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Abstract—Recent developments in the field of deep learning
have steered research on music generation systems towards
a massive use of large end-to-end neural architectures. The
capability of these systems to produce convincing outputs has
been extensively proven. Nonetheless, they usually come with
several drawbacks, such as a low degree of user control, a
lack of global structure, and the inherent impossibility of online
generation due to high computational costs. Our contribution
is two-fold: first, we identify these limitations and show how
they have been discussed and partially addressed in the existing
literature; then, we propose a novel music generation approach
aimed at overcoming such limitations, by properly combining a
set of samples under user-defined constraints. We model our task
as a job-shop problem, and we show that interesting results can
be obtained at very low computational costs. Our framework is
genre-independent as it deals with samples metadata rather then
individual notes, even though additional genre-specific constraint
could be introduced by users to meet their stylistic requirements.

Index Terms—Machine Learning, Constraint Optimization,
Music Generation, Human-in-the-Loop

I. INTRODUCTION

The interplay between Artificial Intelligence (AI), creativity
and arts has been the subject of many research efforts in
recent years [1]. Several directions have been investigated,
from the spread of synthetic image generation tools to the ever
more pervasive large language models used to create natural
language texts. These advances have a big impact on culture
and society, as creativity has always been deemed to belong
to humans only; hence, a hot debate is currently ongoing.
While AI-generated art is very unlikely to supplant human
artistic endeavours, such an investigation can provide insights
to better understand the human creative processes as well [2].
Recent works demonstrated how a less threatening approach
can be considered as well, in particular human creativity can
be assisted by AI techniques rather than superseded [3].

Another area of artistic creation that has been the subject
of intense research from the AI community is the generation
of music [4]. Most of the recent works focus on sub-symbolic
approaches, exploiting huge amounts of data and very large
Deep Learning (DL) models. Conversely, before the advent of
DL models, the majority of synthetic music generators were
based on symbolic approaches such as Constraint Program-

This work has been supported by ICT-48-2020 Project TAILOR funded by
European Union’s Horizon 2020 programme (GA No. 952215).

ming (CP) and Optimization, exploiting the fact that music
composition is typically based on a set of precise rules [5].

DL models usually come with several drawbacks, such
as a low degree of user control, a lack of global structure,
an the impossibility of online generation due to their high
computational costs and specific hardware requirements [6]. In
this perspective, our contribution is two-fold: first, we identify
these limitations and show how they have been discussed and
addressed in the existing literature; and second, we propose
a novel music generation approach aimed at overcoming such
limitations by properly arranging a set of samples under certain
constraints. We show that promising results can be obtained at
a very low computational cost. We argue that our framework
is genre-independent, as it deals with samples metadata rather
then individual notes, and it potentially addresses one of the
main open challenges of music generation systems, that of
online generation. Since we model the task as a job-shop
problem, the time required to solve it is low, meaning that it
can be potentially used in a live setting. Finally, by integrating
these high-level rules with the sub-symbolic composition of
each single chunk, we demonstrate that it is possible to
achieve a higher-level of diversity at the cost of a smaller time
and energy consumption, while also allowing practitioners to
intervene in the final composition once it is generated.

II. STATE OF THE ART

Computer-aided music generation has a long tradition whose
roots trace back to almost two centuries ago. In a series of
sketches on the Analytical Engine [7], Ada Lovelace suggests
that it would be possible to “compose elaborate and scientific
pieces of music of any degree of complexity or extent”
provided that the fundamental relations between sounds are
correctly encoded. While this strict logical-mathematical ap-
proach may seem too restrictive for modern songs, it easily
suits the mindset of composers with classical training [8]. For
this reason, it is not surprising that many pioneering works on
algorithmic composition leveraged rule-based symbolic frame-
works. Among all, we mention the famous 1957 composition
Illiac Suite [9], which used a generate-and-test algorithm to
guarantee constraint satisfaction in the output score for a string
quartet, and CHORAL [10], an expert system by Ebcioğlu
which adopts more than 350 logical rules to generate multi-
voicing harmonization in the style of Bach chorales.
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After the introduction of Transformer architectures, new
systems such as Music Transformer [11] were able to outper-
form the state of the art thanks to their ability to handle mul-
tiple genres while maintaining a coherent structure throughout
the generation. Likewise, works like MusicLM [12], Juke-
box [13], and Noise2Music [14] managed to generate musical
artifacts directly in the audio domain rather then in musical
notation using similar architectures. More than 70% of papers
published on the topic in the last five years are based on
DL [4], while the majority of the remaining ones present
evolutionary-based solutions. Nevertheless, large end-to-end
neural models for music generation seem to be yet far from
achieving the results obtained by their textual and visual coun-
terparts, especially for those systems that aim at generating raw
audio, which are still prone to introduce recognizable artifacts
such as abrupt timbre changes, choppy tracks and, in general,
a massive presence of noisy and dirty signals which prevent
from their further use in a professional production.

