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Abstract 

The carbon footprint of the industrial economy is driving the engine 

manufacturers to lead the development of new technologies and fuels 

to lower pollutant and CO2 emissions and that can be then shared with 

other industrial fields. Although battery electric equipment has already 

been introduced in the automotive field, diesel and gasoline vehicles 

are still widely used, thanks to the longer operating range, the faster 

refueling, and the lower cost. The transition towards new fuels and 

technologies can be guided by more efficient traditional internal 

combustion engines. 

In this work, previously developed innovative piston damage and 

exhaust gas temperature models are coupled to manage the combustion 

process and thereby increasing the overall energy conversion 

efficiency. The piston erosion and the exhaust gas temperature at the 

turbine inlet are evaluated according to the models’ estimation which 
manages both the spark advance, and lambda. In the first part of the 

paper, the previously developed exhaust gas temperature model is 

reversed and converted into a control function which is then 

implemented in a piston damage-based, spark advance controller. This 

controller targets a given piston erosion for a certain time, using more 

aggressive calibrations, thereby significantly increasing the 

combustion efficiency, and lowering the exhaust gas temperature, 

under knock-limited operating conditions. Furthermore, this decrease 

in exhaust gas temperature is converted into lowering the fuel 

enrichment with respect to the production calibrations. Moreover, the 

pollutant emissions associated to the production calibrations and those 

associated to the application of proposed controller are compared 

through a GT Power combustion model. 

In the second part of the work, the complete controller is validated 

for both the transient and steady-state conditions, reproducing a real 

vehicle maneuver at the engine test bench. The results demonstrate that 

the combination of an accurate estimation of the damage induced by 

knock and the value of the exhaust gas temperature allows to reduce 

the brake specific fuel consumption by up to 20%. Moreover, the 

stoichiometric area of the engine operating field is extended by 20%, 

and the GT Power simulations show an average reduction of about 

50% of the main pollutant species.  

Keywords: combustion, efficiency, modeling, control, neural 

networks, energy management, control-oriented, knock, exhaust gas 

temperature, mixture enrichment, spark advance, lambda 

Introduction 

The CO2 and pollutants emission limits for the automotive industry 

have been lowered with the aim of pushing manufacturers towards 

more efficient and sustainable technologies and fuels (synthetic fuels, 

vehicle electrification, innovative combustions, etc.) with lower 

environmental footprint [1]. 

So far, this trend has had a high effect on the research of light-

duty engines and in this field the scenario is expected to further change 

soon. The efforts are driven to increase the energy conversion 

efficiency resulting in lower on-board energy consumption and 

pollutant emissions, thus reducing the greenhouse gas emissions and 

the extraction costs to address both the environmental and economic 

sustainability. The same considerations apply to other sectors 

(industry, railway, maritime, mining, genset) where heavy-duty 

engines are largely used. In this scenario, the research in the 

automotive field can lead the development of technologies that can be 

then shared with other industrial sectors [2]. 

In the last years, the research on internal combustion engines has 

focused a wide effort on the development of solutions to increase the 

combustion efficiency of gasoline engines. Modern Gasoline Direct 

Injection (GDI), turbo-charged (TC) engines represent the most 

suitable layout, thanks to their lower pollution levels and the different 

kinds of combustions (i.e., lean combustions, knocking and non-

knocking conditions), that can be investigated to find new ways to 

manage and utilize ‘dangerous’ but more efficient combustions. 

Enabling knock-limited operating areas and accurately estimating the 

exhaust gas temperature at the turbine inlet are the most challenging 

fields for modern TC engines, due to the significant scope for 

improvements that can be achieved with an accurate and aware 

combustion control system. Indeed, knocking combustion [3, 4] and 

the maximum exhaust gas temperature at turbine inlet are the two main 

limits for the efficiency increase in the high speed and load region of 

the engine operating field, where the most used strategies are the Spark 

Advance (SA) degradation and the fuel mixture enrichment [5], known 

as component protection strategy. Nevertheless, these two actions 

cause an increase of both the fuel consumption and pollutant 

emissions. This topic is under the focus of powertrain manufacturers 

because the driving cycles for the vehicle homologation are becoming 

more aggressive, forcing the reduction of the component protection 

strategy, and extending the stoichiometric operating field of the engine 

[6, 7]. Several technologies have been developed during the last years 

such as the Variable Compression Ratio (VCR), the water injection 

and the usage of advanced materials for the turbine impeller [6, 7]. 

Moreover, the development of more-and-more sophisticated control 

strategies is currently a very interesting solution for engine 

manufacturers, because of the difficulties of finding innovative, 

reliable, and cost-effective functional technologies, especially in a time 

in which most of the resources are invested to develop new types of 

propulsion [8]. 

