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Communicating with Large Intelligent Surfaces:
Fundamental Limits and Models

Davide Dardari, Senior Member, IEEE

Abstract—This paper analyzes the optimal communication
involving large intelligent surfaces (LIS) starting from electro-
magnetic arguments. Since the numerical solution of the corre-
sponding eigenfunctions problem is in general computationally
prohibitive, simple but accurate analytical expressions for the link
gain and available spatial degrees-of-freedom (DoF) are derived.
It is shown that the achievable DoF and gain offered by the
wireless link are determined only by geometric factors, and that
the classical Friis’ formula is no longer valid in this scenario
where the transmitter and receiver could operate in the near-
field regime. Furthermore, results indicate that, contrarily to
classical MIMO systems, when using LIS-based antennas DoF
larger than 1 can be exploited even in strong line-of-sight (LOS)
channel conditions, which corresponds to a significant increase
in spatial capacity density, especially when working at millimeter
waves.

Index Terms—Large intelligent surfaces; metasurfaces; holo-
graphic MIMO; wireless communication; fundamental limits;
degrees of freedom

I. INTRODUCTION

FUTURE wireless networks are expected to become dis-
tributed intelligent communication, sensing and comput-

ing entities. This will allow to meet ultra-reliability, high
capacity densities, extremely low-latency and low-energy con-
sumption requirements posed by emerging application sce-
narios such as Industrial Internet of Things in Factories
of the Future [1], [2]. The current trend in satisfying part
of such requirements is through cell densification, massive
multiple-input multiple-output (MIMO) transmission, and the
exploitation of higher frequency bands (e.g., millimeter and
THz) [3], [4]. Unfortunately, when moving to higher frequency
bands the channel path-loss increases and the multipath be-
comes sparse so that the spatial multiplexing peculiarity of
MIMO, i.e., the channel degrees-of-fredom (DoF), guaranteed
at lower frequencies by rich multipath, is lost in favor of
only beamforming gain which increases the communication
capacity logarithmically instead of linearly with the number
of antennas [5].

The introduction of metamaterials to realize, for instance,
the so called metasurfaces [6]–[8], has attracted a wide interest
in different research communities with applications including
transmitarrays [9], metamirrors [10]–[12], reflectarrays [13],
[14], metaprisms [15], and holograms [7], [16]. Furthermore,
the recent development of programmable metasurfaces, used as
smart electromagnetic (e.m.) reflectors and large configurable
antennas, has opened new very appealing perspectives [9],
[17]–[20]. In fact, these intelligent surfaces can be easily

D. Dardari is with the Dipartimento di Ingegneria dell’Energia Elettrica e
dell’Informazione “Guglielmo Marconi” (DEI), CNIT, University of Bologna,
Cesena Campus, Cesena (FC), Italy, (e-mail: davide.dardari@unibo.it).

𝜉!

𝜓!(𝒓)

𝜑!(𝒔)
𝜑"(𝒔)

𝜉"

𝜓"(𝒓)

LIS

SIS

Fig. 1. Example of LIS-based communication scenario.

embedded in daily life objects such as walls, clothes, buildings,
etc.. Environments coated with intelligent surfaces constitute
the recently proposed smart radio environments concept [21]–
[23]. In smart radio environments, the design paradigm is
changed from wireless devices/networks that adapt themselves
to the environment (e.g., propagation conditions), to the joint
optimization of both devices and environment using reconfig-
urable intelligent surfaces (RISs).

The advantages of RIS-enabled systems have been analyzed
in several papers. For instance, in [24] a RIS-enhanced or-
thogonal frequency division multiplexing (OFDM) system is
investigated, where the power allocation and the phase profile
of the metasurface are jointly optimized to boost the achievable
rate of a cell-edge user. In [25], [26], it is shown that the
channel rank of MIMO communication in line-of-sight (LOS)
can be increased by adding a RIS generating an artificial path
that can be exploited by the MIMO system to increase the
capacity. The authors in [27] present a comparison between
RIS- and relay-enabled wireless networks by discussing the
similarities and differences. Other studies can be found, for
instance, in [28], [29]. An interesting alternative to RISs is
given by metaprisms, which are passive and non-configurable
frequency-selective metasurfaces proposed in [15]. With an
appropriate design of the metaprism, it is possible to control
that each data stream in an OFDM system is reflected to the
desired direction by properly dispatching subcarriers to users.
This helps to cover areas experiencing severe non line-of-sight
(NLOS) channel conditions at low-cost.
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A. Related Work

Most of the papers dealing with intelligent surfaces, such
as those cited above, use them as (possibly reconfigurable) re-
flectors to assist multipath propagation. A few papers analyze
the potential of using metasurfaces as large antennas, namely
large intelligent surface (LIS)-based antennas, to improve the
communication capacity [18], [20], [30] or to enable single-
anchor localization [31].