On a final note, we acknowledge that some recent works
have tried to make explicit use of rules and constraints within
a larger artificial intelligence framework. For example, [15]
proposes a system that can generate polyphonic music with re-
curring patterns and tension profile by solving an optimization
problem based on a model for tonal tension known as the spiral
array. Similarly, [16] develops an architecture that combines
a Markov model with a finite state automaton to enforce an
arbitrary global structure on the generated output by means of
appropriate sampling strategies. Finally, [17] defines a novel
framework for computer-aided music generation based on two
consecutive steps: in the first step, a sub-symbolic model
is asked to create short samples with appropriate musical
metadata about genre, time signature, chord progression, etc.;
then, in the second step, these samples are arranged together
to create the final track. Since the authors’ contribution is
limited to the creation of the dataset and the subsymbolic
model, we build on that by proposing a simple but effective
implementation for the combinatorial task.

III. MOTIVATION

Before introducing our methodology, we will discuss some
limitations of the systems presented in the previous section,
such as: (a) the difference between classical composition and
modern music production, (b) the lack of perceived ownership
experienced by practitioners in creative domains when facing
AI-based tools, and (c) the inherent speed and robustness
issues of large end-to-end neural models.

a) Modern Music Production: Avdeef [18] marks a clear
distinction between generative systems for classical music and
for pop songs. While composers with classical training are
used to reason with rigorous melodic, harmonic, and rhythmic
patterns which mainly apply on a local scale, modern music
production is strongly influenced by the massive presence
of pre-recorded samples, which are selected and assembled
together in order to create the final track. As pointed out
by Zils and Pachet [19], this style of composition is much

more present in electronic music – i.e. Techno, Dance, Hip-
Hop, EDM, etc. – but it rapidly became a common practice
both in pop and other music genres thanks to the development
of new software such as ProTools, Cubase, and other Digital
Audio Workstations (DAWs). To the best of our knowledge,
there have been very few works that addressed algorithmic
composition in this ways; still, we believe that such an
approach to algorithmic composition would bring three main
advantages. Firstly, since the resulting track is obtained by
arranging blocks – i.e. samples – in a two-dimensional grid, it
would be possible to modify their position or content, hence
allowing to post-process the generated output in a simple way.
Secondly, contrarily to the vast majority of research works in
algorithmic composition which are tied to a specific style [4],
sample-based systems are virtually able to work with all the
existing music genres provided that a matching database is
given. Thirdly, this methodology mimics the pipeline adopted
by commercial software for music production, thus making it
easier to take advantage of already established environments.

b) Perceived Ownership: Despite scarce, research works
on perceived ownership and user satisfaction during the in-
teraction with generative AI systems show that artists feel a
higher sense of ownership when they contribute with a more
active role in the creative process. For example, [20] reports
that a set of interviewed writers reclaimed less ownership
on the generated material whenever paired to an AI assistant
which was doing too much work; on the contrary, whenever the
assistant was delegated to a more mechanical role, something
like a “word calculator”, the perceived ownership increased.
Additionally, authors also mention that the workload expe-
rienced by writers was way smaller when the assistant was
used as a “cognitive offloading tool” – i.e. as an augmenting
tool to suggest new options in case of creative blocks – rather
than when they had to proofread the output it generated from
scratch. To the best of our knowledge, [21] was the only one
within the music field who partially took this effect into con-
sideration, although in a very brief and qualitative way. Still,
this is particularly relatable for those systems that generate
raw audio rather than symbolic musical notation. Indeed, these
outputs are usually subject to recognizable artifacts and other
noisy and dirty signals. This, along with the fact that a single
stereo track with all the instruments is produced, makes it
almost impossible to post-process it, thus relegating human
operators to a filtering rather than a creative role where their
main occupation is to throw out all the bad-sounding material
until a good generation happens. By switching to a sample-
based co-creative approach, we aim to achieve the double
benefit of increased sense of ownership and reduced workload.

