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Abstract
We develop a flexible parametric framework for the estimation of quantile functions. This involves the specification of
an analytical quantile-distribution function. It is shown to adapt well to a wide range of distributions under reasonable
assumptions. We derive a least-square type estimator, leading to computationally efficient inference. By-products include a
test for comparing two distributions, a variable selection method, and an innovative naïve Bayes classifier. Properties of the
estimator, of the asymptotic test and of the classifier are investigated through theoretical results and simulation studies, and
illustrated through a real data example.

Keywords Quantile estimation · Variable selection · Naïve Bayes

1 Introduction

Quantile functions, defined as the generalised inverse of
cumulative distribution functions, have nice properties that
make them a valuable inferential tool. For instance, sums
and convex linear combinations of quantile functions are
still quantile functions. As a consequence, it is possible to
construct arbitrary new quantile functions that have great
flexibility and a small number of parameters (see, for
instance, Karvanen (2006)). Thus, we can obtain distribu-
tions with a wide range of different shapes and also the exact
or approximate form of many common distributions, includ-
ing the normal, Student’s T and logistic distributions. See
Gilchrist (2000) for a clear introduction to the use of quantile
functions, their properties, and the main estimation methods.

Various flexible quantile functions have been proposed
in the literature. The so-called g-and-k distribution (Haynes
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et al. 1997; Rayner and MacGillivray 2002) is defined as
a generalization of the Gaussian distribution with additional
skewness andkurtosis parameters. Freimer et al. (1988) intro-
duced the quantile-based representation of the generalized
Lambda distribution. Sankaran et al. (2016) proposed a new
quantile function based on the sum of generalized Pareto and
Weibull quantile functions.

Quantile functions that are linear in their parameters have
desirable inferential properties, as will be shown in the
following. Well-known examples are the flattened logistic
distribution (Sharma and Chakrabarty 2019) and the general-
ized flattened logistic distribution (Chakrabarty and Sharma
2021).

Quantile functions can be estimated according to differ-
ent strategies. Distributions that have analytical L-moments
can be estimated by matching sample L-moments with their
theoretical counterparts, in the same spirit as the method of
moments (see, for instance,Chakrabarty andSharma (2021)).
Maximum likelihood estimation is possible aswell; however,
if the quantile function is not invertible - as is usually the
case - then, for each observation of the data sample, say x , a
numerical inversion needs to be carried out to find the corre-
spondent percentile u, thus making the parameter estimation
process numerically unstable and computationally expensive
(Rayner andMacGillivray 2002). An alternative illustrated in
Gilchrist (2000) is based on the minimization of the L1 norm
between the ordered statistics and their theoretical median,
leading to a least absolute deviationmethod.Without explicit
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density functions Bayesian estimation cannot be applied;
however Allingham et al. (2009) and Drovandi and Pettitt
(2011) developed an Approximate Bayesian Computation
(ABC) strategy for the estimation of some classes of quantile
functions.

In this work we show that the family of linear quantile
functions can be efficiently estimated using least squares
by exploiting the properties of the order statistics. We also
develop the asymptotic distribution of a statistical test to
check whether two estimated quantile functions have the
same parameters. We also show how the procedure can be
used for classification, by constructing a simple Naïve Bayes
classifier based on quantile distributions, where the pro-
posed testing procedure is used for variable selection and
variable importance in a two-class problem. Empirical stud-
ies indicate that the proposed variable screening can help
the classification task, and, in this perspective, it is alter-
native to variable weighting (see, for instance, Jiang et al.
(2018) and Jiang et al. (2019)) or structure extensions by
hidden variables Jiang et al. (2008). A completely different
approach where quantile functions are used for classification
is reported in Farcomeni et al. (2022).

The rest of the paper is organised as follows. In the
next section we outline linear quantile functions and define
our least squares estimator. Asymptotic results are given in
Sect. 2.3, where we also derive the null distribution of rel-
evant test statistics. In Sect. 3 we discuss how to use linear
quantile functions for supervised classification and variable
selection. Simulation studies are reported in Sect. 4 and the
proposed strategy is illustrated on real data in Sect. 5. Some
concluding remarks are given in Sect. 6.

2 Quantile-based distributions

Denote with F(x; θ) a distribution function that is right-
continuous, depending on a vector of parameters θ of length
p. The quantile distribution function can be defined as in
Parzen (1979):

F−1(u; θ) = Q(u; θ) = inf{x : F(x; θ) ≥ u},

for 0 < u < 1.
As in Tukey (1965), we call

q(u; θ) = Q′(u; θ),

the quantile density function, which is related to the density
function as:

f (x; θ) = 1

q(F(x; θ))
. (1)

For certain probability distributions the quantile func-
tion can be derived in analytical form through the inversion
of the cumulative distribution function. Some examples are
reported in Table 1. Most probabilistic densities do not admit
closed-form quantile functions though. One notable example
is the Gaussian distribution. The contrary is also true: a quan-
tile function can be defined without making reference to an
explicit probability distribution function.

An interesting family of quantile functions is given by
the ones that are linear in their parameters. Starting from the
symmetric quantile function of the logistic distribution:

Q(u; θ) = α + β[log u − log (1 − u)] (2)

Sharma and Chakrabarty (2019) proposed the flattened ver-
sion

Q(u; θ) = α + β

[
log

u

1 − u
+ κu

]
,

where the additional component indexed by the shape param-
eter κ regulates the flatness of the peak of the distribution.
They derived classical and quantile-based properties of the
distribution and compared its flexibility with respect to the
logistic distribution in terms of fitting in empirical contexts.

More recently, Chakrabarty and Sharma (2021) proposed
a generalization of the flattened logistic distribution (fgld):

Q(u; θ) = α + β
[
(1 − δ) log u − δ log (1 − u) + κu

]
(3)

that proved to be very flexible and outperformed the existing
strategies in terms of model fitting. Figures1 and 2 show the
range of shapes this distribution can take.

