping site. The first question to address while modeling the polaron
formation is the determination of the optimal polaron sites. According to FPMD cal-
culations, Ti sites in the subsurface layer (S1) are the most favorable trapping centers
for excess electrons. Specifically, the site dependent analysis of EPOL shows that the
most favorable sites are the Ti atoms (TiAS1) at the S1 layer below the Ti5c atoms,
as indicated by the histogram analysis shown in Fig. 7(c). Formation of polarons at
the S1 (TiBS1) sites below the Ti6c atoms is less probable, due to an unfavorable local
structural relaxation. Polaron formation at deeper layers is hindered by the stiffness
of the lattice, which rises the energy cost to locally distort the lattice. The FPMD
analysis in Fig. 7(c) also shows that polaron formation at the surface layer (S0) is not
particularly favorable, mostly due to the reduced electron screening at the surface
and large local distortions.

Polaron orbital symmetry. A second important aspect is the orbital symmetry of
the polaron state. Depending on the hosting site, the excess electron occupies differ-
ent d orbitals. Which d orbital becomes populated is predominantly determined by
the local chemical environment, the crystal field splitting, and the flexibility of the
neighboring atoms. Polarons in the Ti5c sites on the surface layer (TiAS0) are charac-
terized by a dxz− dyz orbital symmetry as evidenced by the polaron charge density
plot displayed in Fig. 9(a,b). On the other hand, below the surface, in the subsurface
layer (S1) and in deeper layers, small polarons assume dz2 − dx2−y2 and dx2−y2 or-
bital symmetries, alternately along [110] and [11̄0] [see Fig. 9(c-f)]. This stacking is
the result of the orientation of the local environment (i.e., the orientation of the co-
ordination octahedron around the trapping Ti site). The lattice distortions are larger
for the Ti5c polarons (the Ti site hosting the polaron relaxes outwards along [110],
and the surrounding O atoms and the nearest-neighbor Ti atoms are pushed away
by the excess electron), while the relaxations in deeper layers are smaller (the Ti-O
distance in the TiO6 octahedron increases, and the nearest Ti4+ sites relax towards
the polaronic site).

Statistical analysis: polaron-polaron and polaron-vacancy interaction. Another
relevant aspect to understand the physics of polarons is the Coulomb-like polaron-
polaron and polaron-defect (in this case VO) interaction. Being positively charged, a
VO acts as an attractive center for the small polarons and, from the structural point
of view, renders the local structure more flexible and reduces the structural cost EST
to distort the lattice. Conversely, the polaron-polaron interaction is repulsive and
particularly effective at small distances. The relative distance among polarons and
between polarons and VO considerably affects the energy and the degree of local-
ization of the characteristic in-gap polaronic states. For instance, at short distance
the interaction between polarons can be strong enough to split the polaron levels and
lead to the onset of double in-gap peaks well separated in energy [84]. As mentioned
in the methodology section, an useful tool to decipher these intricate interactions is
the statistical analysis of the polaron energies in the explored configuration space.
The results for polarons in rutile TiO2 are summarized in Fig. 10.
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Fig. 9 Small polarons for the rutile TiO2(110) surface. Side (a,c,e) and top (b,d,f) views of the
electronic charge density of polarons on the surface S0 (a,b), sub-surface S1 (c,d) and sub-sub-
surface S2 (e,f) layers. The atoms marked by A are the Ti5c atoms on the S0 layer and the Ti atoms
below; analogously, the atoms marked by B are the Ti6c atoms on the S0 layer and the Ti atoms
below. This Figure is adapted from Ref. [84].

Figures 10(a-b) clearly show that the polaron energy decreases with increasing
polaron-polaron distance and with decreasing polaron-VO distance. Polaron pairs at
nearest-neighbor Ti sites along [001] (i.e., a polaron-polaron distance of about 3 Å)
is very unstable, due to the strong polaron-polaron repulsion. This Coulomb repul-
sion is enhanced by the overlap of the polaron charges. In fact, only 70% of the
excess charge is confined at the trapping site, while the remaining charge is spread
around the surrounding atoms and hinders nearest-neighbor polaronic configura-
tions. For the sake of clarity, it should be noted that the polaron-polaron curve shown
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Fig. 10 Statistics of polarons on rutile TiO2(110): (a) polaron-VO and (b) polaron-polaron in-
teractions, (c) sketch of the optimal 1×3 polaron pattern in the sub-surface of rutile TiO2 at the
critical VO concentration (16.7%), and (d) the spatial correlation function. Adapted from Ref. [98].

in Fig. 10(b) is obtained for a perfect crystal without any VO, in order to decouple
the polaron-polaron interaction from the polaron-VO interaction. In defective sam-
ples, the optimal polaronic configuration is the result of the balance between these
two opposite effects: within a simplified picture, one can conclude that polarons try
to maximize their mutual distance and to minimize the polaron-VO distance.

