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Abstract 13 

 14 

Weakly developed paleosols from two distinct interfluve surfaces of Late Pleistocene age 15 

provide excellent keys to high-resolution stratigraphic correlation and may serve to trace large-16 

scale genetic packages (systems tract equivalents) across the continental portion of the Po Basin. 17 

Twenty-four paleosol profiles from 17 sediment cores were identified and characterized for bulk-18 

geochemical analysis. X-ray fluorescence data were used to trace the degree of weathering. 19 

Paleosols, 0.5-1.5 m thick, are pedogenically altered floodplain deposits, developed over time 20 

spans of a few thousand of years and mostly partitioned into A-Bk horizons. The most notable 21 

paleosol features are dark, organic-matter-rich and carbonate-free mineral surface horizons (A) 22 

that overlie bright calcic horizons (Bk) typified by the accumulation of secondary carbonates in the 23 

form of pedogenic nodules. 24 

Paleosol profiles exhibit a homogeneous geochemical signature that fingerprints a moderate 25 

degree of weathering, with little strike- and dip-oriented variability across the different study 26 

localities. Plots of Al-normalized calcification and base loss indices against depth reveal systematic 27 

increasing values from intensely altered A horizons to underlying Bk horizons. These trends reflect 28 

consistent patterns of Ca translocation from surface horizons deeper into the profile, with 29 

significant to almost complete Ca removal from A horizons through leaching and accumulation in 30 

Bk horizons. Selected trace element ratios (Ba/Sr, Rb/Sr), redox-sensitive trace elements and Zr 31 

contents display opposite, up-profile increasing trends that reflect Sr loss in A horizons, with 32 

selective Zr concentration in residual minerals. 33 

Vertical trends in element ratios are laterally extensive and consistent on a regional basis and 34 

represent key pedochemical/stratigraphic markers that can be traced over great distances (tens of 35 
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kms) throughout the inland portion of the basin. Through quantitative assessment of the degree of 36 

weathering, geochemical profiling provides high potential for robust subsurface paleosol 37 

correlation that might not be captured by visual core descriptions alone.  38 

 39 

Keywords: Paleosol stratigraphy; Paleosol maturity; Interfluve; Sequence stratigraphy; Sequence 40 

boundary; Geochemistry 41 

 42 

 43 

1. Introduction 44 

 45 

Paleosol-bearing alluvial successions contain a hierarchical record of cyclic sediment 46 

accumulation produced in response to the combined effect of autogenic and allogenic controlling 47 

mechanisms (Cleveland et al., 2007). Paleosols at sequence-bounding unconformities, in 48 

particular, may serve as useful regional stratigraphic markers to trace genetic packages across the 49 

basin and to determine regional accommodation trends (Demko et al., 2004). 50 

According to sequence-stratigraphic models, paleosol units commonly correlate with incision 51 

along the major drainage axes (Van Wagoner et al., 1990) and well-developed, mature interfluve 52 

paleosols correlate to valley-floor erosion surfaces (Gibling and Bird, 1994; Aitken and Flint, 1996; 53 

Shanley and McCabe, 1994; McCarthy and Plint, 1998; 2003; Plint et al., 2001; Atchley et al., 2004; 54 

Blum and Aslan, 2006; Cleveland et al., 2007; Srivastava et al., 2010; Raigemborn and Beilinson, 55 

2020).  56 

Models of paleovalley architecture and paleosol-valley relations have been evaluated using 57 

Quaternary examples, where proxy records are well established for climate and sea level and 58 

periods of incision and aggradation can generate discontinuity-bounded sequences on timescales 59 

as short as 103 to 104 years (Gibling et al., 2011). In such examples, valley fills are less distinctive 60 

and their bases do not correspond to prominent paleosols. Stacked weakly developed paleosols 61 

may form terrestrial condensed sections that record prolonged periods of minimal sedimentation 62 

in interfluve position (Gibling et al., 2011; McCarthy and Plint, 2013).  63 

Vertical successions of poorly mature paleosols have been widely described from the Upper 64 

Pleistocene subsurface record of the Po Plain, in Italy (Amorosi et al., 2017b; Bruno et al., 2018). 65 

Stiff, pedogenized floodplain silts and clays are widely preserved south of the modern Po River and 66 
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correlate in the north to genetically-related fluvial facies, where thick channel-belt sand bodies 67 

represent the dominant subsurface stratigraphic unit (Fig. 1). 68 

 69 

 70 

Fig. 1. Location map of studied cores (red dots), with indication of the boundary between the 71 

buried Pleistocene (pre-LGM) terraced floodplain and the coeval fluvial channel-belt sand bodies 72 

(green dashed line, from Morelli et al., 2017). Section trace of Figure 2, transects in Fig. 3, and 73 

location of additional cores used for stratigraphic correlation (black dots) are also shown. 74 

 75 

The Upper Pleistocene-Holocene sedimentary succession provides a particularly well-76 

established temporal framework, founded largely on 14C data, within which immature paleosols 77 

delineate time-equivalent stratal surfaces and represent key stratigraphic markers that can be 78 

traced on a regional scale. Three paleosols of Late Pleistocene age (P1-P3) and a younger paleosol 79 

marking the Pleistocene-Holocene boundary (PH) were recognized for the first time from core 80 

analysis in the Bologna area (Amorosi et al., 2014a). Subsequent studies examined the basin-scale 81 

distribution of these paleosols (Amorosi et al., 2017b; Bruno et al., 2019) and their likely climatic 82 

significance (Bruno et al., 2020). Morelli et al. (2017) carried out the detailed subsurface mapping 83 

of the youngest two paleosols: paleosol P3, formed at the onset of the Last Glacial Maximum 84 
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(LGM), and paleosol PH, encompassing the Younger Dryas (YD) cold event, which marked the 85 

short-lived return to glacial conditions after the Late Glacial Interstadial. Although upper 86 

Quaternary paleosols clearly exhibit a high potential for regional correlations, only reconnaissance 87 

geologic investigation has been undertaken and no detailed paleosol characterization has been 88 

attempted, so far.  89 

In this study, a comprehensive geochemical investigation of paleosols P3 (LGM paleosol) and PH 90 

(YD paleosol) was performed for the first time. The aim of this paper is to provide quantitative 91 

assessment of paleosol maturity across these two pedogenized key stratigraphic surfaces,  which 92 

in a sequence-stratigraphic perspective coincide with the sequence boundary (SB) and the 93 

landward equivalent of the transgressive surface (TS), respectively (Fig. 2). Specific objective is to 94 

document the stratigraphic utility of immature paleosols for regional correlations within a 95 

chronologically constrained sequence-stratigraphic framework. Below the Holocene succession, 96 

the study area reveals a wide, buried Late Pleistocene interfluve between the Apennines margin 97 

and the coeval fluvial channel-belt bodies in the modern Po River area (Fig. 1). Age-equivalent 98 

strata successions are compared from 17 sediment cores, approximately 80 km apart. This study 99 

incorporates high-resolution stratigraphic data, paleosol descriptions and geochemistry. 100 