c) Reliable Generation: Two of the main open issues
in the field of computer-based music generation are the high
computational requirements and the lack of compliance to
global structure. Only few works directly addressed these
issues with ad hoc design choices [22]–[24]. All these systems
share a constraint-based backbone which grants performers the
possibility to steer the generative process at their convenience,
with guarantees on the produced output. For example, [22]
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Fig. 1. MusiComb generation pipeline.

allows to impose constraints on song sections in order to obtain
a certain global structure, while [24] builds an interactive-by-
design system where global continuity constraints can be im-
posed to create a novel track from pre-existing audio samples.
This inspired our CP-based design, as we acknowledge that
the adoption of explicit constraints guarantees both a faster
and more robust inference, which could potentially allow our
system to be used in a live environment.

IV. METHOD

Our problem formulation is mainly inspired and extends
the framework proposed by Hyun et al. [17], who introduced
a dataset – dubbed ComMU – for the task of combinatorial
music generation. The task, as proposed by the authors,
consists of two consecutive stages, where at first a machine
learning model is trained on ComMU and used to generate new
samples given the desired metadata, and then the generated
samples are combined together into a complete piece of music.
In their work, the authors only focused on the first stage.
Specifically, they trained a Transformer-XL [25] model on
ComMU, and showed the quality of the generated samples.
With MusiComb, we precisely address the second stage of the
task, and extend it with some practical considerations about
the nature and origin of the samples. Figure 1 illustrates our
proposed pipeline, which is based on the following steps:

1) Users choose the shared metadata, i.e. genre, time,
progression of the musical composition, etc...

2) A subset of matching samples is either queried from a
database or generated via an artificial intelligence model
– in our experiments, we use ComMU as source database
and Hyun et al.’s Transformer as generative model.

3) The retrieved samples are arranged together using a
Constraint Programming approach.

We stress that the set of matching samples queried in step 2
can be either in MIDI or raw audio format, and either human-
or machine-generated, as this differentiates our approach from
all the other works that we previously mentioned.

A. CP Model

In order to solve point 3, we model it as a job-shop problem
where tasks represent samples, and machines represent track
roles: main melody, riff, sub melody, accompaniment (“acc.”),
bass, and pad. These roles were chosen as they are part of
the metadata available in the ComMU dataset, but different

ones can be potentially adopted depending on the metadata
available in the samples pool.

We solve the problem via Constraint Programming (CP) to
obtain the multi-track output. As displayed in Figure 2, we
have a series of jobs that need to be executed, each of which
corresponds to a music sample in the queried subset. Samples
have their own start and end times, which are used to enforce
the global constraints, namely: (i) each of them must belong
to a certain track role, (ii) no overlapping is allowed between
samples having the same track role, and (iii) each sample
must reach its end before a new one is played. We model
this requirements leveraging the OVERLAP(·, ·) constraint, and
given the subset S of matching samples we eventually impose:

role(a) = role(b) =⇒ ¬OVERLAP(a, b), ∀a, b ∈ S

namely the overlap between two consecutive samples is for-
bidden only for pairs of samples (a, b) that have the same
track role. Samples with different track roles can overlap, but
to force a beat-alignment between superimposed samples we
force them to start at the same time, i.e.:

OVERLAP(a, b) =⇒ start(a) = start(b), ∀a, b ∈ S

We use a CUMULATIVE constraint to model the importance
of each track role and limit the number of tracks that are
allowed to play together. This global constraint requires the set
S of all the queried samples, a demand value which represents
the “cost” of each sample, and an overall capacity which can
be sustained by the final arrangement. For this purpose, we
define the demand of each sample a ∈ S as:

demand(a) =


#main if role(a) ∈ {main melody, riff}
#side if role(a) ∈ {sub melody, acc.}
#back if role(a) ∈ {bass, pad}