2.1 Least squares estimation

In order to estimate the quantile function Q(u, θ), different
strategies can be applied. L-momentsmatching (Chakrabarty
and Sharma 2021) requires the analytical form of L-moments
for the quantile function, along the same lines of method
of moments. Maximum likelihood is a possible alternative
strategy but it requires the approximation of the percentiles
for each observation and the inversion of the derivative of the
quantile function, thus resulting in an computationally expen-
sive method (Rayner and MacGillivray 2002). In a Bayesian
perspective, an Approximate Bayesian Computation (ABC)
method has been developed (Allingham et al. 2009;Drovandi
and Pettitt 2011) for specific classes of quantile functions, but
again at the price of computational burden.

In Gilchrist (2000) two estimationmethods based on ‘lack
of fit criteria’ are introduced, which are denoted as distribu-
tional least absolutes and distributional least squares. The
first is based on the minimization of the L1 norm between
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Table 1 Quantile functions of
some probability distributions

Probability distribution Density function Quantile function

Exponential θe−θx − log(1−u)
θ

Extreme value 1
β
e

x
β exp

[
−e

x
β

]
β log log(1 − u)−1

Weibull k
λ

( x
λ

)k−1
e−(x/λ)k λ{log(1 − u)−1}1/k

Logistic e−(x−α)/β

β(1+e−(x−α)/β)
2 α + β log u

(1−u)

Double-exponential e−|x |
2 log 2u, u < 0.5

− log 2(1 − u), u > 0.5

Cauchy 1
π(1+x2)

tan π(u − 0.5)

Pareto αμα

xα+1 μ log(1 − u)− 1
α

Fig. 1 fgld with
α = 5, β = 2, κ = 1 and
varying δ
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Fig. 2 fgld with
α = 5, β = 2, δ = 0.5 and
varying κ

0.00

0.05

0.10

0.15

0.20

0.25

−10 0 10 20 30 40

κ = 0

0.00

0.05

0.10

0.15

0.20

0.25

−10 0 10 20 30 40

κ = 0.5

0.00

0.05

0.10

0.15

0.20

0.25

−10 0 10 20 30 40

κ = 1

0.00

0.05

0.10

0.15

0.20

0.25

−10 0 10 20 30 40

κ = 2

0.00

0.05

0.10

0.15

0.20

0.25

−10 0 10 20 30 40

κ = 5

0.00

0.05

0.10

0.15

0.20

0.25

−10 0 10 20 30 40

κ = 10

123



55 Page 4 of 15 Statistics and Computing (2023) 33 :55

the ordered statistics and their theoretical median. The sec-
ond approach consists in minimizing the L2 norm between
the expected and the observed ordered statistics. Gilchrist
highlights that, if no analytical form for the expected order
statistics is available, they need to be approximated by a Tay-
lor series expansion. For this reason the author champions the
approach of the L1 norm, which does not require such deriva-
tion. Here instead, we develop a framework under which the
least squares approach can be effectively and efficiently used
with a closed form solution, and we also derive some theo-
retical results.

In fact, there is a specific link between theoretical
order statistics and quantile-based distributions (David and
Nagaraja 2004). More specifically, the expected value of an
order statistic can expressed in terms of the quantile distri-
bution as follows:

E[X(i)] = 1

B(i, n − i + 1)

∫ 1

0
Q(u; θ)ui−1(1 − u)n−i du.

(4)

As stated in the following Lemma, if the quantile function is
linear in its parameters, the expected value of the theoretical
order statistics takes a similar linear form that simplifies the
estimation method.

Lemma 1 If a quantile distribution function is linear with
respect to its parameters, then the expected order statistics
of that distribution will also be linear with respect to those
same parameters.

The proof is shown in Appendix. Take for instance the
simple quantile function Q(u; θ) = θ0 + θ1u, with θ1 > 0
and θ = (θ0, θ1). Then by solving the integral in (4)we easily
get

E[X(i)] = θ0 + θ1
i

n + 1
= [

1 i
n+1

] [
θ0
θ1

]
= b�

i θ .

For a quantile functionwith a quadratic term in u, Q(u; θ) =
θ0 + θ1u + θ2u2, similarly we get

E[X(i)] = θ0 + i

n + 1
θ1 + i (i + 1)

(n + 2)(n + 1)
θ2.

Thus, for any linear quantile function, the expected values of
the order statistics can written as

E[X(i)] = b�
i θ ,

where bi are p-dimensional vectors of known coefficients.
Now, given a sample of IID observations (x1, . . . , xn)

from X ∼ F(θ) denote with x(i) the observed i-th order
statistics. We can minimize:

φ(θ) =
n∑

i=1

(
x(i) − E[X(i)]

)2 =
n∑

i=1

(
x(i) − b�

i θ
)2

(5)

with respect to θ .
The resulting least squares estimation method is very

efficient, since it provides a closed-form solution for the
parameters.

By defining B as the matrix of dimension n× p having as
rows bi and byX(·) the ordered random sample, the estimate
of θ is

θ̂ = (B�B)−1B�X(·). (6)

Furthermore we have:

E[θ̂] = (B�B)−1B�E[X(·)] = (B�B)−1B�B θ = θ (7)

and

V [θ̂ ] = (B�B)−1B� � B(B�B)−1

where V [X(·)] = � is the covariance matrix of the order
statistics. So the estimator θ̂ is unbiased, but, given the cor-
relation among order statistics, we can not invoke the BLUE
property of the Gauss-Markov theorem.

2.2 An example: the flattened generalised logistic
distribution

In this section, we derive the results needed for least squares
parameter estimation of the flattened generalized logistic
(fgld) quantile function defined in Eq. (3). To this aim it
is convenient to re-parameterise the quantile function as fol-
lows:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α = θ0

βκ = θ1

β(1 − δ) = θ2

βδ = θ3

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α = θ0

β = θ2 + θ3

δ = θ3
θ2+θ3

κ = θ1
θ2+θ3

The quantile distribution function of the fgld becomes:

Q(u) = θ0 + θ1 u + θ2 log u − θ3 log (1 − u) (8)

To estimate the parameters via least squares we need to
derive the expected value of the order statistics.

Lemma 2 The expected order statistic of the flattened gener-
alised logistic distribution is equal to:

E[X(i)] = θ0 + θ1
i

n + 1
+ θ2 (ψ(i) − ψ(n + 1))

+θ3 (ψ(n + 1) − ψ(n − i + 1)) (9)
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where ψ(·) indicates the digamma function, which is defined
as the derivative of the logarithm of the gamma function.