One question is whether smart metasurfaces can be used
as the enabling technology to approach the full control of
e.m. waves generated or sensed by antennas. In fact, with
metamaterials e.m. waves can be shaped almost arbitrarily, at
least in theory. It is expected that this unprecedented flexibility
offered by LISs (e.g., on walls), or medium intelligent surfaces
(MISs) (e.g., on cars/truck), and small intelligent surfaces
(SISs) (e.g., on smartphones/sensors), will provide a great
opportunity to move towards the ultimate capacity limit of
the wireless channel.

The main fundamental results on the physical limitation
brought by the e.m. transportation of information can be
found in [32]–[35] and references therein. The authors in
[36] extend these results by generalizing the Clarke’s channel
model to non-isotropic random scattering environments using
a mathematically tractable framework based on Fourier plane-
wave series expansion of the channel. With this model they
show that the DoF of the e.m. wave on a continuous large
antenna aperture is proportional to the surface area normalized
to the square wavelength [37]. These results mainly address
the computation of the spatial dimensionality of the e.m. field
when considering finite volumes with sources and scatterers in
the far-field, but they do not consider the spatial DoF available
in a communication system employing intelligent surfaces as
transmit and receive antennas, possibly in the near-field region.

The adoption of LIS-enabled antennas provides high flex-
ibility in network design as well as the potential to achieve
the goals of next generation wireless networks, but it has also
opened several fundamental questions that are still unsolved,
such as understanding the theoretical limits and how to achieve
them in practice.

With LISs, classical models for antenna arrays fail to
capture the actual wireless link characteristics in terms of gain,
path-loss and available DoF as they assume (Fraunhofer) far-
field condition (i.e., a distance much larger than the antenna
dimension so that waves can be considered plane [38]),
whereas with LISs the size of the antenna becomes comparable
to the distance of the link (near-field regime). Moreover, they
usually do not account for the flexibility in generating the
current distribution offered by LISs (holographic capability)
and hence common results of aperture antennas are no longer
valid. Therefore, new models based on the ultimate physical
limitation brought by the e.m. transportation of information
should be considered.

One of the earliest works proposing and studying LISs for
communication is [30], which considers the communication
between a single-antenna user with a LIS, where an analysis
of the spatial capacity density is presented. Practical aspects
related to the design of the optimal sampling lattice of the LIS

are considered by showing that the hexagonal lattice is optimal
for minimizing the surface’s area of a LIS under the constraint
that one independent signal dimension should be obtained per
spent antenna element of the LIS.

The work has been extended in [39] by the same authors to
investigate the optimal user assignments for a distributed LIS
system with several LIS units, with the purpose to select the set
of best units to serve a given number of users simultaneously.
The multi-user scenario is considered also in [40], where
it is shown that when using a massive MIMO system with
extremely large arrays, users can effectively communicate
only with a sub-part of the array, thus creating non-stationary
patterns. The paper proposes a receiver architecture based on
subarray processing capable of dealing with this situation.

In [41], the distribution of the sum-rate of an uplink LIS
network under imperfect channel estimation is investigated
through an asymptotic analysis, from which expressions for
the outage probability are derived and used to show that LIS-
based systems can provide reliable communications. Further
results can be found in the recent paper [42] published by
the same authors, where the occurrence of channel hardening
effects is also analyzed.

In [43] a general theory of space-time modulated digital
coding metasurfaces to obtain simultaneous manipulations of
e.m. waves in both space and frequency domains is proposed
and validated in the far-field regime.

Finally, the issue of power and cost of large massive MIMO
systems using metasurfaces is addressed in [20]. Such chal-
lenges are tackled by incorporating signal processing methods,
such as compression and analog combining, in the physical
antenna structure. The characterization of the maximal achiev-
able sum-rate on the uplink and potential gain over standard
antenna arrays are studied.

B. Main Contribution
To the author’s knowledge, no results are present related to

the investigation of the available spatial DoF as well as the
coupling gain between intelligent surfaces, in particular when
the maximum degree of flexibility in e.m. shaping is allowed,
and one of the antennas is large so that it might operate in the
near-field even at practical distances.