Considering the limits explained before for the efficiency 

increase, in literature, some works highlight the physical relationship 

between the knock intensity and the related piston erosion [9-12], but 

no combustion control strategies based on a modelled damage index 

can be found. On the other hand, control-oriented models that can 

accurately estimate the exhaust gas temperature on the entire engine 

operating field are a strategic tool to prevent turbine failure and 

maximize the conversion efficiency of the after-treatment system, as 

highlighted by Fu and Chen [13]. Nevertheless, a few examples of 

Real-Time (RT) models able to estimate the inlet turbine temperature 

are present in literature. One of the proposed algorithms is the one 

developed by Fulton and Van Nieuwstadt [14], which is based on the 
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estimation of the exhaust gas temperature at the turbine inlet with an 

open loop chain and a closed loop contribution which uses the signal 

of a thermocouple placed at the turbine outlet. However, this kind of 

sensor or different types (such as the resistance temperature detectors) 

are not used for the final on-vehicle application for cost and reliability 

reasons. Thus, other methods have been implemented for the exhaust 

gas temperature estimation, such as exploiting sensors installed on the 

final on-board application as the Universal Exhaust Gas Oxygen 

(UEGO) ones. Indeed, heaters of lambda (𝜆) sensors can be used to 

evaluate the exhaust gas temperature by analyzing the shape of the duty 

cycle signal, with which current flux to the heating element is 

controlled in order to compensate the effect of the surrounding exhaust 

gas on the measurement [15, 16, 17]. Applying this approach, the 

electrical heating power supplied to the sensor depends on the 

temperature, thus it is possible to estimate the temperature of the 

exhaust gases. Considering these analyses, it can be understood the 

importance of also implementing model-based approaches for the 

calculation of the desired quantity. 

In this work, a model-based, combustion control system that 

manages both the SA and the target 𝜆 value is developed and 

validated. The SA control system includes a piston damage-based 

controller previously developed by the authors that determines the SA 

needed to reach a given piston erosion induced by knocking events in 

a certain time [18, 19], called damage speed. The 𝜆 control system is 

based on a reversed exhaust gas temperature model previously 

developed by the authors in [20, 21]. The proposed model is based on 

an algorithm to estimate the Temperature at the Exhaust Valve 

Opening (TEVO), that implements a custom closed valves analysis 

optimization algorithm [20, 21]. In a previous work of the authors [21], 

the exhaust gas temperature model is used for the offline optimization 

of the SA and the target 𝜆 maps to operate the engine under knock-

limited conditions and with the maximum admissible temperature at 

the turbine inlet, demonstrating that the efficiency can be improved of 

15% with respect to the production calibrations of the engine.  

In this work two main aspects of novelty are introduced. The first 

is that the exhaust gas temperature algorithm proposed in [21] is 

reversed and coupled with a piston damage-based SA controller 

obtaining a complete SA-𝜆 combustion controller that is implemented 

in a Rapid Control Prototyping (RCP) system used to directly control 

the combustion. The second aspect of novelty is that the Feedforward 

Neural Networks (FNN) algorithm, that is used to calculate the 

combustion phase index in the exhaust gas temperature model, can be 

used to build robust combustion control systems. Indeed, in the 

automotive field, these kinds of models are mainly used for modelling 

applications, such as for the prediction of the combustion phase [22, 

23], the knocking events [24, 25], the pollutant emissions [26, 27] and 

the engine thermal behavior [28, 29]. 

With the proposed controller, the two main limits to the combustion 

efficiency increase for GDI TC engines are overtaken through the 

accurate calculation of the indexes that represent the actual intensity of 

the phenomena that have to be controlled: the piston erosion speed (the 

damage for a certain period of time) and the exhaust gas temperature 

at the turbine inlet.  

The developed combustion control system is tested offline with a 

Software in the Loop (SiL) approach, using a control-oriented engine 

simulator developed by the authors in [30] that can simulate the 

instantaneous values of the main combustion indexes for a GDI TC 

engine, such as the crank angle degree of 50 % of mass fraction burned 

(MFB50), the maximum in-cylinder pressure (PMAX), the Maximum 

Amplitude of Pressure Oscillation (MAPO) and the exhaust gas 

temperature at the turbine inlet. After the offline validation, the 

complete algorithm is deployed in the RCP system and it is tested both 

under steady-state conditions, carrying out a power curve, and under 

transient conditions, reproducing at the test bench a real driving 

maneuver recorded on the vehicle. Then, the engine efficiency increase 

is evaluated comparing the Brake Specific Fuel Consumption (BSFC) 

measured during these tests with the reference values, represented by 

the value recorded during the same maneuver performed with the 

production calibrations of SA and 𝜆.  

In this work, the effects on the pollutant emissions production 

obtained managing the combustion with the proposed control system 

are also evaluated. Since no instruments for the pollutant emission 

measurements are present in the experimental setup, a GT Power 

combustion model referring to the average cylinder of the studied 

engine is calibrated. A two-zones Wiebe-based combustion model is 

developed with a closed valves analysis to match the average 

experimental in-cylinder pressure curve measured for each operating 

condition tested. This allows the estimation of the NOx and CO 

emissions thanks to kinetical models [31, 32]. It is important to 

highlight that the other pollutant emissions such as the HC are not 

calculated because predictive combustion models are required, that 

need specific geometrical features of the tested engine which are not 

available. The simulated NOx and CO values are used to train two 

FNN algorithms obtaining equivalent models that need a lower 

computational effort. This tool allows to simulate the concentration of 

the main pollutant emissions at the exhaust valve opening using the 

main engine parameters measured during tests carried out at the test 

bench.  

In the final part of this work the developed SA-𝜆 control system 

is used to directly manage the engine combustion during transient tests, 

evaluating the pollutant emissions at the engine out brought by the 

implementation of the proposed controller. A maximum reduction of 

20% of the BSFC and an average reduction of 50% of the CO 

emissions is estimated by applying the innovative combustion control 

system developed in this work. 

Experimental setup 

The experimental setup is composed by an inline, 4-cylinder, GDI TC 

engine, and the main features are reported in Table 1.  

Table 1. Engine characteristics. 