 101 

 102 

2. Stratigraphic overview 103 

 104 

Previous work provides a solid foundation of the shallow subsurface stratigraphy of late 105 

Quaternary continental deposits in the Po Plain (Amorosi et al., 2014a; 2017b; Morelli et al., 2017; 106 

Bruno et al., 2018; 2020). In this rapidly subsiding setting with high rates of sedimentation, no 107 

persistent incised valley was established during the last interglacial/glacial transition and 108 

aggradationally-stacked, shallow-incised fluvial bodies are laterally associated with overbank 109 

packages, a few m thick, bounded by poorly mature paleosols (Amorosi et al., 2017b – Fig. 2). 110 

These paleosols, which define large-scale, though shallow degradation across the Po Plain 111 

interfluve, associated to short (2-5 kyr) gaps in sedimentation document widespread, but short-112 

lived, subaerial weathering across poorly dissected, interfluvial areas (Amorosi et al., 2017b; Bruno 113 

et al., 2020). 114 

A hierarchy of Upper Pleistocene paleosols has been identified and framed through high-115 

resolution sequence stratigraphic analysis within a strongly constrained chronological setting, 116 



 

5 
 

founded on tens of radiocarbon dates (Fig. 2). Two prominent paleosols, in particular, exhibit very 117 

high lateral continuity on a regional scale and are genetically related to fluvial channel-belt sand 118 

bodies identified to the north, beneath the modern Po River (Morelli et al., 2017 – Fig. 2). 119 

Paleosol-bounded overbank intervals have sequence-stratigraphic significance within the LGM 120 

depositional sequence and represent low-accommodation deposits. Based on detailed 121 

stratigraphic correlation with coeval littoral and shallow-marine facies associations, the two 122 

paleosols (paleosols P3 and PH of Amorosi et al., 2014) have been interpreted to represent the 123 

sequence boundary (SB) and the landward equivalent of the transgressive surface (TS), 124 

respectively (Amorosi et al., 2017a – Fig. 2).  125 

 126 

 127 

Fig. 2. Regional stratigraphic cross-section (section trace in Fig. 1) showing relationship of 128 

floodplain paleosols to their contemporaneous fluvial channel-belt sand bodies (modified after 129 

Amorosi et al., 2017b). Weakly-developed paleosols are typically arranged in thin, paleosol-130 

bounded overbank sequences and are associated to larger trunk channels amalgamated into 131 

multilateral channel belts. The paleosol at the sequence boundary (‘SB’ paleosol) was generated at 132 

the MIS 3/2 transition and correlates to fluvial channel-belt bodies assigned to the Last Glacial 133 

Maximum (LGM). The landward equivalent of the transgressive surface (‘TS’ paleosol) marks the 134 

Pleistocene-Holocene boundary and correlates to Younger Dryas (YD) channel belts. 135 

 136 

 137 

Sea-level lowering and climate-driven forcing have been invoked to account for shallow incision 138 

and coeval soil development in the Po Plain during the latest Pleistocene (Amorosi et al., 2017b; 139 
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Bruno et al., 2018; 2020). Pedogenic modification of floodplain silts and clays occurred at the MIS 140 

(Marine Isotope Stage) 3/2 transition, between 30 and 24 cal kyr B.P. (SB paleosol), and during the 141 

protracted sea-level lowstand, when fluvial entrenchment terraced the formerly active (pre-LGM) 142 

alluvial plain, which underwent extensive pedogenic modification. Shallowly-incised tributary 143 

valleys (see Kvale and Archer, 2007) form part of a surficial (Cremaschi, 1987; Castiglioni, 2001; 144 

Bersezio et al., 2007) and subsurface (Bruno et al., 2017b, 2018; Morelli et al., 2017) mappable 145 

drainage network feeding into the much larger Po fluvial system. 146 

The SB interfluve paleosol caps a series of weakly expressed profiles that reflect multiple-step 147 

pedogenic history mostly occurring during MIS 3 (Bruno et al., 2020). Individual paleosols are 148 

generally stacked and separated by thin layers of overbank material (compound paleosols of 149 

Marriott and Wright, 1993). However, they may locally display overlapping profiles with A-B 150 

overprinting (composite paleosols) and pedogenic features may extend throughout much of the 151 

stratigraphic section. The SB paleosol correlates to the base of highly lenticular, valley-filling sand 152 

bodies, typically 20 to 30 m thick and 5 to 20 km wide, that display virtually no pedogenesis (Fig. 153 

2).  154 

A younger, regionally extensive paleosol (TS paleosol in Fig. 2) correlates with a short-lived 155 

episode of shallow fluvial incision developed around the Pleistocene-Holocene boundary (Amorosi 156 

et al., 2017b). Radiocarbon dates from this paleosol in the study area cluster around the Younger 157 

Dryas cold reversal (Fig. 2). Paleosol TS is simple. In the subsurface of the modern coastal plain it is 158 

invariably overlain by a deepening-upward succession of Holocene swamp, lagoonal, coastal and 159 

shallow-marine deposits and for this reason it is interpreted as the landward equivalent of the TS.  160 

Soil formation at the MIS 3/2 transition has been described from other parts of the world. The 161 

primary influence on regional water table lowering at the MIS 3/2 transition was relative sea-level 162 

fall (Blum and Price, 1998; Dabrio et al., 2000; Autin and Aslan, 2001; Anderson et al., 2004; 163 

Busschers et al., 2007; Kasse et al., 2010; Fan et al., 2018). Similar, coeval paleosols have been 164 

reported from the Yangtze River, where compound paleosols (pedocomplexes) resulted from 165 

alternating deposition and pedogenesis on the paleointerfluve (Chen et al., 2008). Fluvial incision 166 

and soil development around the Pleistocene/Holocene boundary have been recorded in other 167 

European fluvial systems (Mol et al., 1997; van Balen et al., 2010; Janssens et al., 2012). 168 

 169 

 170 

 171 

 172 
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3. Methods 173 

 174 

Within detailed measured sections from 17 cores (Fig. 1, Supplementary Table 1), 24 soil 175 

profiles were investigated and characterized for geochemical composition. Ten paleosols marking 176 

the sequence boundary (‘SB’ paleosols) and 14 younger paleosols formed at the transgressive 177 

surface (‘TS’ paleosols) were studied. The locations of the cores were chosen to provide as 178 

extensive coverage as possible across the two terraced paleosurfaces (Morelli et al., 2017). 179 

Geochemical analysis was carried out on all the study cores to extract elemental concentrations. A 180 

total of 100 soil samples were analyzed (Supplementary Table 2): 62 from ‘TS’ paleosols and 38 181 

from compound/composite ‘SB’ paleosols. We also analyzed 11 samples from unaltered floodplain 182 

parent material from the same cores. This study is based largely on the stratigraphic distribution of 183 

macromorphological features of pedogenesis and on geochemical characterization of paleosols. 184 