In this paper, the optimal communication between LIS/SIS
is addressed as an eigenfunctions problem starting from an
e.m. formulation, similarly to what done in [44], [45] for
optical systems, and preliminarly addressed in [46]. Unfor-
tunately, finding the solution to the eigenfunctions problem
requires extensive and sometimes prohibitive e.m.-level sim-
ulations if large surfaces are considered, and usually they do
not provide general insights. Therefore, we focus on obtaining
approximate but accurate analytical expressions for the link
gain and the available orthogonal communication channels
(i.e., the DoF) between the transmitter and receiver. Although
such expressions are easy to compute numerically, we further
derive closed-form asymptotic and non-asymptotic expressions
for some specific cases of interest which allow to get important
insights about the communication between intelligent surfaces
and can serve as design guidelines in future wireless networks
employing LISs.
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Furthermore, we show that, contrarily to classical MIMO,
with LIS-based antennas the available DoF can be higher than
1, even in LOS channel condition, thus boosting in principle
the channel capacity. This is useful when moving towards high
frequencies where LOS communication becomes predominant
and the multipath weaker so that conventional MIMO systems
cannot benefit from multiplexing gain (i.e., the DoF), usually
obtained by exploiting the multipath. In addition, the achiev-
able DoF and gain offered by the wireless link are shown to
be determined only by geometric factors normalized to the
wavelength, and that the classical Friis’ formula is no longer
valid when using LISs. Asymptotic expressions for very large
LISs or large distances put in evidence the difference between
classical and LIS-based communication systems.

The remainder of this paper is organized as follows. In
Section II, the general problem formulation is given. Analyti-
cal expressions for the link gain and the communication DoF
for the general case as well as for same particular geometric
configurations are derived, respectively, in Sections III and IV.
Numerical results and discussions are presented in Section V.
Finally, conclusions are given in Section. VI.

C. Notation and Definitions

Lowercase bold variables denote vectors in the 3D space,
i.e., r = ux · rx + uy · ry + uz · rz is a vector with cartesian
coordinates (rx, ry, rz), r̂ is a unit vector denoting its direction,
and r = |r| denotes its magnitude, where ûx , ûy and ûz repre-
sent the unit vectors in the x, y and z directions, respectively.
Italic capital letters (e.g., E(r), J(r)) represent electromagnetic
vector functions. Boldface capital letters are matrices (e.g., H),
where I is the identity matrix, and † indicates the conjugate
transpose operator. ∇2 J(r) is the Laplacian of the vector
function J(r), whereas ∇Φ and ∇ · J(r) are the gradient and
divergence operators, respectively. Surfaces and volumes are
indicated with calligraphic letters ST, where AT = |ST | is their
Lebesgue measure. Define the L2-norm | |r| |, the Frobenius

norm | |X| | =
√∑N

k=1
∑N

j=1
��{X}k j ��2, and the outer product

(tensor product) r⊗s, where {r⊗s}k j = rk sj , and {X}k j is the
k jth element of matrix X. The notation L2(ST) indicates the
Hilbert space corresponding to the square-integrable functions
defined on ST. Furthermore, denote with µ, ε , and η =

√
µ/ε

the permittivity, permeability and impedance of free-space,
respectively, and c the speed-of-light.

II. GENERAL PROBLEM FORMULATION

Thanks to the adoption of metamaterials, with LISs one
can synthesize in principle any current distribution, then it
is of interest to investigate how many orthogonal channels,
i.e., DoF, can be established when two LIS/SIS are commu-
nicating with each other. To this purpose, we approximate the
intelligent surface as a continuous array of an infinite number
of infinitesimal antennas. A system having an uncountably
infinite number of antennas in a finite space has been recently
dubbed as Holographic MIMO [36].

A. Problem Formulation

Consider a transmit LIS or MIS/SIS antenna with surface
ST of area AT = |ST | containing e.m. monochromatic source
currents with Fourier representation J(s , ω) different from zero
in s ∈ ST, with ω being the angular frequency, which generate
an electric field E(r , ω) at the generic location r in free-
space. Furthermore, we consider a receive LIS antenna SR not
intersecting ST, with area AR = |SR |.1 Due to the reciprocity
of the radio medium, their role can be exchanged.

Each frequency component satisfies the inhomogeneous
Helmholtz wave equation2

∇2E(r) + k2
0 E(r) = k0 η J(r) , (1)

where k0 = ω/c = 2π/λ is the wavenumber, λ the wavelength,
and we have dropped the explicit dependence on ω to lighten
the notation.