Displaced volume 1389.9 cc 

Stroke 75.6 mm  

Bore 76.5 mm  

Connecting Rod 144 mm  

Compression ratio 10:1 

No. of valves per cylinder 4 

The engine is equipped with a piezoelectric in-cylinder pressure sensor 

for each combustion chamber and the signals are recorded with a 

sampling frequency of 200 kHz. The Alma Automotive mASTRO 

charge amplifier and the OBI indicating system (provided by the same 

manufacturer) are used in this experimental setup. The pressure sensor 

used is from Kistler, and the main features are reported in Table 2. 

Table 2. In-cylinder pressure sensor characteristics. 

Pressure range  0 to 250 Bar 

Overload  300 Bar 

Nominal sensitivity -37.0 pC/Bar 

Natural frequency  >215kHz 

 

The in-cylinder pressure signals are used to calculate all the main 

combustion and knock indexes. Importantly, the MFB50 is calculated 

from the cumulative net heat release estimated from the low-passed-

filtered curves, with a cut-off frequency of 3 kHz. For abnormal 

combustions, many indexes can be used to estimate the knock 
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intensity. In this work MAPO is considered and it is evaluated from 

the following equation: 

 𝑀𝐴𝑃𝑂 = 𝑚𝑎𝑥(|𝑝𝑓𝑖𝑙𝑡|) (1) 

 

Where 𝑝𝑓𝑖𝑙𝑡 is the bandpass filtered in-cylinder pressure signal. The 

cut-off frequencies are 5 and 25 kHz.  

The exhaust gas temperature at the turbine inlet is measured using a 

thermocouple and the main features of such sensor are reported in 

Table 3.  

Table 3. Thermocouple characteristics. 

Type K 

Diameter 3 mm 

Accuracy  2.2°C 

The thermocouple measurement chain is composed of a National 

Instruments Compact-Rio 9024, with the module 9213 that works with 

a sampling frequency of 100 Hz. Due to the sensor dynamics, the 

comparison between the reference temperature (the values recorded 

with the production calibrations), and the values sensed during the tests 

with the combustion controller are always performed considering the 

thermocouple signal. In other words, even if such sensor is affecting 

the temperature measurement, since the comparison is always carried 

out between the signals coming from the same thermocouple, the 

presented results can be considered robust. 

All the modelled engine variables are calculated for the mean cylinder, 

and they are shown with normalized values for confidentiality reasons. 

An important aspect to highlight in this work, is that the engine load is 

referred to the trapped air mass and not to the effective torque at the 

crankshaft. 

A simplified scheme with the main sensors and actuators used for 

the experimental setup is shown in Figure 1. An oxygen sensor 

mounted before the catalyst is used for the 𝜆 measurement and mixture 

control. A modified production Engine Control Unit (ECU) has been 

used, allowing to overwrite some calibration parameters in RT during 

the tests by communicating the SA via Controller Area Network 

(CAN) and the target 𝜆 value with a voltage signal. The hardware used 

to communicate the mentioned target calibrations to the ECU is a 

Simulink Real Time device where the combustion control system is 

deployed. The RCP device is also connected via CAN to the indicating 

system to receive the instantaneous combustion and knock indexes. 

The scheme of the hardware layout used for is reported in Figure 2.   

 

Figure 1: Simplified scheme of the experimental setup. 

 

Figure 2: Functional layout of the communication loop. 

The mentioned engine is tested carrying out spark sweep tests on 

the entire operating field, applying different 𝝀 values. The points 

highlighted (in cyan rectangle) in Figure 3, which correspond to the 

high load and speed region of the operating field, are the ones used to 

calibrate the GT-Power combustion model for the estimation of the 

pollutant emissions. This model is calibrated only in this region 

because the experimental validation of the SA- 𝝀 control system is 

carried out with transient maneuvers performed in the 

highlighted part of the operating field. 

 

Figure 3. Engine operating points tested for the calibration of the GT-

Power combustion model. 

Control Development 

In this section, the control system that manages both the SA and the 𝜆 

value to control the knock and the exhaust gas temperature at the 

turbine inlet is first developed, describing how the exhaust gas 

temperature at the turbine inlet model [20] is reversed and then it is 

offline validated using a SiL approach. 

Conversion of the exhaust gas temperature model into 

a model-based 𝝀 controller 

The 𝜆 control system is based on the exhaust gas temperature model 

proposed in [20]. The complete calculation chain, starting from the 

engine control parameters, is explained as follows: 

 Based on engine speed, load and 𝜆 an FNN-based MFB50 

model estimates the combustion phase index. This model is 

based on the Wiebe parameters obtained after the calibration 



Page 4 of 14 

 

of a 0D combustion model carried out with a self-developed 

optimization algorithm [19, 20]. 

 Using the engine speed, the load, the 𝜆  value, and the 

MFB50 the TEVO is calculated with an analytical model. 

 Finally, the TEVO is converted into the exhaust gas 

temperature value measured in different points, such as in 

the exhaust runners and the turbine inlet. The analytical 

function used to convert the TEVO value, called ∆T model, 

takes as input the MFB50, the engine speed and the load. 

The 𝜆 control algorithm based on the reversed exhaust gas 

temperature model consists of an open loop calculation chain, that 

estimates in a fast way the value to reach the target value of the exhaust 

gas temperature, and a closed loop part, that adjusts the open loop 

calculation using the feedback coming from the in-cylinder pressure 

sensors. In Figure 4, the open loop chain is shown. 

 

Figure 4. The block scheme of the open loop chain of the λ control system. 