Therefore, in this case we get bi =
(
1, i

n+1 , ψ(i) − ψ

(n + 1), ψ(n + 1) − ψ(n − i + 1)
)
. For a proof see the

Appendix.
In order to compute the variance of the estimator we also

need to derive the covariance matrix for the order statistics
of the fgld.

Lemma 3 The n-dimensional covariance matrix of the order
statistics,�, of the flattened generalised logistic distribution
has diagonal variances given by

V [X(r)] = θ21
r(n − r + 1)

(n + 1)2(n + 2)
+ θ1θ2

2(n − r + 1)

(n + 1)2
+

+ θ1θ3
2r

(n + 1)2
+ θ22 (ψ1(r) − ψ1(n + 1))+

+ θ2θ3 2ψ1(n + 1) + θ23 (ψ1(n − r + 1)

− ψ1(n + 1))

with r = 1, . . . , n and where ψ1(·) indicates the trigamma
function, which is the derivative of digamma function ψ(·).

The covariance between any two order statistics of the
flattened generalised logistic distribution is equal to:

Cov[X(r), X(s)]
= θ21

[
r(n − s + 1)

(n + 1)2(n + 2)

]
+ θ1θ2

[
(n − s + 1)(r + s)

(n + 1)2s

]

+ θ1θ3

[
r(2n − r − s + 2)

(n + 1)2(n − r + 1)

]
+ θ22 [ψ1(s) − ψ1(n + 1)]

+ θ2θ3 [(ψ(n + 1) − ψ(n − r + 1))(ψ(n + 1) − ψ(s))

+ ψ1(n + 1)]

+ θ23 [ψ1(n − r + 1) − ψ1(n + 1)] − θ2θ3ξ(n, r , s)

where

ξ(n, r , s) =�(s − r) �(n − s + 1)
∞∑
h=1

1

h

�(h + r)

�(n + h + 1)
(ψ(n + h + 1) − ψ(h + s))

for r , s = 1, . . . , n.

A sketch of the proof in given in the Appendix.

2.3 Asymptotic results

In this section we derive the asymptotic distribution of the
estimator of the fgld defined in Eq. (6). First notice that this
estimator can be expressed as a linear combination of the
order statistics:

θ̂ =
n∑

i=1

cin X(i),

where the coefficients cin are vectors of the same length p
as θ̂ .

Lemma 4 The coefficients cin for the least squares estimator
of the fgld are continuous and bounded.

The proof is given in the Appendix. Given this lemma we
can derive the following theorem.

Theorem 1 The least squares estimator for the parameters
of the fgld linear quantile function has an asymptotically
normal distribution:

θ̂
d−→ Np(θ,�) (10)

with � = (B�B)−1B��B(B�B)−1.

The proof of Theorem 1 is shown in the Appendix.
Given the previous result, the null hypothesis that the sam-

ple comes from a quantile function with parameters θ0 can
be tested as stated in the following theorem.

Theorem 2 The null hypothesis H0 : θ = θ0 can be checked
through the test statistic

(θ̂ − θ0)
d−→ Np(0, �),

where for fgld quantile function the matrices B and � are
known quantities derived in Lemma 1 and 3.

As a simple consequence we can also test the hypothesis
that two observed samples come from the same population
H0 : Bθ1 = Bθ2 which is equivalent to H0 : θ1 = θ2.

Under the previous assumptions we get

(θ̂1 − θ̂2)
d−→ Np(0, 2�)

or alternatively

1

2
(θ̂0 − θ̂1)

��−1(θ̂0 − θ̂1)
d−→ χ2

p. (11)

3 Application to supervised classification

Let Y be a categorical random variables taking values y =
{1, . . . , K }, where K denotes the total number of classes and
let X = (X1, . . . , X p) be a set of observed variables. One
of the most used classification methods in the supervised
setting is the so-called naïve Bayes classifier (John and Lan-
gley 1995; Hand and Yu 2001). Suppose you have a training
data set in which both Y and X are known. According to
the Bayesian rule, the posterior probability of belonging to a
generic class k (k = 1, . . . , K ) is

Pr(Y = k | X = x) = πk f (x | Y = k)

f (x)

123



55 Page 6 of 15 Statistics and Computing (2023) 33 :55

= πk f (x | Y = k)∑K
k′=1 πk′ f (x | Y = k′)

, (12)

where πk denotes the proportion of units that belong to class
k in the training set.

The naïve Bayes classifier assumes conditional indepen-
dence of the variables given the categorical response

f (x | Y = k) =
p∏

j=1

f j (x j | Y = k),

thus each variable is treated separately.
The class conditional distributions f j (x j | Y = k) are

usually assumed to be Gaussian. An alternative has been pro-
posed by John and Langley (2013), who suggested the use
of kernel density estimation as a tool to allow for more flex-
ible distributional shapes. A further common method is the
discretization of all continuous variables, that is estimating
the density function via a step function. For this method the
main issue is to choose the breaks that define the categories; a
recent heuristic proposal is that ofYang andWebb (2009), the
so-called proportional discretization. This method achieves
(approximately) a discretization with bins having both equal
width and equal frequency, with the added advantage that the
tuning parameter is derived automatically and based on the
sample size (n): width = frequency ≈ √

n.
Quantile-based distributions can be applied in this setting

with the goal of taking advantage of their flexible and par-
simonious specifications and the fast and reliable estimation
given by the least squares method.

The application of quantile-based distributions in the
naïve Bayes algorithm involves the estimation of K × p uni-
variate distributions, similarly to the other methods. Each
of the univariate samples is identified by a variable and a
category of the response, and their quantile function can
be estimated via least squares, provided we choose a lin-
ear quantile function. The output of the estimation phase
is just a set of parameters: θ jk , with j = 1, . . . , p and
k = 1, . . . , K . Given a single sample identified by a set of
variables x = (x1, . . . , xp), the class conditional distribution
is evaluated as follows, for each variable j and categorical
response k:

P(X j = x j | Y = k) = f j (x j ; θ jk) = 1

q j (u j ; θ jk)
,

where the density is evaluated based on the relationship
shown in Eq. (1) and u j is the inverse of x j = Q(u j ; θ jk)

and needs to be computed numerically in the case of non-
invertible quantile functions, such is the case of the fgld.