Micromorphological investigations were not attempted. 185 

Cores, 17 to 52 m thick, were split lengthwise and carefully described for their sedimentological 186 

characteristics. Facies analysis was carried out on a centimetre scale. Graphic logs of cores include 187 

description of lithology, grain size, primary sedimentary structures, lamination styles, bioturbation 188 

levels and accessory components. 189 

Paleosols at key stratigraphic intervals were recognized by visual inspection of core material. 190 

Profile descriptions include horizonation, horizon thickness, color, reaction, redoximorphic 191 

features, carbonate accumulations, and other standard soil observations. Moist colors of mottles 192 

and matrix were described. Composition, size, and abundance of nodules and other mineral 193 

segregations were also characterized. Geotechnical properties were obtained through pocket 194 

penetration measurements. Horizon designations are based upon core-observed features in the 195 

paleosols after Soil Taxonomy (Soil Survey Staff, 1999).  196 

Paleosols were sampled by horizon for bulk chemical analysis. Series of three to six samples 197 

were taken per paleosol profile from the top to a maximum depth of 150 cm. Major and trace 198 

element geochemistry was determined by X-ray fluorescence spectroscopy (XRF). Cores were 199 

analyzed at Bologna laboratories. Samples were oven dried at 50°C, powdered and homogenized 200 

in an agate mortar and analyzed using a Philips PW 1480 spectrometer (Philips, Almelo, The 201 

Netherlands). The matrix correction methods of Franzini et al. (1972), Leoni and Saitta (1976) and 202 

Leoni et al. (1982) were followed.  203 
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Analytical methods resulted in data for 29 elements: 10 major elements, reported as oxide 204 

percent by weight (SiO2, TiO2, Al2O3, Fe2O3, MnO, MgO, CaO, Na2O, K2O, and P2O5), 18 trace 205 

elements (Ba, Ce, Co, Cr, Cu, Ga, La, Nb, Ni, Pb, Rb, S, Sc, Sr, V, Y, Zn, and Zr), and the loss on 206 

ignition (LOI). LOI, evaluated after overnight heating at 950°C (LOI950), represents a measure of 207 

volatile substances (weight %, wt%), including pore water, inorganic carbon and organic matter. 208 

The XRF analytical protocol reports major elements in oxide weight percent and trace elements in 209 

parts per million. The estimated precision and accuracy for trace element determinations were 210 

better than 5%. For elements with low concentrations (<10 mg/kg), the accuracy was 10%.  211 

 212 

 213 

4. Paleosol stratigraphy 214 

 215 

The Upper Pleistocene-Holocene stratigraphy in the study area was depicted along two 216 

transects, on the basis of stratigraphic and sedimentological data from 18 continuous cores and 36 217 

piezocone (CPTU) penetration tests (Fig. 3). The W-E transect (Fig. 3a) runs roughly in proximal to 218 

distal direction across the buried Pleistocene terraced floodplain, 5-15 km from the southern 219 

margin of the Po paleovalley system, whereas the S-N transect (Fig. 3b) runs perpendicular to the 220 

regional axis of the Northern Apennines (Fig. 1). 221 

In this study, we did not focus on facies architecture, which has been the subject of several 222 

published papers and that will not be reiterated here. Summary characteristics of major facies 223 

associations are summarized in Table 1. For detailed description and interpretation of coastal plain 224 

to shallow-marine deposits, the reader is referred to previously published material (Amorosi et al., 225 

2017a; 2020; Bruno et al., 2017b; 2019; Campo et al., 2020). In this paper, we focused, instead, on 226 

the identification, characterization and tracing of paleosols at two discrete stratigraphic horizons, 227 

corresponding to the SB and TS (Fig. 2). Paleosols identified in cores (Fig. 4) were calibrated against 228 

CPTU tests and tracked laterally based on distinctive changes in log character. The key 229 

geotechnical features to infer paleosols from CPTU tests include: (i) a subtle, but consistent 230 

increase in cone resistance with depth, (ii) a sharp peak in the sleeve friction, recording the sharp 231 

contrast between normally consolidated floodplain facies and underlying stiff, pedogenically 232 

modified deposits, and (iii) an abrupt decrease in pore pressure (Amorosi and Marchi, 1999; Choi 233 

and Kim, 2006; Amorosi et al., 2017b; Bruno et al., 2019). 234 

 235 
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 236 

 237 

Fig. 3. Sequence stratigraphy of Upper Pleistocene-Holocene deposits from the subsurface of the Po 238 

Plain, with position and correlation of ‘SB’ (red line) and ‘TS’ (grey line) paleosols. Cores analyzed in 239 

this paper are marked in red. Radiocarbon dates from Amorosi et al. (2017a) (upper transect) and 240 

Amorosi et al. (2020) (lower transect). FSST: Falling-stage systems tract, LST: Lowstand systems 241 

tract, TST: transgressive systems tract, HST: highstand systems tract.  242 

 243 

 244 

In the study area, the SB paleosol bears radiometric dates in the age range of 29.2-27.8 cal kyr 245 

B.P. (Fig. 3). It is underlain by a set of closely-spaced paleosols that exhibit slightly older ages (Fig. 246 

3). Regional stratigraphy above this paleosol includes a thin (4-7 m) lowstand systems tract capped 247 

by the TS paleosol, with age ranges between 12.6 and 11.2 cal kyr B.P. (Fig. 3). The TS paleosol 248 

marks a regional facies change above Pleistocene alluvial deposits and it is overlain by a basinally 249 

mappable transgressive surface (TS in Fig. 3).  250 

 251 

 252 
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 253 

Table 1. Summary characteristics of major lithofacies assemblages in the study area. 254 

 255 

 256 

The Holocene succession displays a characteristic retrogradational to 257 

aggradational/progradational stacking pattern of facies that defines the transgressive systems 258 

tract (TST) and highstand systems tract (HST), respectively (Fig. 3). Holocene deposits rest 259 

unconformably on the TS paleosol with typical onlap geometries (Fig. 3a) and provide a detailed 260 

understanding of the stratigraphic development of the coastal plain under transgressive and 261 

normal regressive conditions. They cover a great diversity of facies associations (Campo et al., 262 