The main steps of the algorithm are the following: 

 Using the engine speed, the load, the actuated SA (calculated 

as the sum between the mapped value for the actual 

operating condition and the SA correction of the previous 

iteration), and the actuated 𝜆 of the previous iteration, the ΔT 

model calculates the value of temperature to be added to the 

exhaust gas temperature target value to obtain the TEVO 

target. It is important to highlight that, since the MFB50 and 

the ΔT models require as input the SA and the 𝜆  values, it is 

necessary to use the quantities calculated in the previous 

iteration to obtain the values to be actuated in the current 

time step. 

 Using the same inputs of the ΔT model, the MFB50 one 

calculates the combustion phase for different 𝜆 values (𝜆 =1, 𝜆 mapped, 𝜆 = 0.75), which are then used to evaluate the 

TEVO for different 𝜆 values. 

 While the TEVO model proposed in [20] uses a linear fit to 

calculate the desired TEVO value, exploiting the 𝜆 as 

independent variable, in this case the axes for the fit 

evaluation are reversed. Indeed, the linear interpolation 

which expresses the TEVO – 𝜆 dependence is calculated and 

then used to calculate the target 𝜆 value. 

The proposed algorithm allows to calculate the target 𝜆 value to 

reach the admissible exhaust gas temperature, but it is necessary to 

introduce a closed loop chain to compensate the errors of the models. 

For this reason, the same exhaust gas temperature model is used to 

estimate the current value, using the measured MFB50 values, and to 

calculate the error with respect to the target one. Then the error is 

managed by a PID controller that adjusts the 𝜆 value calculated by 

the open loop chain. The block scheme of the closed-loop algorithm 

is shown in Figure 5.  

 

Figure 5. The block scheme of the closed loop chain of the λ control system. 

As shown in Figure 6, in the block 5 and 6 the reversed knock 

model and the reversed PMAX one use the 𝜆 value as input. In the first 

version of the SA control algorithm, these two models used the value 

calculated from a map as a function of the engine speed and load, while 

the calculated 𝜆 value is used in the following steps. Coupling the SA 

and the proposed 𝜆 control system, the interaction between the two 

algorithms is that described in Figure 6. 

 

Figure 6. Interaction between the SA and the 𝜆 controller. 

In the following paragraph the proposed control algorithm is tested in 

Simulink before deploying it in the Simulink Real Time-based, RCP 

system to control the engine at the test bench. 

Software-in-the-loop validation 

Before using the developed SA–𝜆 control system to directly manage 

the engine at the test bench, the complete algorithm has been tested in 

Simulink by coupling it with the engine simulator described in [30]. In 

the following figures, the implementation in Simulink of the complete 

Software in the loop system is shown. Figure 7 shows the complete 

SiL environment where the engine simulator (Figure 8) and the control 

system (Figure 9) are coupled together.  
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Figure 7. Simulink model of the simulator developed to validate the SA - 𝜆 
controller. 

 

Figure 8. Simulink model of the engine model previously developed by the 

authors. 

 

Figure 9. Simulink model of the SA - λ control system. 

The validation is carried out using two different transient profiles. The 

main characteristics of these two profiles are: 

 In the first one (Figure 10), the engine is managed 

automatically by the test bench control system to move from 

a low load condition to the wide-open throttle in 10 seconds 

and at the same time, the engine speed increases to reach the 

maximum value. Nevertheless, it cannot be compared to a 

real speed and load trend followed in a real maneuver carried 

out on the track or during an aggressive Real Driving 

Emissions (RDE) cycle. 

 The second profile (Figure 13) is representative of a real 

track maneuver, where the engine passes from low load 

conditions to the maximum values in 4 seconds.  

In Figure 11, the results related to the simulation carried out for the 

first transient profile are shown. It is important to highlight that both 

the simulations related to the two different tests (Transient Test 1 and 

Transient Test 2) are carried out imposing a Research Octane Number 

(RON) value equal to 95, and an intake air temperature equal to 35 C°. 

 

Figure 10.  Speed and load profiles related to the transient test 1 for the offline 

SA – λ control system validation. 

 

Figure 11. SA correction applied by the control system, percentage cyclic 

MAPO values, and the calculated damage speed during the transient test 1. 
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Figure 12. Main λ controller parameters during transient test 1. 

As it is possible to see from the last subplots of Figure 11 and 12, the 

control system can manage the SA and the 𝜆 values to achieve the 

target damage speed and the target exhaust gas temperature, which is 

the maximum value admitted at the turbine inlet. In Figure 12, the 

quantities reported are listed below: 

 The 𝜆 value calculated by the open loop chain (𝜆 𝑂𝐿). 

 The corrective 𝜆  value calculated by the closed loop chain 

(𝜆 𝐶𝐿). 

 The comparison between the actuated 𝜆 value and one 

calculated with the production map of the engine 

 The unfiltered exhaust gas temperature, and the graph is 

zoomed on the area where the controller works. 

The same results are reported in Figure 14, for the second simulation, 

i.e., the transient test 2. 

 

Figure 13. Speed and load profiles related to the transient test 2 for the offline 
SA – λ control system validation. 

 

Figure 14. SA correction applied by the control system, percentage cyclic 

MAPO values, and the calculated damage speed during test 2. 

 

Figure 15. Main λ controller parameters during transient test 2. 

The results demonstrate that the developed combustion control system 

allows to manage the SA and 𝜆  values under transient conditions, 

respecting the imposed damage speed and the maximum admissible 

exhaust gas temperature. To better understand how the controller 

manages the exhaust gas temperature during the transient profile, in 

Figure 16 the simulated exhaust gas temperature obtained for the 
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transient shown in Figure 10 with the production SA and 𝜆 maps is 

compared to the one calculated with the activated SA – 𝜆 control. 