As a by-product of the least square fit, a simple distance
measure between two quantile distributions can be derived.
Imagine that θ̂1 and θ̂2 are the estimates of the parameters

of two quantile functions. For instance, the quantile function
of the classes 1 and 2 of the training sample. Then for each
variable we can measure:

‖Bθ̂1 − Bθ̂2‖2

where ‖. . . ‖2 denotes the Euclidean distance. The formula
can also be interpreted as the Euclidean distance between
two vectors containing the expected order statistics for the
two distributions.

The formula can be applied seamlessly in the case of two
response classes with equal number of observations. When
the latter differs between the classes, n can be chosen for
instance as the minimum class frequency; when the classes
aremore than two, the distance can be computed for each pair
and themaximumpairwise distance can be retained,meaning
that the variable can at least discriminate between those two
classes.

This measure can serve to rank variables in terms of
their importance, of course limited to their application in
the naïve Bayes algorithm. This can be useful in interpret-
ing and explaining the model, in a similar way to the use of
variable importance measures derived from algorithms such
as random forests.

Moreover, it can serve as the basis of a variable selection
procedure as explained in Sect. 2.3 (Theorem 2). Imagine we
have K = 2 classes, then a variable is relevant for classifi-
cation if the null H0 : θ1 = θ2 is rejected, where θ1 and θ2
denote the parameters in the two class-populations.

4 Simulation study

In this section we present some empirical studies to evaluate
the goodness-of-fit of the illustrated quantile functions in
different scenarios, their classification performance in the
naïve Bayes algorithm and the behaviour of the asymptotic
test.

4.1 Empirical bias

In this first simulation we investigate the goodness-of-fit of
three different quantile-based distributions: the simple quan-
tile function with a linear term in u (linear), the quantile
function with a quadratic term in u (quad) and the fgld. In
order to measure the empirical bias and the variability of the
estimators of θ we compare the observed order statistics with
their expectation according to the three models, by comput-
ing this empirical bias measure:

√∑n
i=1(x(i) − Ê[X(i)])2

n
=

√∑n
i=1(x(i) − B θ̂)2

n
.
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Table 2 Average empirical bias over 100 replicates for 4 distributional
scenarios (rows) and for 3 quantile-based distributions (columns). Stan-
dard deviations are reported in brackets

Linear Quad fgld

Norm 0.22 (0.05) 0.21 (0.05) 0.08 (0.02)

t 0.86 (0.54) 0.84 (0.53) 0.35 (0.38)

Logabst 0.43 (0.13) 0.36 (0.12) 0.13 (0.06)

Exp 1.01 (0.27) 0.72 (0.26) 0.23 (0.1)

We simulated n = 100 observations from four different dis-
tributions: a standard normal, a T distribution with 3 degrees
of freedom, an exponential distribution with rate parameter
equal to 0.5, and a log(| Tν=3 |), that is the logarithm of the
absolute value of a t distribution (againwith 3 degrees of free-
dom). For each scenario we generated 100 replicates. Table 2
shows the mean of the empirical bias across the replicates for
each scenario and model. In brackets the standard deviations
offer an indication of the variability of the estimates.

Results show that the fgld is by far themost flexiblemodel,
it being able to fit well in all scenarios.

4.2 Classification

We evaluated the performance of the quantile-based distribu-
tions in the naïve Bayes algorithm via a simulation study.We
considered the fgld and the quantile functionwith a quadratic
term in u (quad) described in Sect. 2.1. We generated p vari-
ables X j ( j = 1, . . . , p) of sample size n, according to the
four different distributions described in the previous subsec-
tion.

We fixed K = 2 classes, of equal size n/2. Denote X j0

the variable X j when Y = 0 and X j1 when Y = 1. In order
to separate the classes we shifted each variable according to
the rule

X j1 = X j0 + 0.3 (−1) j j = 1, . . . , p

Alteratively, we have applied a scaling as

X j1 = 0.8 X j0 j = 1, . . . , p

Shifting has been applied to all distributional settings, while
scaling has been applied only to the log(| tν=3 |) distribution;
thus creating five different scenarios: (1) shifted N (0, 1),
(2) shifted tν=3, (3) shifted Exp(λ = 0.5), (4) shifted log(|
tν=3 |) and (5) scaled log(| tν=3 |). For each scenario we let
p = {10, 50, 100}, n = {100, 500, 1000}, and correlated or
independent variables.

The five distributional scenarios, three variable set sizes,
three sample sizes and two correlation structures lead to
ninety settings. For each setting we repeated data genera-

Table 3 Computational average times in seconds for training the naïve
Bayes classifier and applying its prediction on a test set over the 100
replications for the 5 distributional scenarios. In brackets standard devi-
ations are reported

Method p = 10 p = 50 p = 100

n = 100 Discrete 0.06 (0.01) 0.33 (2.54) 1.42 (29.54)

fgld 0.15 (0.02) 4.62 (61.03) 5.42 (61.08)

gev 0.04 (0.00) 1.16 (31.51) 1.32 (31.51)

kde 1.00 (29.54) 0.31 (0.02) 0.62 (0.04)

Normal 0.02 (0.00) 0.04 (0.01) 0.09 (0.01)

Quad 0.11 (0.01) 2.46 (43.17) 1.08 (0.06)

n = 500 discrete 0.06 (0.01) 0.26 (0.04) 0.51 (0.03)

fgld 0.64 (0.03) 3.25 (0.14) 6.54 (0.16)

gev 0.08 (0.01) 0.41 (0.08) 0.80 (0.12)

kde 0.34 (0.02) 1.59 (0.10) 3.13 (0.12)

Normal 0.08 (0.01) 0.23 (0.03) 0.41 (0.03)

Quad 0.54 (0.04) 2.74 (0.18) 5.48 (0.29)

n = 1000 discrete 0.06 (0.01) 0.27 (0.02) 0.48 (0.07)

fgld 1.31 (0.04) 6.46 (0.19) 11.94 (1.31)

gev 0.15 (0.03) 0.72 (0.16) 1.33 (0.31)

kde 0.70 (0.03) 3.19 (0.10) 5.85 (0.60)

Normal 0.16 (0.02) 0.46 (0.03) 0.76 (0.09)

Quad 1.11 (0.07) 5.48 (0.27) 10.12 (1.21)

tion and estimation 100 times. Misclassification rates were
evaluated on test sets generated in same way as the training
samples, and we report the average over the replicates.