2017) that represent coeval depositional environments, ranging from shallow-marine (offshore 263 

and prodelta) through coastal, brackish (outer estuary/lagoon) and freshwater (inner estuary/low-264 

lying swamps).  265 

In the study area, the top surface of the TS paleosol coincides with the landward equivalent of a 266 

surface of marine flooding that denotes subsequent transgression (Fig. 3a). Over most of the study 267 

area, the overlying Holocene sedimentary succession is dominated by single-story distributary-268 

channel sand bodies encased in organic-rich clays, with a tongue of thin brackish (lagoonal) 269 

deposits that demarcate the maximum flooding surface (Fig. 3b). Peat-bearing deposits 270 

accumulated in low-lying, permanently waterlogged environments in the inner portion of a 271 

transgressive estuary and in the delta plain of a prograding delta system.  272 

There is no dramatic change in depositional style in the two sections of Fig. 3, except for the 273 

notable deformation of Quaternary strata in the 204S17-B3 cores area (Fig. 3b), which has been 274 

interpreted to reflect recent tectonic activity of the buried anticline structures (Amorosi et al., 275 

2020). Though discontinuous due to local truncation or poor development onto sandy substrates, 276 
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paleosols on floodplain deposits can be typically traced laterally for about 40 km and appear to 277 

have been developed on a gently inclined slope (Fig. 3). 278 

 279 

 280 

5. Paleosol description 281 

 282 

Upper Pleistocene paleosols in the subsurface of the Po Plain are easily differentiated from 283 

overlying and underlying (unaltered) units by their stiff texture and color-banded appearance (Fig. 284 

4). They all are silt- and clay-rich and are typically formed on muddy (floodplain) deposits. 285 

Soil profiles typically consist of a dark, organic-rich and bioturbated silt (A horizon) that 286 

gradually overlies a paler horizon (Bk). Paleosol colors are relatively uniform throughout horizons 287 

A and B. Dominant colors are grey to brownish grey and dark brown in horizons A and light grey to 288 

pale yellow in the deeper horizons (Fig. 4).  289 

Organic matter imparts the dark color in A horizons. Macroscopic features include root traces, 290 

wood debris, and plant fragments that are scattered throughout the unit. A horizons are barren 291 

with fossils and weakly reactive or unreactive to 10% dilute HCl. Pedogenic carbonate appears 292 

within 30-80 cm of the soil surface (Bk horizon), persisting to depths of about 100-150 cm (Fig. 4). 293 

Calcic horizons (Soil Survey Staff, 1999) can be thick and diffuse or thinner and more concentrated. 294 

Within Bk horizons, CaCO3 concretions are visible to the naked eye, generally as pseudomycelia 295 

and few to common hard nodules. Powdery and filamentous carbonate is commonly observed 296 

between nodules. Carbonate nodules are well-rounded to sub-rounded and range from diffuse, 297 

poorly cemented concentrations to discrete, well-cemented masses. Locally, nodules may be 298 

larger than > 1 cm in diameter and may coalesce to form cemented or indurated, thin massive 299 

layers (Bkm). 300 

A less common subsurface paleosol horizon that may be associated to the Bk horizon is Bw (Fig. 301 

4). Pedogenized deposits in this case display root traces, local yellow, brown and orange colors 302 

and no carbonates. Black mottles likely derive from different manganese oxide species coating 303 

primary particles. 304 

 305 

 306 

 307 

 308 
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 309 

 310 

Fig. 4. Representative profiles of paleosols ‘TS’ and ‘SB’ showing A/Bk/Bw/Cr horizonation (for 311 

location, see Fig. 1; paleosol stratigraphy in Fig. 3). TS paleosols are simple A/Bk profiles, invariably 312 

overlain by Holocene transgressive deposits (inner estuary/swamp facies association - Sw), 313 

suggesting increased waterlogging and flooding in response to a rising water table. Paleosols 314 

spanning the sequence boundary (SB) consist of vertically stacked immature paleosols. Light blue 315 

dots indicate samples plotted in the geochemical profiles of Fig. 6. Core length is 1 m. 316 

 317 

 318 

The unweathered (Cr) horizon retains the character of the unconsolidated parent material 319 

(floodplain deposits) and as such does not display pedogenic structure or significant rooting. To 320 

define the original material, we also determined average bulk compositions of unweathered 321 

floodplain sedimentary packages from the same stratigraphic succession. 322 

Paleosols identified in cores also exhibit diagnostic engineering properties (Amorosi et al., 323 

2015), with substantially higher compressive strength coefficients than all other fine-grained, 324 

alluvial (floodplain) facies. Specifically, paleosols are typified by distinctive penetration resistance, 325 

in the range of 3.5-5 kg/cm2, with maximum values in Bk horizons (Amorosi et al., 2015). On the 326 

other hand, non-pedogenized floodplain deposits invariably display lower pocket penetration 327 

values (average value: 2.0 kg/cm2). 328 

 329 
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6. Paleosol geochemistry 330 

 331 

Major elements are commonly used to define the net effect of ancient chemical weathering 332 

from paleosols (Retallack, 2001). Several oxide ratios have been developed to assist with the 333 

interpretation of soil-forming processes in paleosols (Birkeland, 1999; Retallack, 2001). In general, 334 

alkali (Na and K) and alkaline earth (Ca and Mg) elements are mobile (Sheldon and Tabor, 2009) 335 

and are preferentially released from their host minerals during weathering (Mohanty and Nanda, 336 

2016), whereas the elements Al, Ti and Zr are considered to be chemically immobile in weathering 337 

environments.  338 

Several major element indices, such as the Chemical Index of Alteration-CIA, 339 

Al2O3/(Al2O3+CaO+Na2O+K2O) (Nesbitt and Young, 1982), the Chemical Weathering Index-CWI, 340 

Al2O3/(Al2O3+CaO+Na2O) (Harnois, 1988), or the ∑Bases/Al ratio, (CaO+MgO+Na2O+K2O)/Al2O3 341 

(Retallack, 1999) provide an indication of leaching of the bases from the soil system in response to 342 

weathering intensity, measuring the loss of mobile cations Ca2+, Mg2+, Na+ and K+, given as oxides, 343 

with respect to stable alumina (Ruxton, 1968; Retallack, 1999; Sheldon and Tabor, 2009). These 344 

indices, based on the ratio of a group of highly mobile oxides to one or more immobile oxides, are 345 

the best candidates to characterize weathering-induced changes (Price and Velbel, 2003; Varela et 346 

al., 2018).  347 

In order to compensate for textural heterogeneity, in general we used elemental ratios over 348 

simple single-element measurements (Sheldon and Tabor, 2009). To facilitate interpretation of 349 

changes in geochemical composition as a result of soil development, values were also calculated 350 

from the unweathered parent material, corresponding to Pleistocene floodplain muds (Table 2).  351 

Among the various chemical indices widely used to estimate weathering, we chose key 352 

indicators closely related to pedogenic processes (Retallack, 1997a,b,c; Driese et al., 2000; Sheldon 353 

and Tabor, 2009): SiO2 for the framework material, Al2O3 for the clay component, CaO and Sr for 354 

the carbonate component, labile oxides for the degree of weathering, Zr for residual minerals. 355 