 

Figure 16. Comparison between the unfiltered exhaust gas temperature 

measured with the production calibrations and with the activated SA – λ 
controller (left-hand graph) and the actuated lambda profiles (right-hand graph). 

The trend of the exhaust gas temperature profile in Figure 16 can be 

divided and analyzed into different parts: 

 From 27.75 seconds to 33 seconds the SA controller 

manages the spark timing to target the imposed damage 

speed, and at the same time the lambda controller keeps the 

stoichiometric air-to-fuel ratio value. 

 From 33 seconds to 41 seconds, the SA and the 𝜆 value are 

both controlled to run the engine contemporarily under 

knock-limited conditions and with the admissible exhaust 

gas temperature at the turbine inlet. 

 From 41 seconds, the engine operates at the maximum speed 

and load conditions, and the exhaust gas temperature at the 

turbine inlet reaches the limit also with the production 

calibrations (brown line). 

Finally, an interesting analysis can be carried out superposing the 

efficiency gain as a function of the engine speed and load breakpoints 

measured during the two transient tests (for the operating conditions 

where the knock and the component strategies are critical), as shown 

in Figure 17. This efficiency map is obtained with an offline simulation 

carried out for the steady state conditions, optimizing the SA and  to 

run the engine under knock limited operating conditions and with the 

maximum exhaust gas temperature. 

 

Figure 17. Engine operating conditions related to transient test 1 and 2 on the 𝛥BSFC map obtained with the damage speed 1 and RON95 gasoline. 

In Figure 17 the limit condition referred to the production calibrations 

and the new limit obtained by applying the proposed calibration 

method are shown. Analyzing this figure, some observations can be 

carried out: 

 Since the transient test 2 is three times faster than the 

transient test 1, the turbo lag effect does not allow to reach 

the full load condition. 

 Considering the distance between the two 𝜆 = 1 limit for the 

operating conditions reached during the two different tests, 

the stoichiometric range can be further extended during the 

second one, i.e., transient test 2. 

 As already mentioned earlier, the transient test 2 represents 

real driving maneuvers (i.e., fast, and aggressive transients), 

most of the operating points are in the zone of high engine 

speeds and loads. These conditions allow to use more 

aggressive calibrations thus leading to maximum increase of 

efficiency, i.e., the BSFC is minimum (i.e., around -12%). 

Instead, the transient test 1 is a slow test and has a much 

wider time where the engine speed and load are maximum 

(above 95%). In this case, since the engine remains knock 

limiting conditions for a larger period, the knock and the 

exhaust gas temperature at turbine inlet become more 

stringent limitations, and the controller is forced to apply less 

aggressive calibrations, there-by lowering the efficiency 

gain to about -4 to -5%.   

Experimental validation under steady-state 

conditions 

Once the SiL validation of the controller is completed, the SA – 𝜆 

control system is implemented in the RCP hardware to directly manage 

the spark timing and the target 𝜆 value. The hardware layout used is 

the one shown in Figure 2. The target SA is communicated to the 

production ECU using the CAN protocol, while the target 𝜆 value is 

communicated by generating a voltage signal in the range of 0 – 5 V 

that is proportional to the controller parameter. This voltage signal is 
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supplied to the ECU through the connector of the sensor used to 

measure the pressure drop between the inlet and the outlet of the 

Gasoline Particulate Filter (GPF), which is not present in the test cell. 

The scheme of the ECU function that converts the raw electrical input 

into the corresponding 𝜆 value cannot be disclosed for confidentiality 

reasons, but once it is known the target lambda value can be controlled 

in a proper way. 

The developed SA – 𝜆 control system is validated at the test bench 

carrying out a torque and power curve and then the results are 

compared to that achieved with the production calibrations. In Figure 

18, the results are reported showing the main normalized performance 

indexes, such as the power and the BSFC. The torque and power curves 

are measured in both cases with the RON95 gasoline. 

 

Figure 18. Comparison between the main performance indexes of torque-power 
curve tests performed with the production calibrations and with the activated 

SA – λ control system. 

Analyzing the graphs, some aspects can be highlighted: 

 With the activated SA–𝜆 control system it is possible to 

increase of about 10 % the power with respect to the 

production calibrations. 

 The BSFC can be reduced by 15% at the maximum speed, 

i.e., the engine efficiency can be increased by the same 

value.  

As shown in the last graph of Figure 18, the SA–𝜆 controller manages 

the exhaust gas temperature to keep the exhaust gas temperature close 

to the maximum value for the operating conditions in which this value 

can be reached. Indeed, for engine speed conditions lower than 50% 

the maximum limit cannot be reached applying the stoichiometric air-

to-fuel ratio and the knock limited SA.  

Experimental validation under transient 

conditions 

The developed SA–𝜆 control system is also tested and validated 

reproducing transient maneuvers at the test bench. In particular, the 

engine is controlled reproducing the load and speed profile shown in 

Figure 13, i.e., reproducing the transient test 2. 

The aim is to reproduce the exhaust gas temperature profile at the 

turbine inlet measured during the same transient maneuver performed 

with the production calibrations. Considering that the transient test is 

a fast maneuver during which the engine remains at full load for 3 

seconds and due to the slow transient behavior of the thermocouples, 

it is not possible to set as target or feedback the measured temperature 

profile during the test with the production calibrations. Indeed, since 

the maneuver starts from low engine load conditions (i.e., with quite 

low exhaust gas temperature), the measured exhaust gas temperature 

at the turbine inlet would remain lower than the maximum admissible 

value, i.e., the SA–𝜆 control system would always apply the 

stoichiometric air to fuel ratio.  For this reason, the values used as 

target in the 𝜆 control system are the measurements carried out under 

steady-state conditions and full-load during a power curve carried out 

with the production calibrations. Thus, the exhaust gas temperature 

target consists in an array that contains the values at the turbine inlet 

under full-load conditions as a function of the engine speed.     