We compared with other choices for the class-conditional
distributions; namely the normal, the kernel (kde), with
default Silverman’s rule for the bandwidth, the discrete
method (with proportional discretization (Yang and Webb
2009)), the generalized extreme value distribution (gev) esti-
mated via maximum likelihood by the R package evd.

Table 3 contains a summary of the computational times
for this simulation. We can note that the time needed for the
methods based on the least squares estimation of quantile
functions is longer than for simpler methods such as the nor-
mal and the discrete, but it is manageable even for the larger
data sets. Times are particularly affected by the increase in
the number of independent variables (p).

Results for the classification are presented graphically in
Fig. 3 for each data generating distribution, where we col-
lapse over the 18 settings evaluated for each case. We show
scaled differenceswith respect to a referencemethod for each
setting; we choose fgld as the reference. The scaled differ-
ences are computed as follows:

d jk = e jk − e j1
ē j
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Fig. 3 Results from a simulation study comparing different methods
for the naïve Bayes classifier. Each panel represents a distributional
scenario under which the data was simulated. Results are presented as
scaled differences from the fgld, where a value higher than 0 means

that for a setting (combination of sample size, number of variable and
correlation structure) the method had a larger mean misclassification
error than the fgld

where j = 1, . . . , 18 indicates the setting for fixed data
generating distribution, k = 1, . . . , 5 represents the method
(with 1 being the reference method), and ē j being the aver-
age test error for that setting. From Fig. 3 we can see that fgld
is very competitive: as expected it performs worse than the
normal when the data are indeed normal, but the discrepancy
is minimal; it is the best method otherwise with the exception
of the exponential data when only gev performs better.

4.3 Testing procedure

In order to evaluate the performance of the test we assess the
distribution of the test statistic for the fgld and for the quad
quantile functions under the null hypothesis H0 : θ1 = θ2,
and the power of the test when the null hypothesis is not true.
The variance of the order statistics of the quad quantile func-
tion, needed for the variance of the least squares estimator,
is reported in the Appendix.

Type I error

Under the null hypothesis the two samples come from the
same distribution. In order to evaluate the convergence of
the test statistic to its null distribution we compare empirical
type I errors with the nominal significance level that has been
chosen in advance.

A total of 200 sets of parameters have been randomly
generated, and for each of them 1,000 two-group samples
have been simulated. From each of these 1,000 data sets
the test statistic can be computed and the empirical type I
error corresponds to the proportion of test statistics above
the critical value (the 95th quantile of the χ2

d f =4 distribu-

tion for the fgld and the χ2
d f =3 for the quad). This procedure

has been repeated for different group sample sizes, with the
same parameter sets, and the results are shown in Fig. 4. As

could be expected, the empirical type I error converges to the
nominal one as the sample size increases in both cases.

ROC curves

To evaluate the power of the test we have simulated data
sets of 1,000 variables, with half of those variables having a
different distribution between the two balanced groups, and
half having the same distribution. For each variable the p-
value associated with the test statistic is computed.

This problem can be re-framed as a classification prob-
lem in which the response is whether or not the variable is
useful (having a different or equal distribution across the two
groups).

In the simulation we know whether the variable is useful
or not, so we can evaluate it with the metrics of a classifica-
tion model, such as a ROC curve. This is particularly suited
to the test because the different thresholds (and subsequent
classifications) can be interpreted as significance levels.

In Fig. 5 we report the ROC curves for the fgld and quad
that evaluate whether test statistics are able to identify cor-
rectly useful and not useful variables. In both caseswe can see
that as n increases the curves move more and more towards
the top left corner. Even with low sample sizes there are cut-
off points for which the test performs extremely well both in
terms of sensitivity and of specificity.

5 Real data examples

5.1 Benchmark datasets

We have compared the different methods for the naïve Bayes
classifier used in Sect. 4.2 on some real datasets commonly
used for benchmarking. The chosen datasets are all publicly
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Fig. 4 Distribution of empirical type I errors across 200 parameter sets for the fgld (left panel) and quad (right panel) for different group sample
sizes. As the sample size increases, empirical type I errors get closer to their nominal 5% value. The left panel refers to the fgld, the right panel to
the quad
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Fig. 5 ROC curves based on the identification of whether a variable has the same distribution across two groups. Results are obtained by computing
the hypothesis test across 1,000 variables, of which only half have the same distribution across the two groups

available from theUCImachine learning repository (Dua and
Graff 2019). When available we used the preprocessed ver-
sion from the R package mlbench (Leisch and Dimitriadou
2021). In Table 4 some basic information of the datasets used
is provided: we can note the general adaptability of the naïve
Bayes classifier, being able to deal with both numerical and
categorical variables at the same time and with multi-class
response variables.

On these data we fitted the models that performed the best
in the simulation study (Sect. 4.2), namely the fgld, the nor-
mal, the kde and the discrete. Results in terms of accuracy
from tenfold cross-validation are presented in Table 5. We
can note that no method is uniformly superior to the others.
In general, the additional flexibility given by the fgld, the kde

and the discrete, with respect to the normal, proves advanta-
geous.We can note the fgld performs comparatively well and
there are multiple datasets where it achieves the maximum
accuracy.

5.2 Variable selection

In this section we illustrate the proposed strategy for vari-
able selection on a real dataset. We revisit data from Altman
(1968), available in the R package MixGHD (Tortora et al.
2021), by adding noise variables. The original dataset con-
tains information about n = 66 companies that have filed for
bankruptcy. Our task is to predict the status of the firms (0
for ‘bankruptcy’ or 1 for ‘financially sound’). The original
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Table 4 Datasets from the UCI
Machine learning repository
used for comparing naïve Bayes
methods, with some information
regarding data size and type