Owing to possible biases due to the overwhelming role of Ca relative to Na and K in the study 356 

samples (see values of labile oxides in Table 2), we did not use CIA and CWI as primary indicators 357 

of the degree of weathering. We also did not select element ratios that include iron in their 358 

formulation, because iron concentrations are a reflection of redox conditions, which may be 359 

controlled by modern or ancient groundwater levels and may not be consistent throughout the 360 

weathering profile (Harnois, 1988). 361 
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 362 

Table 2. Summary statistics and major- and trace-element indices for paleosols ‘TS’ and ‘SB’ (A and 363 

Bk horizons) and for unaltered floodplain parent material (Cr horizon). For quantitative primary 364 

data, see Supplementary Table 2.  365 

 366 

Key element ratios were calculated (Table 2) along selected paleosol profiles (Fig. 5) and 367 

plotted in binary diagrams (Fig. 6). Table 2 permits a comparison of average values for selected 368 

geochemical parameters along the study paleosols. Six geochemical indices are reported below as 369 

a function of depth. 370 

 371 

6.1. Calcification index 372 

 373 

The (CaO+MgO)/Al2O3 ratio (calcification index) is a general proxy for pedogenic carbonate 374 

(calcite and dolomite) accumulations (Retallack, 2001a, b; 2007; Mohanty and Nanda, 2016). 375 

Generally, calcification is associated with processes that occur in dry climates where evaporation 376 

exceeds precipitation (Delgado et al., 2019). 377 

In the study samples, the calcification index clearly discriminates between low values in A 378 

horizons and moderate values in Bk horizons, with no overlap (Fig. 5, Table 2). CaO is strongly 379 

depleted in upper A horizons (average values: 1.78% at the SB, 1.54% at the TS), whereas it is 380 

significantly enriched in Bk horizons (average values: 14.10% in SB paleosols, 16.49% in TS 381 

paleosols). Unaltered floodplain deposits exhibit intermediate values (8.59%). On the other hand, 382 

MgO values are fairly constant across distinct paleosol horizons and very similar to unweathered 383 

floodplain silts and clays (Table 2). Calculated (CaO+MgO)/Al2O3 ratios for A horizons are all fairly 384 
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low, average values ranging between 0.29 (TS paleosols) and 0.33 (SB paleosols). On the other 385 

hand, average values for Bk horizons are in the 1.44 (SB paleosols) – 1.77 (TS paleosols) range and 386 

denote marked calcification. The calcification index averages 0.91 in unaltered Cr horizons (Table 387 

2). 388 

 389 

 390 

Fig. 5. Variations of major- and trace-element indices along selected paleosol profiles (see Figs. 3-391 

4). TS paleosols (cores EM6, EM16, B2 and B4) are in light blue, SB paleosols (cores EM15 and EM3) 392 

in light green.  393 

 394 

6.2. Base loss index 395 

 396 

The ∑Bases/Al2O3 ratio, (CaO+MgO+Na2O+K2O)/Al2O3, measures the loss of mobile cations Ca2+, 397 

Mg2+, Na+ and K+, given as oxides, with respect to stable alumina (Ruxton, 1968; Mora and Driese, 398 

1999; Retallack, 1999; Sheldon and Tabor, 2009). This index, which unlike the Chemical Index of 399 

Alteration (Nesbitt and Young, 1982) takes into account the role of Mg-bearing minerals, provides 400 

an indication of leaching of the bases from the soil system in response to weathering intensity 401 

(Retallack, 1999). The (CaO+MgO+Na2O+K2O)/Al2O3 index is similar to the Chemical Weathering 402 

Index (Harnois, 1988) and is the reciprocal of the hydrolysis ratio (Sheldon and Tabor, 2009). 403 

Chemical weathering affects plagioclase preferentially, then K-feldspar (Nesbitt et al., 1996). 404 

Calcium, sodium and potassium generally are removed from these minerals by aggressive soil 405 

solutions so that the proportion of alkalis to alumina typically decreases in the weathered product 406 

(Nesbitt and Young, 1982). In case of overwhelming weathering control, mobile elements are 407 
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expected to be all depleted in surface horizons (He et al., 2020), whereas Bk horizons typically 408 

exhibit values higher than 1 (Dal’ Bó et al., 2009). 409 

In Po Plain paleosols, horizons A and Bk are clearly differentiated through the ∑Bases/Al2O3 410 

ratio (Fig. 6a and Table 2), with notably similar results for older (SB) and younger (TS) paleosols. 411 

Average values for A horizons range between 0.51 (TS paleosols) and 0.56 (SB paleosols), whereas 412 

average values for Bk horizons are in the range of 1.67 (SB paleosols) – 2.02 (TS paleosols). This 413 

index has average value of 1.15 in Cr horizons (Table 2).  414 

 415 

6.3. Leaching index 416 

 417 

The Ba/Sr ratio quantifies the amount of leaching during the weathering process using the 418 

behaviour of alkaline earth metals like Ba and Sr (Retallack, 2001a, b; Sheldon and Tabor, 2009; 419 

Scarciglia et al., 2018). Although Ba and Sr have similar atomic radii and the same molecular 420 

affinity, Sr is more soluble than Ba (Vinogradov, 1959) and the Ba/Sr ratio increases with 421 

increasing weathering (Nesbitt and Young, 1982). Strontium dissolution in soils follows the same 422 

pathways as calcium. On the other hand, the chemical behaviour of Ba is less understood than Sr, 423 

particularly in soils (Sheldon and Tabor, 2009). The Rb/Sr ratio has been suggested as another 424 

indicator of the degree of weathering (Chen et al., 1999; Xu et al., 2010). Because the ionic radius 425 

of Rb is close to that of K, Rb generally coexists with K in K-rich minerals, such as K-feldspar and 426 

biotite, whereas Sr is preferentially partitioned into Na- and Ca-bearing minerals, such as 427 

carbonates, plagioclase and amphibole. Weathering can leach Ca and Sr much easier than Rb and 428 

K. As a result, the relict would have higher Rb/Sr ratios compared with the leached fraction. The 429 

Rb/Sr has also been used as a paleoclimatic indicator in loess-paleosol complexes (Chen et al., 430 

1999).  431 

The behaviour of the Ba/Sr leaching proxy mirrors that of the calcification index, allowing 432 

further differentiation between A and Bk horizons (Figs. 5 and 6b). Ba/Sr ratios for A horizons 433 

exhibit moderate average values that range between 2.93 (TS paleosols) and 3.00 (SB paleosols), 434 

whereas consistent, notably lower average values (0.96 for TS paleosols, 1.05 for SB paleosols) 435 

were obtained for Bk horizons. Unaltered floodplain material (Cr horizons) yielded an average 436 

value of 1.32 (Table 2). In the study paleosols, the Rb/Sr ratio behaves as the Ba/Sr ratio and 437 

decreases steadily downcore (Table 2). An obvious trend of Rb enrichment and Sr depletion is 438 

observed in A horizons (Fig. 5). Average values of the Rb/Sr ratio for A horizons range between 439 
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0.91 (SB paleosols) and 1.08 (TS paleosols), whereas for Bk horizons they are equal to 0.30. In the 440 

parent material (Cr horizon), the Rb/Sr ratio has an average value of 0.44 (Table 2). 441 