It is important to highlight the conditions with which the SA–𝜆 control 

system is tested under transient conditions, which are listed below: 

 The transient test is carried out with the RON98 gasoline. 

 The test has been carried out once the intake manifold air 

temperature is under steady-state conditions and close to the 

reference value. A lower intake manifold air temperature 

would mean a lower knock tendency, and thus the possibility 

to reduce more the mixture enrichment to protect the turbine. 

The transient maneuver is repeated also with the production 

calibrations and controlling only the SA to quantify the efficiency gain 

associated to each variable. Also, these two tests are repeated with the 

same conditions described above.  

In Figure 19 the main quantities measured with the bench system, 

such as the torque, the power and the exhaust gas temperature at the 

turbine inlet are reported. 

 

Figure 19. Comparison between the main performance indexes measured 
during the transient test with the production calibrations, controlling only the 

SA and both the SA and λ. 
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The mean values of the torque measured in the full load part of the test 

are shown in Table 4 to better understand the difference in terms of 

performance gain associated to each controlled parameter. 

Table 4. Comparison between the average torque values sensed under full load 

conditions during the transient test with the production calibrations, controlling 

only the SA and both the SA and the target λ. 

CONFIGURATION TORQUE [%] 

 Production calibrations 89.9 % 

SA control 96.5 % 

SA – 𝜆 control 100 % 

Considering the last graph of Figure 19, it is possible to notice that the 

trend of the exhaust gas temperature at the turbine inlet for the “SA–𝜆 

control” test is close to the values measured with the production 

calibrations. Indeed, the maximum difference is close to 1%. 

Moreover, Figure 20 shows the difference in terms of C ° between the 

exhaust gas temperature profiles measured with the production 

calibrations and the tests carried out with the activated SA–𝜆 control. 

 

 

Figure 20. Difference between the exhaust gas temperature profiles measured 

during the "SA control" test and the "SA-𝜆" control test with respect to the 
one carried out with the production calibrations. 

The trend related to the “SA – 𝜆 control” test has a maximum point 
lower than 10 C°. Considering the dynamic response of the 

thermocouples, i.e., similar to a first order system, it can be stated that 

the quantities that excite the system are equivalent if the differences 

between the measured dynamic responses are negligible. Thus, it can 

be stated that the SA–𝜆 control system can properly manage the 

combustion because it can target the desired damage speed and, at the 

same time, the exhaust gas temperature profile at the turbine inlet 

remains close to the value measured with the production calibrations. 

As it is demonstrated that the developed control system can 

properly control the engine, it is possible to compare other important 

quantities measured during the tests such as the MFB50 and 𝜆. It is 

important to highlight that the MFB50 profiles are normalized with 

respect to the minimum value, and thus the units are ΔMFB50. The 

MFB50 values are recorded with the bench system, that samples the 

combustion indexes on the CAN bus with a frequency of 100 Hz, and 

each profile refers to the average cylinder. 

 

Figure 21. The MFB50 and 𝜆 profiles measured during the different transient 
tests. 

The efficiency gain related to the test with both the SA and 𝜆 values 

controlled by the algorithm is evaluated by comparing the results with 

the reference associated to the production calibrations in terms of 

BSFC. While the values reported in Figure 18 are those measured 

during the power curve, the fuel consumption measurement is not 

reliable under transient conditions because a fuel mass measuring 

system is used for sensing the gasoline flow. For this reason, a model-

based approach is applied to estimate the trapped air mass and thus the 

BSFC, the measured 𝜆 profile and the power. In Figure 22 the 

percentage BSFC difference achieved during the tests carried out with 

the production calibrations and with the activated SA–𝜆 control system 

is reported in the load - speed domain.  

 

Figure 22. Efficiency increase achieved during the "SA - 𝜆 control" test with 
respect to production calibrations. The black dots represent the engine points 
touched during the test. 

In the previous graph the boosted field starts from the 55 % of the load 

and, starting from this condition, the gain efficiency becomes positive 

because the SA–𝜆 control system manages the two parameters to target 

the desired piston damage speed and the maximum exhaust gas 

temperature at the turbine inlet, achieving an efficiency increase close 

to 20 % for the wide-open throttle conditions.  
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Finally, it is demonstrated that the developed control system can 

properly manage the combustion enabling a higher combustion 

efficiency with respect to the production calibrations. 

GT-Power model calibration and pollutant 

emissions estimation 

In this paragraph a GT-Power model is calibrated to estimate the effect 

of controlling the combustion with the developed SA-𝝀 combustion 

control system on the NOx and CO emissions. Indeed, in the 

experimental setup no system is present for the pollutant emission 

measurement. The GT-Power model is implemented and calibrated 

considering the following hypothesis: 

 The combustion model refers to the average cylinder. This 

means that it can reproduce the average in-cylinder pressure 

curve measured for all the tested operating condition. 

 The heat release is modelled using the Wiebe equation. 

Indeed, the calibration of a predictive combustion model 

requires some specific geometrical data of the engine, such 

as the geometry of the intake and exhaust systems, the valves 

geometry and the data related to the shape of the combustion 

chamber. 