In the model we are introducing in this paper, we adopt the
following values: #main = 3, #side = 2, and #back = 1.
Likewise, we use a total capacity of 6 to reflect the number
of roles that the samples can assume in the original dataset.
These values were selected after a preliminary evaluation, and
follow the known musical rationale according to which more
prominent track roles – main melodies and riffs – should be
paired with more background-like ones – basses and pads.
Notice that such values force the solver to discard degenerate
solutions obtained by arranging all the samples in parallel or in
a row, i.e. by playing them all at the same time or one after the
other, respectively. The definition of such values is a custom
design choice, which can steer the model towards one of the
two extreme cases, hence resulting in different outcomes.

The solution of the job-shop problem is eventually obtained
by minimizing maxa∈S{end(a)}. Indeed, although we are not
actually interested in the track being as short as possible, we
aim to minimize the latest end time – commonly referred to
as makespan – so to discard degenerate solutions consisting
in samples arranged sequentially.
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Fig. 2. We arrange music samples in a bidimensional grid where the horizontal
axis represents time while the vertical one represents their track role.

B. Sample selection

The constraints mentioned in the previous subsection de-
scribe how samples in the queried subset S are arranged
together. However, we have yet to specify which samples are
included in S, and consequently used as building blocks of
the final track. Recalling the pipeline illustrated in Figure 1,
in the first step of our framework users are required to specify
the input metadata. Then, the subset S of samples sharing
those metadata can be obtained either by querying a database
of existing samples or by leveraging a conditional generative
model able to produce short pieces of music having the
required properties – or even both things together.

As we extend the approach of Hyun et al. [17], we focus
our analysis to their framework, hence using samples that are
either extracted from the ComMU dataset, or generated by
their proposed Transformer model. In the former case, the
ComMU dataset is queried for one sample for each track
role; if there is no sample with that specific combination
of track role and metadata, a random sample with the same
metadata and different role is picked instead. This process is
repeated until 6 samples have been selected – i.e. as many
as there are track roles. Accordingly, if samples are produced
by the Transformer deep neural network, one sample for each
track role is generated. In both cases, 3 out of the 6 samples
are repeated throughout the composition: this is achieved by
defining a boolean variable for each sample, whose value is
set by the solver as part of the optimization process.

V. EMPIRICAL EVALUATION

To empirically validate our approach, we perform some
experiments aimed at assessing the quality of the generated
output as well as the computational time required for the
generation. In this section, we provide a description of the
experimental setting with pointers to musical compositions
generated with MusiComb as well as the wall-clock times
needed to produce the corresponding program outputs, along
with a final discussion and a qualitative analysis. The code and
scripts needed to reproduce the results are publicly available
at the following link: https://github.com/frallebini/musicomb.

All the experiments were performed on an Intel Xeon Gold
6226R CPU and a NVIDIA Tesla V100S GPU. The code
of MusiComb is written in Python 3.8.5, leveraging the
mido library to handle MIDI files. The job-shop problem is
implemented with the CP-SAT interface of Google OR-Tools
through the APIs offered by the ortools package, while for

Execution Time
Test BPM Progression Genre Key Measures ComMU Generated

1 130
Am-F-C-G-
Am-F-C-G New Age Am 8 3s 14s

2 80
Am-Gmaj7-Fmaj7-G-

Cmaj7-Dm7-Am
-A#maj7-E+-Am

Cinematic Am 8 3s 15s

3 120 C-F-Am-G Cinematic Cmaj 8 3s 16s

4 100
F-G-Em-Am-
F-G-Em-Am New Age Cmaj 4 4s 13s

TABLE I
METADATA AND EXECUTION TIME FOR EACH GENERATION TEST.

the sample generation process we leverage the torch model
implemented in Hyun et al. [17], with no changes neither in the
architecture nor in the weights. For samples directly queried
from ComMU, the execution ran entirely on the CPU; on
the contrary, tests providing for the sample generation step
ran both on the GPU and CPU, respectively for the neural
inference and the constraint solver instance.