 442 

6.4. Zr (zirconium) 443 

 444 

Trace element geochemistry of paleosols provides valuable information regarding leaching and 445 

the degree of weathering (Retallack, 1999; 2001; Kahman et al., 2008; Mohanty and Nanda, 2016). 446 

Certain elements, such as Zr and Ti, are preferentially hosted in the densest minerals (e.g., zircon, 447 

ilmenite and monazite – Garzanti and Andò, 2019) and their concentration may vary owing to 448 

selective-entrainment effects (Garzanti et al., 2013; He et al., 2020). Zirconium (Zr), in particular, is 449 

commonly found in minerals that are resistant to alteration and therefore tends to accumulate as 450 

weathering progresses (Maynard, 1992; Mongrain et al., 2013; Driese et al., 2000), especially in 451 

the very fine sand-silt fraction (Garcia et al., 2003).  452 

In the study paleosols, Zr shows a conspicuous decrease downprofile (Fig. 5 and Table 2), with 453 

few exceptions (e.g., core B2). An average value of 194 mg/kg is observed in A horizons, 454 

irrespective of paleosol age (SB vs TS), whereas significantly lower average values (108 mg/kg for 455 

SB paleosols, 121 mg/kg for TS paleosols) are recorded for Bk horizons. The average Zr 456 

concentration for unaltered Cr horizons is 130 mg/kg.  457 

 458 

6.5. Clayeyness index 459 

 460 

The Al2O3/SiO2 ratio is a method for quantifying the amount of clay formation (Ruxton, 1968; 461 

Retallack et al., 2000; Prochnow et L., 2006), because Al accumulates in clay minerals relative to a 462 

silicate parent material (Sheldon and Tabor, 2009). Higher values are indicative of increasing clay 463 

formation with the loss of feldspars and other less resistant minerals (Ruxton, 1968; Sheldon and 464 

Tabor, 2009). 465 

In the study samples, the clayeyness index contributes little geochemical signal, with minimal 466 

variations across the weathering profiles (Fig. 5), irrespective of paleosol horizons (A versus Bk) or 467 

ages (SB versus TS paleosols) (Table 2). For A horizons, average values of the Al2O3/SiO2 ratio are 468 

narrowly constrained between 0.29 (SB paleosols) and 0.31 (TS paleosols). B horizons yielded very 469 

similar average values, ranging between 0.30 (TS) and 0.31 (SB). A similar clayeyness average value 470 

(0.29) was also obtained for the unweather floodplain material (Cr horizon in Table 2). 471 
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 472 

 473 

Fig. 6. Geochemical plots for 24 representative paleosols from 17 sediment cores (Fig. 1), grouped 474 

by horizon (A versus Bk) and sequence-stratigraphic position (‘SB’ versus ‘TS’ paleosols). Data are 475 

plotted against geochemical data from unweathered floodplain silts and clays (Cr horizon) from the 476 

same cores. a: Cross-plot of Al2O3 vs (CaO+MgO+Na2O+K2O); b: Cross-plot of Ba/Sr vs 477 

(CaO+MgO+Na2O+K2O); c: Cross-plot of LOI vs CaO. 478 
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 479 

6.6. Al2O3/TiO2 ratio 480 

 481 

This ratio is particularly useful as a provenance indicator, because Ti contents may be quite 482 

variable among different types of rocks, even as Al contents are relatively constant (Sheldon and 483 

Tabor, 2009). As both Al and Ti are relatively immobile elements, their ratio generally remains 484 

constant during pedogenesis (Delgado et al., 2019). 485 

Average ratios of Al2O3/TiO2 exhibit little variation at different profile localities and are fairly 486 

uniform across the various paleosol profiles, with no significant distinction between A horizons 487 

(22.17 for SB paleosols, 22.85 for TS paleosols) and Bk horizons (21.85 for TS paleosols, 22.43 for 488 

SB paleosols). This implies relatively homogeneous provenance. 489 

The major geochemical variations shown along six paleosol profiles (Fig. 5) are consistent with 490 

data from 24 paleosols and 17 sediment cores (Fig. 6). In the ∑Bases/Al2O3 cross-plot (Fig. 6a), data 491 

points from the A horizons, Bk horizons and the unaltered parent material reveal a strong negative 492 

correlation and plot in three distinct clusters, irrespective of the key sequence-stratigraphic 493 

surface (SB or TS) at which sampled were collected. Elemental analysis shows that Bk horizons 494 

invariably have the highest CaO+MgO+Na2O+K2O values. Particularly, ∑Bases yielded higher values 495 

in Bk horizons than in A horizons by an average factor 3.5 (Table 2). Data from the unaltered 496 

parent material invariably fall between these two extremes (Fig. 6a).  497 

The roughly linear pattern of the ∑Bases versus Al2O3 plot is also seen with some trace 498 

elements, like Ba/Sr (Fig. 6b), and with LOI (Fig. 6c), that behave as CaO. Figures 6b and 6c reveal 499 

that there is a systematic trend in geochemical element distribution, with higher Sr concentrations 500 

and LOI values being prevalent in Bk horizons. At the other extreme, A horizons exhibit the lowest 501 

values in all paleosols.   502 

 503 

 504 

7. Paleosol maturity 505 

 506 

As Upper Pleistocene Po Plain paleosols underwent very incipient diagenesis, they still preserve 507 

most of their morphological and physico-chemical properties and environmental signatures. In 508 

general, paleosols are partitioned into two major pedogenic layers or horizons (Figs. 4-6). Basic 509 

identification features of paleosols include differences in color from darker A horizons to 510 
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underlying lighter Bk horizons that reflect organic matter inputs in A horizons and calcium 511 

carbonate accumulation in Bk horizons (Schwertmann, 1993).  512 

The relative rates of formation and characteristic stages of morphologies of Bk horizons have 513 

been quantified by Gile et al. (1965, 1966), Machette (1985) and Retallack (1988) for modern soils 514 

and Quaternary paleosols. According to such classification schemes, the presence of few to 515 

common carbonate nodules in calcareous (Bk) horizons allows attribution of Po Plain paleosols to 516 

Stage II of carbonate accumulation (Machette, 1985) and to the second stage of paleosol 517 

development (weakly developed paleosols of Retallack, 1988), which in fine-grained materials 518 

imply a few thousands of years to form (Birkeland, 1999). The rates of carbonate dissolution and 519 

reprecipitation in Bk horizons have been modelled by McFadden and Tinsley (1985) and 520 

mathematical models are available to estimate carbonate accumulation in soils (Mc Fadden et al., 521 