 A two zones combustion model is used. Indeed, the pollutant 

emissions formation happens in the post-flame gases and 

thus it is necessary to use at least a two zones model. 

 Since no geometrical data of intake and exhaust ducts are 

available, and thus the intake and the exhaust process cannot 

be properly validated, the combustion model is calibrated 

with a closed valves pressure analysis [33]. This means that 

the trapped air and fuel masses are imposed using the 

experimental data. Moreover, also the percentage of the 

Exhaust Gas Recirculation (EGR) is imposed at the 

beginning of the cycle using a map-based approach thanks 

to experimental data provided by the engine manufacturer.    

The Design Optimizer of GT-Power [31] is used to calibrate the 

Wiebe parameters and the heat transfer algorithm to match the 

experimental average pressure curve for each engine operating 

condition. In particular, the software [33] allows to set different 

values that are used in an object function minimized by the 

optimization algorithm to reach the corresponding experimental 

values. In this case the experimental MFB10 and the PMAX are used 

as target values to calculate the error of the modelled in-cylinder 

pressure curves. 

In Figures 24 and 25 the simulated and the average experimental in-

cylinder pressure curves are compared for different operating points 

to demonstrate that the combustion model is well calibrated. 

 

Figure 24. Experimental and simulated in-cylinder pressure curves for the most 
retarded and the most advanced SA values tested at 60 % of engine speed and 

full load. 

 

Figure 25. Experimental and simulated in-cylinder pressure curves for the most 

retarded and the most advanced SA values tested at 100 % of engine speed and 
full load. 

With the calibrated combustion model is possible to calculate the NOx 

and CO concentration at the exhaust valve opening. In particular, the 

extended Zeldovich model is implemented in GT-Power for the NOx 

estimation. As is well-known from the literature, its concentration 

mainly depends on the maximum in-cylinder temperature reached 

within the combustion chamber [31, 32]. The considered 

thermodynamic parameter depends on the load, the combustion phase, 

and the 𝝀 value [32]. Moreover, also the engine speed affects the 

maximum in-cylinder temperature, keeping constant the other engine 

parameters, because the percentage of EGR increases for higher speed 

values [33]. Considering these aspects, the NOx values calculated with 

the 0D combustion model are used to train a FNN algorithm which 

uses as inputs the load, the MFB50, the 𝝀 value and the engine speed.  

The CO model is based on the following oxidation reaction, as 

proposed by several authors [34, 35]: 

 𝑪𝑶 + 𝑶𝑯 ⇋ 𝑪𝑶𝟐 + 𝑯 (2) 

During the combustion, this reaction does not proceed following the 

chemical equilibrium, but it is kinetically driven [29, 31, 32, 34]. In 

literature the factor 𝜶𝑪𝑶 is introduced, that represents the CO oxidation 
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quenching (it can be demonstrated that 𝜶𝑪𝑶 > 𝟐 means that the 

chemical reaction is quenched): 

 𝜶𝑪𝑶 = −𝝉𝑪𝑶 ( 𝑩𝑻𝟐 − 𝟏𝟒𝑻) (𝒅𝑻𝒅𝒕 )  (3) 

Where 𝝉𝑪𝑶 is the characteristic timescale related to the CO production, 𝑩 is a constant value,  𝑻 is the in-cylinder temperature and 
𝒅𝑻𝒅𝒕  the 

cooling rate of the gas. It is important to highlight that 𝝉𝑪𝑶 depends on 

the temperature and the OH molar fraction in partial equilibrium 

conditions [34, 37, 38].  

Finally, it can be stated that the CO production depends mainly 

on the in-cylinder temperature and the cooling rate [34], thus the main 

engine parameters that affects the production of this pollutant emission 

are the load, the combustion phase and the 𝝀 value, as well known from 

the literature. Moreover, since the cooling rate can be represented in 

the angular domain with the following equation:  

 
𝒅𝑻𝒅𝒕 = 𝒅𝑻𝒅𝝑 𝝎  (4) 

  This aspect is demonstrated in Figure 26 where the simulated CO 

values for different engine speed values, but fixed load and 𝝀, are 

shown as function of the maximum in-cylinder temperature and the 

cooling rate (average value calculated during the expansion phase 

expressed in logarithmic scale). 

 
Figure 26. Simulated CO at the exhaust valves opening as function of the 
maximum in-cylinder temperature the cooling rate for different engine speed 

values and fixed load and 𝝀 value.   

Considering these analyses also for the CO emissions, a FNN 

model is trained using as inputs the load, the MFB50, the 𝝀 value and 

the engine speed. Both the NOx and CO FNN algorithms are trained 

using an automatic procedure developed and explained by the authors 

in [30]. In the following figure the accuracy of the two FNN models 

are shown for the test dataset. 

 
Figure 27. Correlation analysis referred to test dataset between the NOx and CO 

values calculated with the calibrated GT-Power model and the values calculated 

with the FNN algorithms.   

Thanks to the calibrated FNN-based NOx and CO models it is then 

possible to easily estimate the effect on the emissions using the engine 

data measured during the transient tests carried out with the production 

calibrations and the activated SA–𝝀 control system. In the following 

figures analyses equivalent to the one shown in Figure 22 are reported 

for both the estimated NOx and the CO. 

 
Figure 28. CO percentage difference achieved during the "SA - 𝜆 control" test 
with respect to standard calibrations. The black dots represent the engine 
points touched during the test. 