Table I reports the metadata used for each test as well as
the execution times. All the outputs generated by MusiComb
during these experiments are in symbolic musical notation,
as both the dataset and the transformer contain and handle
MIDI files only. For this reason, the reported times do not con-
sider the overhead introduced by the additional MIDI-to-audio
conversion step, which is manually performed leveraging the
GarageBand software1. The metadata are chosen by the user
and shared by the samples which constitute the building blocks
of the final composition. We restricted our analysis to “New
Age” and “Cinematic” compositions, being them the only two
available genres in ComMU, while the other metadata are a
subset of the larger set characterizing the dataset. Each test
consists in the creation of a single piece of music that matches
the given metadata, which can be found and listened to at the
following link: https://soundcloud.com/musicomb.

The obtained results demonstrate that the computational cost
required by MusiComb makes it a valid candidate for real-
time music generation. MusiComb can generate music much
faster than other end-to-end neural counterparts, thanks to the
efficient CP model. We reckon that the realization that a job-
shop problem – a basic and well-studied CP model – can be
used to generate realistic musical composition is a non-trivial
contribution of this paper. Moreover, the generated outputs
effectively mimic the style of the original samples as well
as all the other metadata, hence respecting user requirements.
This is a precise design choice, as we purposely modelled the
task to obtain a novel rearrangement of the initial samples.
Moreover, as the original samples all have similar duration
and we decided to have 6 samples per generated composition,
the final pieces all have a roughly similar duration.

Furthermore, a comparison of the times reported in Table I
for the two settings demonstrates MusiComb’s capability to
allow for the choice of a desired trade-off between output
variability and computational requirements. In fact, “ComMU”
tests have an average speedup of 350% – 3.25 against 14.5

1https://www.apple.com/mac/garageband/, version 10.4.8
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seconds – respectively to “Generated” ones, but the latter better
exploit the extrapolation abilities of neural generative models
to create more varied tracks. Again, faster inference and
more reliable outputs might be preferred in live performance
environments, while more exploratory behaviours could be
favored during the offline compositional work.

On a final note, it is worth mentioning that we were forced
to perform the audio synthesis step after the score generation
for the “Generated” tests, as Hyun et al.’s Transformer is
designed to produce symbolic music notation only. On the
contrary, for “ComMU” tests we could have achieved the
same result – with the exact same execution times and audio
output – even if the two phases were swapped, i.e. if we first
converted all the samples in the dataset using GarageBand
and then concatenated them together directly in raw audio
format. Nonetheless, since the two approaches are equivalent
from a computational viewpoint, we decided to post-process
the generated scores to limit the manual workload.

VI. CONCLUSION

We presented MusiComb, a sample-based approach for
music generation through constraints. We framed the music
composition task as a CP problem, with the goal of arrang-
ing multiple samples into a larger musical composition; the
samples can be retrieved either from an existing database
or created ex novo through DL generation techniques. We
showed the feasibility of the proposed approach by generating
different musical pieces and demonstrated its low computa-
tional requirements and potential of deployment in real-time
applications, given its ability to generate new tracks much
faster than they are reproduced. Still, we reiterate that this
is a preliminary study, hence multiple extensions are possible.

In future works we plan to explore several research di-
rections. The natural follow-up is to perform analysis to
subjectively evaluate the generated music. This can be done
by recruiting participants willing to assess the quality of
the musical compositions, ideally including both artists and
laymen. We will then apply MusiComb to (1) different sample
datasets and (2) different sample generator. This would allow
for a broader evaluation of the system. Similarly, our approach
could be used to combine even more track as output, if the
original samples include them; we will investigate this as well,
with a focus on scalability, as more tracks correspond to a
more complex CP model.

As we noticed, MusiComb is quick enough to be used
in real time. Altough we tested it using a relatively high-
end graphical card (NVIDIA Tesla V100S GPU), the GPU
is needed only in the sample generation phase due to the
computational requirements of the Transformer network. This
process is not mandatory in our approach, as the samples
can theoretically be obtained by querying already existing
pools. Moreover, in the case of synthetic generation using
complex deep neural networks, this phase can be performed
offline, with no real-time requirement, thus without the need of
top-performing computational resources. For this reason, we
aim at running additional experiments using consumer-grade

hardware for the search of the solution to the CP model, as
this is the only phase that is expected to be run online.
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