1991; 1998). These studies are consistent with radiometric dating of Po Plain Inceptisols from the 522 

Bologna area, which also concluded that substantial pedogenic carbonate horizons formed during 523 

intervals of time of a few thousand years (Amorosi et al., 2014a; Bruno et al., 2020). Dominance of 524 

pedogenic carbonates in calcic horizons and weak pedogenic development suggest relatively dry 525 

conditions and the presence of a vadose zone and low groundwater table (Demko et al., 2004; 526 

Srivastava et al., 2018; Bruno et al., 2020). The presence of calcareous paleosols at the sequence 527 

boundary and on lowstand surfaces suggests that pedogenesis took place during times of relative 528 

climatic aridity and possibly reduced precipitation (Tandon and Gibling, 1997; Sinha et al., 2007). 529 

Examination of geochemistry of Quaternary paleosols yields quantitative estimates of paleosol 530 

maturity and shows that paleosols bracketing the SB or developed at the landward equivalent of 531 

the TS have nearly uniform chemistry and display broadly similar stages of development 532 

throughout both dip-oriented (Fig. 3a) and strike-oriented (Fig. 3b) cross-sections. On 533 

homogeneous parent material, such as in the case of Quaternary Po Plain floodplain deposits, 534 

weathering indices change systematically with depth (Price and Velbel, 2003). Accordingly, 535 

geochemical variations in element ratios are observed at discrete levels within the study paleosols, 536 

allowing the clear differentiation between A and Bk horizons. 537 

Pedogenesis may increase the relative amount of alumina in sediments. Nearly constant 538 

Al2O3/SiO2 values with depth observed in Po Plain paleosols (Fig. 5 and Table 2) suggest that no 539 

significant clay illuviation took place in deeper horizons. This is consistent with the lack of well 540 

developed argillic (Bt) horizons along the paleosol profiles. Calculated values of the Al2O3/SiO2 541 

ratio are consistent with field observations and indicate that there is little textural variation 542 
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throughout paleosol profiles. They also indicate that pedogenesis occurred on homogeneous silt-543 

and clay-rich floodplain facies (Sprague et al., 2009).  544 

Degradation of feldspars and other minerals by the removal of base cations (mostly Ca) by 545 

dissolution and concomitant formation of clay minerals is the dominant process during chemical 546 

weathering of silicate rocks (Nesbitt and Young, 1982). Mobile elements hosted in A horizons 547 

undergo extensive leaching and are progressively subtracted from feldspars. Leaching of mobile 548 

components (including CaO and MgO) is associated with enrichment of immobile elements, such 549 

as Zr (Fig. 5 and Table 2).  550 

All geochemical proxies behave consistently. Selected indices that are commonly inferred to 551 

quantify the totality of weathering processes, such as calcification and Ba/Sr (Fig. 5 and Table 2) 552 

coherently reflect low degree of weathering under relatively cold climate conditions. It is apparent 553 

that several geochemical elements follow distinct patterns of geochemical variability and that 554 

downcore geochemical trends from all the study cores are consistent along paleosol profiles and 555 

represent pedochemical markers on a basin scale (Delgado et al., 2019). The most notable down-556 

profile variation is increased concentration of labile oxides (CaO and MgO) with respect to Al2O3. 557 

Such negative Ca translocations from A horizons to underlying Bk horizons largely reflect 558 

weathering and removal of this labile cation relative to stable residual constituents. Base cations 559 

were leached from upper soil horizons in response to acidification processes and rapidly 560 

accumulated within the calcareous subsoil, reflecting the accumulation of pedogenic carbonate. 561 

Elevated LOI values in Bk horizons, paralleled by CaO levels (Fig. 6c), are interpreted to reflect the 562 

liberation of CO2 during ignition of samples due to abundant carbonate (Cleveland et al., 2008). 563 

LOI data were then not considered further in interpretation. 564 

Table 2 outlines the geochemical elements evaluated in this study and provides a comparison 565 

of the six element ratios plotted in Figs. 5 and 6. Significant leaching of the parent material to form 566 

paleosols is also inferred from the Ba/Sr and Rb/Sr ratios, which increase from Bk to A horizons. 567 

The enriched values of these “leaching parameters” in the A horizons are interpreted to reflect Sr 568 

removal from A horizons and accumulation of Sr-rich carbonate nodules in Bk horizons in 569 

association with Ca. Sequestration of Sr in the pedogenic carbonate phases and substitution of Sr 570 

for Ca are likely phenomena in the paleosol profile (Driese et al., 2000). 571 

Concentrations of redox-sensitive trace elements, such as Cu, V, Cr, Ni, Co and Zn are notably 572 

higher in A horizons (Table 2). For the other trace elements, Zr is typically enriched in A horizons 573 

(Fig. 5). The abundance of Zr can be controlled by multiple geological factors other than 574 
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weathering, including parent-rock material, grain size and hydraulic sorting (He et al., 2020). In the 575 

study area, perceptible enrichment in Zr concentration within A horizons is interpreted to reflect 576 

weathering: prolonged stability of interfluve surfaces is suggested by concentration of resistant 577 

heavy-minerals, such as zircons, in A horizons (Driese et al., 2000; Mongrain et al., 2013). 578 

 579 

 580 

8. Use of immature paleosols for regional correlations 581 

 582 

Weakly-developed paleosols represent regional surfaces of non-deposition that play a critical 583 

role in the high-resolution stratigraphy of the Upper Pleistocene, non-marine succession of the Po 584 

Plain. Pedogenic alteration is ubiquitous across the weathered interfluve surfaces and paleosols in 585 

key stratigraphic positions bear unique and consistent physico-chemical characteristics that can be 586 

effective in delineating subsurface stratigraphy of low-accommodation (FSST+LST) fluvial deposits 587 

on a regional scale (Figs. 2 and 3). Radiocarbon dating of SB and TS paleosols provides values 588 

consistent with radiocarbon ages observed from their updip equivalents, in the Bologna region 589 

(Amorosi et al., 2014a; Bruno et al., 2020). The remarkably similar stratigraphic architecture of 590 

Upper Pleistocene alluvial deposits in the study area (Fig. 3) with respect to regional paleosol 591 

stratigraphy (Fig. 2) suggests a similar history of deposition and pedogenesis that was likely 592 

produced under relatively cold climate conditions (LGM and YD, respectively) in response to 593 

allogenic controlling factors. 594 

McCarthy and Plint (2013) have shown that paleosols characteristics at key sequence-595 

stratigraphic surfaces may vary on a basin scale depending upon their paleo-landscape position 596 

with respect to valley margins and the marine shoreline, and that they can be partitioned into 597 

three distinct spatial zones based on their degree of development and architecture. The study area 598 

(Fig. 1) represents a relatively short segment of the wider Po Plain-Adriatic Sea source-to-sink 599 

system and displays no remarkable lateral variability in terms of physiographic location (Fig. 2). 600 