Sample size Numerical variables Categorical variables Response classes

Cleveland 297 6 7 2

Credit 653 6 9 2

Diabetes 768 8 0 2

Glass 214 9 0 6

Heart 270 6 7 2

Ionosphere 351 32 2 2

Letter 20000 16 0 26

Sonar 208 60 0 2

Thyroid 2751 6 21 2

Vehicle 752 18 0 4

Waveform 5000 40 0 3

wbcd 569 30 0 2

Table 5 Accuracy from different naïve Bayes methods (columns)
applied on 12 benchmark datasets (rows). The results are obtained from
tenfold cross-validation

fgld Normal kde Discrete

Cleveland 80.79 80.13 80.46 82.15

Credit 80.36 73.94 76.28 84.36

Diabetes 76.05 75.39 75.01 65.24

Glass 57.58 45.84 54.55 53.23

Heart 82.96 81.48 81.11 82.22

Ionosphere 73.23 82.35 91.75 88.07

Letter 65.39 64.28 70.48 51.57

Sonar 70.18 67.63 75.49 74.90

Thyroid 93.20 93.42 95.02 92.08

Vehicle 59.32 44.92 57.15 62.50

Waveform 80.28 80.00 79.86 75.24

wbcd 94.73 92.95 93.67 88.90

predictors are two measurements related to the earnings of
the firm. On top these two relevant variables we added 198
irrelevant variables sampled from a standard normal distri-
bution, for a total p = 200. The goal is to check whether
the variable selection procedure developed in Sect. 3 is able
to identify the two real variables, and then to compare the
accuracy of various naïve Bayes classification algorithms in
the complete dataset and with some other values of p.
To this aim we considered the naïve Bayes classifiers, with
the previously used methods for estimating the distribution
(normal, kde, discretization and fgld).We also compare these
classifiers to other commonly used ones: k-nearest neighbors
with k = 3, logistic regression and linear discriminant analy-
sis.
First we computed the p values associated with the test for
each variable, and by using a procedure for controlling the
false discovery rate (theBenjamini-Hochberg procedure), we

correctly reject the null hypothesis only for the two original
variables. Next, we re-ordered variables in ascending order
by the obtained p values and we compare the classifiers in
datasets with an increasing number of variables, where vari-
ableswith progressively higher p values are included. Results
are shown in Table 6 for values of p = 2, 50, 100, 150, 200.
A visual representation of the naïve Bayes with the fgld is
shown in Fig. 6, where the first 7 variables in terms of p-value
are visualised, separated by class, with a histogram and the
density from the estimated fgld. It can be noted how the fgld
can capture the skewness present in the first two original
variables.

We can note that the naïve Bayes with the fgld reaches
its maximum with p = 2, that is with the original vari-
ables. This is the best accuracy obtained in a leave-one-out
cross validation scheme, and the method is the best strategy
together with logistic regression. As more and more noise
variables are included the performance of all methods dete-
riorates, with the naïve Bayes classifiers being pretty robust.
This robustness, in particular of the normal and KDE naïve
Bayes classifiers, has also been noted by the fact that it can
happen that they retain or improve their accuracy even in
presence of a moderate number of noisy variables, probably
due random changes related to the small number of units n.
However, the improvement given by the selection is sizable
for all methods, and most of them benefit from the selection
given by the fgld test, reaching very high accuracies when
only the two original variables are included.

6 Concluding remarks

We focused on the family of linear quantile functions and
in particular on the so-called generalized flattened logistic
distribution (fgld).We showed a least squares estimation pro-
cedure andwe derived its properties. The resulting estimators
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Fig. 6 Naïve Bayes classifier with fgld applied to the bankruptcy dataset with added noise variables. The 7 variables with the lowest p values
are shown on the columns, while the rows identify the response class. The visualisation includes a histogram and the density function from the
estimated fgld

Table 6 Leave-one-out cross
validation accuracy for different
classification algorithms applied
to the bankruptcy dataset
with added noise variables. The
columns are for different
numbers of variables (p), being
the ones with the lowest p
values for the fgld test

p = 2 p = 50 p = 100 p = 150 p = 200

KNN k = 3 92.42 65.15 54.55 43.94 43.94

LDA 90.91 72.73 54.55 57.58 46.97

Logistic regression 95.45 56.06 53.03 53.03 53.03

Naïve Bayes discrete 84.85 87.88 84.85 71.21 63.64

Naïve Bayes fgld 95.45 87.88 78.79 69.70 60.61

Naïve Bayes KDE 93.94 92.42 95.45 81.82 69.70

Naïve Bayes normal 93.94 92.42 90.91 84.85 77.27

are unbiased and asymptotically normal, thus allowing us to
derive a testing procedure. In the numerical experiments we
have investigated the performance of the asymptotic test with
different sample sizes. Results show that even with low sam-
ple sizes the asymptotic test has some acceptable power.
In principle one could consider any other linear quantile func-
tion, provided that the first and second moment of the order
statistics can be derived, which are necessary respectively
for the least square estimator and the testing procedure. We
remark though that in our simulation and real data experi-
ments the fgld distribution, characterized by four parameters,
seems to be flexible enough to capture a wide range of
shapes. The theoretical results about the fgld distribution
have been then used to propose a novel naïve Bayes classifier,
based on the quantile distribution rather than the conven-
tionalGaussiandensity. The fgld quantile functionperformed
very well in all the empirical studies. As by-products, strate-
gies for variable importance and variable selection have been
obtained by the simple application of the testing procedure
developed in the first part of the work. Notice that the naïve
Bayes classifier under the assumption of conditional inde-
pendence requires univariate densities, and for this reason
the fgld quantile distribution represents a useful and flexible
tool. A challenging extension for future work is to develop an

inferential framework for multivariate quantile functions, in
the spirit of Farcomeni et al. (2022), with potentially different
applications and statistical purposes. One could also con-
sider an extension to quantile regression, where we speculate
that the evaluation of the impact of changes in explanatory
variables on marginal distributions of an outcome could be
straightforward within the family of linear quantile functions
(Firpo et al. 2009).
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Appendix

Proof of Lemma 1

We assume that the quantile distribution function is linear
with respect to parameters θ = (

θ1, . . . , θp
)
.

Q(u) = θ1 h1(u) + · · · + θp h p(u).

The expected value of the i-th order statistic can be written
as follows, where g(u) is the density of a Beta distribution
with parameters equal to i and n − i + 1.

E(X(i)) =
∫ 1

0
Q(u) g(u) du =

=
∫ 1

0

[
θ1 h1(u) + · · · + θp h p(u)

]
g(u) du =

=
∫ 1

0

[
θ1 h1(u)g(u) + · · · + θp h p(u)g(u)

]
du =

= θ1

[∫ 1

0
h1(u)g(u) du

]
+ . . .