Clearly the most favorable polaron arrangement and its energetics is concentra-
tion dependent. In rutile TiO2, the highest VO concentration experimentally achiev-
able is ≈ 16.7 % [98]. At low concentrations, polarons occupy S1 sites. By progres-
sively increasing the reduction level, the excess electrons form increasingly more
polarons at the most convenient sites in S1, finally forming a characteristic 1×3
pattern at the optimal concentration of 16.7% [85, 98]. This is well reproduced by
theory, as exemplified by the peak at a 3-site distance in the correlation function
shown in Fig. 10(d). A pictorial view of the 1×3 pattern is shown in Fig. 10(c).
Larger VO concentrations are energetically problematic, since additional polarons
in S1 would result in strong polaron-polaron repulsion. To solve this instability, the
system undergoes a structural reconstruction, as discussed in the following.

Surface phase diagram (polaron-induced surface reconstruction). The existence
of a critical concentration of polarons determines a limit for the oxygen vacancy
formation via O2c removal. In fact, rutile TiO2 is able to host up to 16.7% VO on the
surface, which corresponds to a concentration of 33% polarons in the S1 Ti [001]
rows (each VO introduces two excess electrons). However, the system can host larger
quantities of excess electrons via a structural reconstruction. The (1×1) surface un-
dergoes a (1×2) reconstruction, specifically the Ti2O3 model [98, 107], which is
able to conveniently handle a larger reduction of the system (50%), as discussed in
Ref. [98]. This surface reconstruction problem can be described by DFT+U by con-
struction of an appropriate phase stability diagram [see Fig. 11(b)], by calculating
the surface free energy using standard ab initio atomistic thermodynamics [111].
The resulting phase diagram is shown in Fig. 11. Close to the critical concentration
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the free energy of the reconstructed surface is lower than the corresponding unre-
constructed one, thereby marking the structural phase transition. Remarkably, by
neglecting polaron effects [panel (a), delocalized setup], DFT+U calculations find
the (1×2) phase unstable, in disagreement with observations [98].

It is important to remark that the structural reconstruction is associated with
changes of the in-gap states, as shown in Fig. 11 (c,d): The localized polaron peak,
typical of the (1×1) surface (see the corresponding band dispersion in Fig. 2), be-
comes broader in the reconstructed (1×2) phase as a consequence of the higher
amount of excess charge localized on the surface.

Fig. 11 Rutile TiO2(110) phase diagram. The surface energy of the (1×1) phase with various
concentrations of oxygen vacancies (cVO ) and of the (1×2) phase is reported as a function of the
oxygen chemical potential µO, as obtained by delocalized (a) and localized (b) calculations. Panels
(c) and (d) display a comparison between the experimental (STS) and simulated (DFT+U) pola-
ronic peak in the (1×1) and reconstructed (1×2) surfaces. This Figure is adapted from Ref. [98].

Interaction between polarons and adsorbates. A final paradigmatic case of the
importance on polarons on surfaces is the interaction of polarons with adsorbates.
This interaction is essential to decode the initial stage of catalytic reactions at de-
fective surfaces. It has been shown that even when adsorbates do not transfer any
charge carrier to the substrate, polarons can affect the energetics and configuration
of the adsorption process. This is the case for CO adsorption on TiO2(110) [112],
where the polaron stability is altered by the presence of this adsorbate, as shown in
Fig. 12.
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Fig. 12 CO adsorption on rutile TiO2(110). The CO adsorption at Ti5c sites in presence of sub-
surface (a) and surface (b) polarons. The insets sketch the geometric configuration and report the
simulated and experimental STM signatures. The polaron formation energy perturbed by the CO
is compared to the unperturbed case (c). This figure is adapted from Ref. [112].