Within this relatively homogeneous alluvial plain segment, paleosol maturity does not exhibit 601 

significant differences in terms of pedogenic features (Fig. 4) and geochemical properties (Figs. 5-602 

6). Poor lateral geochemical variability of paleosol characteristics on a km-scale has also been 603 

documented by Driese and Ashley (2016) and by Hyland and Sheldon (2016). 604 

Further updip, at a greater distance from the margin of the Po paleovalley system, Late 605 

Pleistocene interfluve surfaces experienced higher intensities of pedogenic processes owing to 606 
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their more elevated paleo-landscape position. At these locations, the immature paleosols 607 

(Inceptisols) described from the subsurface of the Po Plain are replaced by an intensely rubified 608 

Alfisol characterized by strong clay illuviation (Cremaschi, 1987; Cremaschi et al., 1990). This soil 609 

crops out continuously at the Apennines foothills and documents through a catenary effect a 610 

remarkably higher degree of soil development than in the buried distal units (Cremaschi and 611 

Nicosia, 2012). For a detailed documentation of alternating phases of sediment aggradation, 612 

stabilization and pedogenesis at the Apennines margin during the Late Pleistocene, the reader is 613 

referred to Zuffetti et al. (2018). 614 

Subsurface control may predict the approximate position of SB and TS paleosols across the Po 615 

Basin fill through integration of physical stratigraphy with radiometric data (Figs. 3 and 4). This 616 

study has shown that framing precisely paleosol location into three-dimensional analysis can be 617 

largely aided by intrinsic geochemical properties (Figs. 5 and 6). Paleosol TS, developed at the 618 

Pleistocene/Holocene boundary, is readily recognized by its diagnostic stratigraphic position below 619 

Holocene transgressive deposits (Fig. 3). On the other hand, immature paleosols capped by the SB 620 

may stack one on another in a welded fashion as accommodation lessens (Figs. 2 and 4). For such 621 

paleosols, especially if no radiocarbon dates are available, correlation of soil-forming intervals 622 

bracketing the sequence boundary can be more useful than is attempting to correlate individual 623 

paleosols (McCarthy and Plint, 2013). 624 

Extracting the weathering signal from geochemical data is not straightforward, as: (i) bulk 625 

sediment analysis cannot differentiate precisely among the several possible sources of each 626 

element (He et al., 2020); (ii) weathering indices might represent the integrated weathering 627 

history in the river basin, rather than being reliable proxies of instantaneous chemical weathering 628 

(Shao and Yang, 2012); (iii) the geochemistry of sediments can be affected by multiple controls 629 

other than climate-induced weathering, including source-rock lithology (Kraus, 2002) and 630 

hydraulic sorting (Garzanti and Resentini, 2016). 631 

A careful evaluation of these diverse controls on sediment composition is possible in the study 632 

area and this can facilitate interpretation of weathering indices as reflecting true weathering 633 

indicators. For example, it is apparent that changes in source-rock lithology did not play a major 634 

role in controlling geochemical signatures of Upper Pleistocene paleosols. Sediment provenance 635 

analysis in the Po Plain based on integrated sand petrography (Tentori et al., 2021) and bulk-636 

sediment geochemistry (Amorosi et al., 2012, 2014b; Amorosi and Sammartino, 2018; Bruno et al., 637 

2017b) has shown that overbank parent material reflects a relatively homogeneous (Apennines) 638 
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source-rock domain for Pleistocene alluvial deposits, as opposed to a remarkably more complex 639 

sediment dispersal pattern developed at the onset of the Holocene (Amorosi and Sammartino, 640 

2018). Size sorting during transportation and deposition generally results in some degree of 641 

mineralogical differentiation, which may modify weathering indices (Garzanti and Resentini, 642 

2016). Restricting paleosol composition to uniform mud grades, as also indicated by remarkably 643 

constant Al2O3/SiO2 ratios (Table 2), makes the influence of grain size on composition minimal 644 

(Nesbitt and Young, 1982). Therefore, the composition of muds will primarily reflect the degree of 645 

weathering. 646 

In summary, weathered horizons of Late Pleistocene age bear distinctive geochemical 647 

properties that are laterally traceable for tens of kilometers (Figs. 5 and 6) and that can be used as 648 

highly effective stratigraphic markers across the non-marine portion of the Po Basin fill. They also 649 

represent the key to unravel the sequence-stratigraphic architecture of the non-marine 650 

succession, tracing systems tract boundaries from the downstream segments of the source-to-sink 651 

system into the upstream alluvium. 652 

 653 

 654 

9. Conclusions 655 

 656 

Two weakly developed paleosols marking the sequence boundary (SB) and the lateral 657 

equivalent of the transgressive surface (TS), respectively, in the Last Glacial Maximum depositional 658 

sequence are laterally continuous and traceable for tens of kilometers across the non-marine 659 

portion of the Po Basin. Such surfaces provide a comprehensive, three-dimensional view of the 660 

pedogenic character of Late Pleistocene interfluves. This paper has investigated the modifications 661 

induced by chemical weathering on such pedogenically altered floodplain deposits, focusing on 662 

the recognition, correlation, and characterization of Inceptisol-like paleosols.  663 

A comparison of the paleosols, their distribution, and degree of pedogenic development 664 

suggest widespread soil development on short-lived, interfluvial areas. Weakly developed 665 

paleosols mark regional unconformities and contain excellent records of the Late Pleistocene 666 

depositional history. They are linked to minimal incision and their alternation with overbank 667 

deposits into paleosol-bearing cycles reflects conditions of limited accommodation on the 668 

floodplain and their formation as a result of alternate aggradation and degradation. The most 669 

distinctive feature of SB and TS paleosols is soil partitioning into a well identifiable dark, organic-670 
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matter-rich and carbonate-free upper A horizon and a lower Bk horizon, typified by the abundance 671 

of calcium carbonate nodules. 672 

Weathering patterns, expressed as geochemical trends, of paleosols represent discernible 673 

regional features that define a robust correlation scheme, with small lateral variability and suggest 674 

that floodplain environments were affected by mild, but laterally extensive weathering conditions. 675 

Element ratios used as tracers of the degree of weathering (calcification and base loss indices) 676 

represent pedochemical markers that do not show substantial modifications along strike and dip, 677 

and that exhibit consistent behaviour with depth across paleosol profiles. Translocation of Ca, with 678 

almost complete removal from the upper portions and concentration in lower horizons is a 679 

diagnostic feature of Po Plain paleosols. Some trace metal ratios experience significant variations 680 

across the weathering zones. Ba/Sr and Rb/Sr typically show a loss in the A horizons and gain in 681 

the Bk horizons, which is consistent with the identification of calcic horizons. On the other hand, 682 

redox-sensitive trace elements and Zr show increasing values from the parent material to upper 683 

paleosol horizons. 684 
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