+ θp

[∫ 1

0
h p(u)g(u) du

]
=

= θ1 b1i + · · · + θp bpi

This shows that the expected value of a generic order statistic
is linear with respect to those same parameters. Alternatively
we can think of the proof in terms of maps, the quantile
distribution function

Q : θ −→ Q(θ)

is a linear map by hypothesis with the following two defining
properties:

Q(θ1 + θ2) = Q(θ1) + Q(θ2)

Q(α θ1) = α Q(θ1)

the expected value

E : Q −→ E(X(i))

is also a linear map (a definite integral is a linear map from
the space of all real-valued integrable functions to R). The
composition of linear maps is linear, so E ◦ Q is linear.

Proof of Lemma 2

To obtain the expected value of the i-th order statistic of a
sample of size n we need to solve the following integral:

E[X(i :n)] = 1

B(i, n − i + 1)

∫ 1

0
[θ0 + θ1 u + θ2 log u

− θ3 log (1 − u)] ui−1(1 − u)n−i du

Thefirst two additive terms are easily solvable by recognizing
the beta function:

∫ 1

0
ui−1(1 − u)n−i du = B(i, n − i + 1)

∫ 1

0
ui (1 − u)n−i du = B(i + 1, n − i + 1)

For solving the third term we can use the following rule, in
which a and b are two positive real numbers.

∫ 1

0
log x xa−1 (1 − x)b−1 dx

=
∫ 1

0

∂

∂ a
xa−1 (1 − x)b−1 dx

= ∂ B(a, b)

∂ a
= ∂

∂ a

�(a) �(b)

�(a + b)

= �′(a)�(b)�(a + b) − �(a)�(b)�′(a + b)

�(a + b)2

= �(a)�(b)

�(a + b)

[
�′(a)�(a + b)

�(a)�(a + b)
− �′(a + b)

�(a + b)

]

= B(a, b) (ψ(a) − ψ(a + b))

In a similar way it can be shown that:

∫ 1

0
log (1 − x) xa−1 (1 − x)b−1 dx

= B(a, b)(ψ(b) − ψ(a + b))

Thus the third and fourth term are equal respectively to:

∫ 1

0
log (u)ui−1(1 − u)n−i du

= B(i, n − i + 1) (ψ(i) − ψ(n + 1))∫ 1

0
log (1 − u)ui−1(1 − u)n−i du

= B(n − i + 1, i) (ψ(n − i + 1) − ψ(n + 1))

By adding together the terms multiplied by their respective
parameters and simplifying the beta functions the final result
is obtained.
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Proof of Lemma 3

The covariance between the r-th and s-th order statistics is
given by the following integral (David and Nagaraja 2004):

Cov[X(r), X(s)] = n!
(r − 1)!(s − r − 1)!(n − s)!∫ 1

0

∫ v

0
(Q(u) − E[X(r)])(Q(v) − E[X(s)])

ur−1(v − u)s−r−1(1 − v)n−s du dv

Denoting the product of factorials before the double inte-
gral as Cn,r ,s , the expected values of the order statistics as
μr andμs , and carrying out the product of the first two terms
in the integral, the formula can be rewritten as:

Cov[X(r), X(s)]

= Cn,r ,s

∫ 1

0

∫ v

0
Qu Qv u

r−1(v − u)s−r−1

× (1 − v)n−s du dv − μrμs

Given that the quantile function for the fgld has 4 terms,
the product Qu Qv will have 16 terms, so the integral can
be split into 16 parts that can be tackled one at the time.
For instance, the solution of one of these 16 terms, up to the
multiplicative constant − θ2 θ3, is shown below:

Cn,r ,s

∫ 1

0

∫ v

0
log (u) log (1 − v) ur−1(v − u)s−r−1

× (1 − v)n−s du dv

= Cn,r ,s

∫ 1

0
log (1 − v)(1 − v)n−s

∫ v

0
log (u) ur−1(v − u)s−r−1 du dv

= Cn,r ,s

∫ 1

0
log (1 − v)(1 − v)n−svs−1

∫ 1

0
log (vt) tr−1(1 − t)s−r−1 dt dv

= Cn,r ,s

∫ 1

0
log (1 − v)(1 − v)n−svs−1 B(r , s − r)

[
log (v) + ψ(r) − ψ(s)

]
dv

= Cn,r ,s B(r , s − r)
∫ 1

0
log (1 − v)(1 − v)n−svs−1

[
log (v) + ψ(r) − ψ(s)

]
dv

= [ψ(n − s + 1) − ψ(n + 1)] [ψ(r) − ψ(n + 1)]

− ψ1(n + 1)

The only integral that, to our understanding, has no easy
expression through the identification of special functions is

the following (up to the constant −θ2 θ3), whose solution
involves a series:

Cn,r ,s

∫ 1

0

∫ v

0
log (1 − u) log (v) ur−1

(v − u)s−r−1(1 − v)n−s du dv

= Cn,r ,s

∫ 1

0
log (v) (1 − v)n−s vs−1

∫ 1

0
log (1 − vt) tr−1

(1 − t)s−r−1 dt dv

= Cn,r ,s

∫ 1

0
log (v) (1 − v)n−s vs−1

∫ 1

0
∞∑
h=1

−(vt)h

h
tr−1(1 − t)s−r−1 dt dv

= −Cn,r ,s

∞∑
h=1

B(h + r , s − r)

h

∫ 1

0
log (v) (1 − v)n−s vh+s−1dv

= −Cn,r ,s

∞∑
h=1

B(h + r , s − r)

h

∂

∂ h

∫ 1

0
(1 − v)n−s vh+s−1dv

= −Cn,r ,s

∞∑
h=1

B(h + r , s − r)

h

B(n − s + 1, h + s)(ψ(h + s) − ψ(n + h + 1))

= �(n + 1)

�(r)

∞∑
h=1

1

h

�(h + r)

�(n + h + 1)
(ψ(n + h + 1) − ψ(h + s))

After solving the 16 integrals and getting the 16 terms
from the product μr μs , terms with the same parameters can
be collected: all of the terms involving θ0 cancel out in the
difference and the 6 combinations that are left make up the
terms shown in the resulting expression.