Adsorbed CO shows attractive coupling with polarons on the surface layer, and
repulsive interaction with polarons in the subsurface. As a result, upon CO adsorp-
tion the most convenient polaron site is not in S1 anymore: polarons are attracted
onto the surface layer (S0) and bind with the CO [Fig. 12(c)]. The effect of polarons
on S0 stands out clearly from the STM analysis of the TiO2 sample. A polaron at
S0, coupled with the CO, is characterized by a bright filled-state STM signal with
two lobes tilted with respect [001] [Fig. 12(b)], while the S1 polaron, right beneath
the CO, generates a feeble single-spot, due to a lack of polaronic charge transfer
towards the adsorbate [Fig. 12(a)].

4 Summary

Small polarons can easily form in oxide materials, in particular near the surface
where the increased structural flexibility, molecular adsorption and the easy for-
mation of surface defects facilitate the transfer of charge and its coupling with the
lattice. Small polarons can be effectively studied using first principles techniques in
the framework of DFT. The main issue to be aware of is that small polarons involve
the localization of charge on a particular lattice site. Usually this goes in hand with
a change of the transition metal oxidation state, for instance in TiO2, from Ti4+ to
Ti3+. Such a localization is often not well described by standard semilocal LDA
and GGA functionals because of self-interaction errors. Therefore it is compulsory
to use functionals beyond the semi-local approximation, for instance GGA+U or hy-
brid functionals. It goes without saying that such functionals always involve some
empiricism, since increasing U or the amount of exact exchange will favor charge
localization and, thus, the formation of polarons. Currently no entirely satisfactory
approach exists giving an unambiguous answer whether polaron formation is favor-
able or not. But there are many principles— such as determination of U using some
first principles approaches, or inspection that the energy versus electron number
shows a straight line behavior —that can guide our choices. Ultimately, comparison
with the experiment, however, remains necessary and mandatory.



Small polarons in transition metal oxides 31

While modeling small polarons, the most important aspects to address are the
trapping process, polaron mobility and polaron electronic properties. Using the com-
putational prescriptions presented in this chapter it is possible to explore the config-
uration space by either guiding the excess charge to localize in selected lattice sites
or by performing FPMD calculations. The analysis of the polaron energies (polaron
formation energy, structural energy cost and electronic energy gain) allows to iden-
tify the global polaronic minimum and its fundamental energy profile. In order to
fully characterize the polaronic state, it is useful to inspect the degree and extent
of the local structural distortions, the mutual interaction among polarons as well
as their coupling with defects. This can be done by performing a statistical analy-
sis in terms of the polaron-polaron site correlation function and radial correlation
function. A statistical scrutiny of the FPMD data furnishes also important insight on
the mobility pattern. An alternative way to study polaron mobility is Markus theory
and the Emin-Holstein-Austin-Mott formalism, which model polaron hopping be-
tween two sites and permit to discern between adiabatic or non-adiabatic processes.
The electronic characteristics of small polarons are defined by the typical band-gap
state formed below the conduction band. For an isolated polaron this state is well
localized and typically resides 1 eV below the conduction band. Its specific orbital
character (symmetry of the d level where the excess charge is trapped) depends on
the local structural and chemical environment. For interacting polarons the situation
is more complicated as spin-exchange effects, Coulomb repulsion and hybridization
can significantly modify the energy location and the width of the polaron state.

Apart from their intrinsic significance, polarons can induce dramatic changes
in the hosting materials, and can be used as a mean to drive and control different
types of transitions, including metal-to-insulator transitions (not discussed here, an
example is given in Ref. [113]), structural transitions or adsorption processes. Two
examples were discussed in this chapter: (i) polaron-induced surface reconstruction
(by increasing the polaron concentration the rutile TiO2(110) undergoes a transition
from a (1×1) to a (1×2) surface termination) and (ii) substantial changes of the
adsorption energy (the interaction between CO and polarons changes the polaron
configuration and affects the CO adsorption scheme).

Finally, it is important to underline that the quality of the theoretical model-
ing can be assessed by a direct comparison with experimental data, including EPR
(by recognizing the change in the formal valence state of the trapping site; for in-
stance in TiO2 polaron formation changes the Ti valence state from Ti4+ to Ti3+),
spectroscopy (energy level and band dispersion), or STM (by a direct comparison
between measured and simulated STM images).
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