Analyzing Figure 28 it can be stated that until 90% of the engine load 

the CO increases because the SA–𝝀 control system applies a more 

advanced SA value, i.e. incresing the maximum in-cylinder 

temperature, to run the engine under knock limited conditions and the 𝝀 value is stoichiometric during both the tests. In the range between 

80% and 85% of engine speed in full load conditions the CO is reduced 

of 60-80% because the SA–𝝀 control system applies the stoichiometric 

value, while the 𝝀 value applied during the  production calibrations test 

is rich. Finally, in the range between 85% and 100% of engine speed 

the CO reduction is close to 40% because the SA–𝝀 control system 
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increases the SA and at the same time reduces the mixture enrichment 

with respect to the production calibrations. 

In Figure 29 the same analysis of Figure 27 is shown for the NOx. 

In this case the pollutant emission increases with respect to the 

production calibrations because advancing the SA and reducing the 

fuel enrichment cause higher maximum in-cylinder temperature. 

Nevertheless, considering that in the full load region the 𝝀 value is still 

rich also with the activated SA–𝝀 control system, the Three-Way 

Catalyst (TWC) can convert the NOx with the highest possible 

efficiency. 

 
Figure 29. NOx percentage difference achieved during the "SA - 𝜆 control" 
test with respect to production calibrations. The black dots represent the 

engine points touched during the test. 

Conclusions 

This work deals with the development and the validation of a model-

based combustion control system with which it is possible to manage 

the SA and 𝜆 to increase the efficiency of modern GDI TC engines in 

the high load and speed range of the operating field, where the SA 

degradation and the mixture enrichment are typically used to control 

the knock intensity and the exhaust gas temperature at the turbine inlet. 

The developed SA–𝜆 control system is based on the SA control 

algorithm described in [18] and [19], with which it is possible to 

control the piston erosion generated by knocking combustion targeting 

the desired piston damage speed, and on a model-based 𝜆 control 

algorithm developed by reversing the exhaust gas temperature model 

developed by the authors in [20] and [21]. The complete algorithm is 

first tested in a SiL environment using a Neural Network based engine 

simulator developed in [32], demonstrating that the control system can 

properly manage both the SA and the 𝜆 values to run the engine under 

knock limited conditions and with the maximum admissible exhaust 

gas temperature at the turbine inlet. 

Then, the controller is deployed on a Simulink Real Time-based 

RCP hardware to directly control the engine at the test bench. First, the 

SA–𝜆 control system is tested under steady-state conditions carrying 

out a power curve, and it is demonstrated that the engine efficiency can 

be increased of about 15 % with respect to the production calibrations. 

The developed combustion control system is then tested under 

transient tests, reproducing at the test bench an aggressive RDE 

maneuver. In this case, it is demonstrated that the engine efficiency can 

be increased by about 25%. In particular, the efficiency increase 

achieved under transient conditions is higher because a RON98 

gasoline is used, but also because the knock tendency is lower than the 

one measured under steady-state conditions. Thus, the control system 

can apply more advanced SA values simultaneously reducing more the 

mixture enrichment. 

In the last part of the work the authors also estimate the effects on 

the pollutant emissions by using the developed SA–𝜆 control system. 

Since in the experimental setup no measurement system for the 

pollutant emissions is available, a GT-Power, Wiebe based, two-zones 

combustion model is calibrated to reproduce the average in-cylinder 

pressure curve measured for each operating conditions tested. In this 

way, the NOx can be estimated using the Zeldovich model, while the 

CO is calculated using the kinetical models implemented in GT-Power. 

Then, the simulated results of pollutant emissions are used to train two 

FNN models thanks to which it is possible to estimate the desired 

values with a low computational effort using the engine parameters 

measured during the transient test. A reduction of about 50 % of CO 

emission with respect to the production calibrations of the engine is 

estimated for the high load and speed region of the operating range 

with an increase of 20% of NOx. These results can be described 

considering that, running the engine under knock limited conditions, 

and reducing the mixture enrichment, the maximum in-cylinder 

temperature increases leading to a higher NOx production. 

Nevertheless, the TWC can convert this pollutant emission with the 

maximum efficiency because the final applied 𝜆 value is still rich in 

the high load and speed part of the operating field. 

The developed SA–𝜆 control system can properly work with 

robust feedback from the combustion chamber. Nevertheless, it is well 

known that the in-cylinder pressure sensors cannot be used for the final 

on-board application. For this reason, future works will be the tests of 

the proposed control system using an innovative and cheap 

piezoelectric washer sensor that can be installed between the engine 

head and the spark plug [39, 40]. 
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Definitions/Abbreviations 

BSFC Brake Specific Fuel Consumption 

CAN Controller Area Network 

ECU Engine Control Unit 

EGR Exhaust Gas Recirculation 

FNN Feedforward Neural network 

GDI Gasoline Direct Injection 

GPF Gasoline Particulate Filter 

MAPO Maximum Amplitude Pressure Oscillation 

MFB10  10% of the Mass Fraction Burned 

MFB50  50% of the Mass Fraction Burned 

PMAX Maximum In-Cylinder Pressure 

RCP Rapid Control Prototyping 

RDE  Real Driving Emission 

RON Research Octane Number 

RT Real Time 

SA Spark Advanced 

SiL Software-in-the-Loop 

TC Turbo-charged 

TEVO Temperature at Exhaust Valve Opening 

TWC Three Way Catalyst 

UEGO Universal Exhaust Gas Oxygen 

VCR Variable Compression Ratio 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 

 

 

https://doi.org/10.4271/03-16-02-0013.
https://doi.org/10.4271/03-16-05-0039.