Proof of Lemma 4

The least squares estimator for the fgld distribution is given
by Eq. (6). The coefficients cin that form the linear combi-
nation of order statistics are defined as follows:

θ̂ = (B�B)−1B�x(·) = [
c1n c2n · · · c1nn

]
⎡
⎢⎢⎢⎣
x(1)

x(2)
...

x(n)

⎤
⎥⎥⎥⎦ ,

that is they constitute the columns of the p × n matrix
(B�B)−1B�. To prove that they are bounded it is enough
to prove that each of the elements in the matrix (B�B)−1B�
is bounded.
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We start by expanding matrix B:

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1
n+1 ψ(1) − ψ(n + 1) ψ(n + 1) − ψ(n)

...
...

...
...

1 i
n+1 ψ(i) − ψ(n + 1) ψ(n + 1) − ψ(n − i + 1)

...
...

...
...

1 n
n+1 ψ(n) − ψ(n + 1) ψ(n + 1) − ψ(1)

⎤
⎥⎥⎥⎥⎥⎥⎦

The product B�B can be analytically defined up to the 4
entries that involve the summations involving the digamma
functions. For them we can only define an asymptotic order,
which we will denote as k. In the following it will be shown
that for any k > 1 the boundedness of the coefficients is
preserved:

B�B =

⎡
⎢⎢⎢⎢⎣

n n
2 −n n

n
2

n(1+2n)
6(1+n)

−3n−n2
4(n+1)

3n2+n
4(n+1)

−n −3n−n2
4(n+1) O(nk) O(nk)

n 3n2+n
4(n+1) O(nk) O(nk)

⎤
⎥⎥⎥⎥⎦

Next we need to compute the inverse of B�B. To this aim we
will use the formula for a block diagonal matrix in order to
reframe the problem in terms of the inversion 2× 2 matrices
(Petersen and Pedersen 2012). First we identify four 2 × 2
blocks in B�B:

B�B =
[
A11 A12

A21 A22

]
,

then the inverse is defined as:

(B�B)−1 =
[

C−1
1 −A−1

11 A12C
−1
2

−C−1
2 A21A

−1
11 C−1

2

]
,

where

C1 = A11 − A12A
−1
22 A21

C2 = A22 − A21A
−1
11 A12.

In the following we derive the submatrices and their com-
binations needed for the inverse, we will assume that the
determinants written in big O notation are not zero, so that
the inverse can be computed.

A−1
22 = det(A22)

−1
[O(nk) O(nk)
O(nk) O(nk)

]
= O(n−2k)

[O(nk) O(nk)
O(nk) O(nk)

]
=

[O(n−k) O(n−k)

O(n−k) O(n−k)

]

A21A
−1
11 A12 =

[
7n2+n
4n+4 − n(n+7)

4(n+1)

− n(n+7)
4(n+1)

7n2+n
4n+4

]
=

[O(n) O(n)

O(n) O(n)

]

C2 =
[O(nk) O(nk)
O(nk) O(nk)

]
−

[O(n) O(n)

O(n) O(n)

]
=

[O(nk) O(nk)
O(nk) O(nk)

]

C−1
2 =

[O(n−k) O(n−k)

O(n−k) O(n−k)

]

A12A
−1
22 A21 =

[O(n) O(n)

O(n) O(n)

] [O(n−k) O(n−k)

O(n−k) O(n−k)

]
[O(n) O(n)

O(n) O(n)

]
=

[O(n−1) O(n−1)

O(n−1) O(n−1)

]

C1 =
[O(n) O(n)

O(n) O(n)

]
−

[O(n−1) O(n−1)

O(n−1) O(n−1)

]
=

[O(n) O(n)

O(n) O(n)

]

C−1
1 =

[O(n−1) O(n−1)

O(n−1) O(n−1)

]

A−1
11 A12 =

[
A21A

−1
11

]� =
[− 5

2 − 1
2

3 3

]

(B�B)−1 =

⎡
⎢⎢⎣
O(n−1) O(n−1)

O(n−1) O(n−1)

O(n−k) O(n−k)

O(n−k) O(n−k)

O(n−k) O(n−k)

O(n−k) O(n−k)

O(n−k) O(n−k)

O(n−k) O(n−k)

⎤
⎥⎥⎦

The final step is to multiply the inverse we have just derived
by the transpose of B, which we will write in asymptotic
notation:

B� =

⎡
⎢⎢⎣
O(1) · · · O(1)
O(1) · · · O(1)
O(k) · · · O(k)
O(k) · · · O(k)

⎤
⎥⎥⎦

The final matrix (B�B)−1B� will contain terms of order 1
(O(1)), that is bounded, or below (from n−1 to n−k), so all
the entries of the coefficients cin are bounded.
Moreover, to prove that the functions that produce the coef-
ficients cin are continuous it is enough to note that although
no analytical form for the functions is available, they are the
result of products and sums of the continuous functions that
define the columns of B, so they will also be continuous.

Proof of Theorem 1

The theorem is based on the application of an asymptotic
result regarding the linear combinations of order statistics
(David and Nagaraja 2004, Theorem 11.4). The linear com-
bination is denoted as:

Ln = 1

n

n∑
i=1

J

(
i

n

)
X(i),

where the coefficients are cin = 1
n J

( i
n

)
. In our case Ln is

the vector of the least squares estimator θ̂ . The conditions for
the asymptotic normality of Ln are that the variance of the
distribution X is finite, which is true for the fgld, and that the
functions J (u) that define coefficients cin are bounded and
continuous, which is shown in Lemma 4. The expected value
and variance of the limiting normal distribution are given by
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the ones of the linear combination. In our case these are equal
respectively to the theoretical value of the parameters and the
variance of the least squares estimator, for which–in the case
of the fgld–we have an exact result, thanks to Lemmas 2 and
3.

Variance of the order statistics for the quad quantile
function

Cov[X(r), X(s)]
= θ21

r(n − s + 1)

(n + 1)2(n + 2)
+

+ θ1 θ2
2r(n − s + 1)(r + s + 2)

(n + 1)2(n + 2)(n + 3)

+ θ22
2r(r + 1)(n − s + 1)(n(2s + 3) + 5s + 6)

(n + 1)2(n + 2)2(n + 3)(n + 4)
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