Any point source in ST generates the (outgoing) wave given
by the tensor Green’s function [38]

G(r) = −
ωµ

4π

[
I +

1
k0
∇∇

]
exp (− k0r)

r
, (2)

with r = |r|, which obeys the Helmholtz equation.
By expanding (2) we obtain [48]

G(r) = −
 η exp (− k0r)

2λr

[(
I − r̂ · r̂†

)
+

λ

2πr

(
I − 3 r̂ · r̂†

)
(3)

−
λ2

(2πr)2

(
I − 3 r̂ · r̂†

)]
' −

 η exp (− k0r)
2λr

(
I − r̂ · r̂†

)
,

where we grouped the terms multiplying, respectively, the
factors 1/r , 1/r2 and 1/r3. It is evident from (3) that when
r � λ, the second and third terms can be neglected and hence
the right-hand side approximation in (3) holds.3 By adding all
the waves from the sources in ST, the resulting wave in r is

E(r) =
∫
ST

G(r − s) J(s) ds . (4)

The goal is to determine how many orthogonal communi-
cation channels, namely communication modes, with as large
coupling intensities as possible can be activated between ST
and SR. This is associated to the optimal approximation of
every element in the image space of a Hilbert-Schmidt operator
in terms of singular functions. Specifically, define X = L2(ST)

and Y = L2(SR) the Hilbert spaces corresponding to the
square-integrable functions defined in ST and SR, respectively.
The function E(r) ∈ Y can be seen as the image of J(s) ∈ X
through the Hilbert-Schmidt kernel G(r, s) = G(r − s) on
ST × SR, which induces the operator G : X → Y such that,
for any J ∈ X,

(G J) (r) =
∫
ST

G(r, s) J(s) ds . (5)

1Here we consider only surfaces because of their higher practical relevance,
even though most of the following results can be extended to volumes as well.

2Similar formulation can be done for the magnetic field in case of magnetic
currents even though it is always possible to model the problem using
equivalent source currents [47].

3Under this condition the system does not work in the ‘reactive’ near-field.
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Define the following self-adjoint Hilbert-Schmidt operators
G†G and GG†, with symmetric kernels

KT(s , s′) =
∫
SR

G†(r − s)G(r − s′) dr (6)

KR(r , r′) =
∫
ST

G(r − s)G†(r′ − s) ds . (7)

A fundamental property of Hilbert-Schmidt operators is that
they are compact and admit either a finite or countably infinite
orthonormal basis. In particular, two sets of orthonormal
eigenfunctions {φn(r)}, {ψn(s)} exist, which are solutions,
respectively, of the following coupled eigenfunction problems:

ξ2J(s) =
∫
ST

KT(s , s′) J(s′) ds′ (8)

ξ2E(r) =
∫
SR

KR(r , r′)E(r′) dr′ , (9)

with the same real eigenvalues ξ2
1 ≥ ξ2

2 ≥ ξ2
3 . . . [35], [49].

Note that {φn(r)} and {ψn(r)} are two sets of orthonormal
(vector) functions that are complete, respectively, in ST and
SR, i.e.,∫
ST

φn(r) φ†m(r) dr = δnm
∫
SR

ψn(r)ψ†m(r) dr = δnm , (10)

being δnm the Kronecker delta.
As a consequence, any current density and wave in ST and
SR can be written, respectively, as

J(r) =
∑
n

an φn(r) E(r) =
∑
n

bn ψn(r) , (11)

being an and bn the inner products, respectively, of J(r) and
φn(r), and of E(r) and ψn(r). It can be easily verified that
bn = ξn an.

Consider now the following approximation of the kernel G
in terms of D singular functions

GD(r, s) =
D∑
n=1

λn un(r) ⊗ v†n(s) . (12)

For a fixed D, the best approximation of G(r, s) is obtained
by choosing in (12) un(r) = ψn(r), vn(s) = φn(s), and λn = ξn,
n = 1, 2, . . . D, so that the error

eD =
∫
ST

∫
SR

| |G(r, s) − GD(r, s)| |2 dr ds =
∞∑

n=D+1
ξ2
n (13)

is minimized. This implies an optimal D-dimensional approx-
imation of any function in Y, image of the operator induced
by the kernel G.

Since ξD → 0, it is possible to optimally approximate the
current density and wave, respectively, in ST and SR, using
(11) up to the first D terms with an error associated with the
approximation at any level of accuracy.

The geometric interpretation of this result is that the generic
source current J(s) can be projected onto the coordinate
system determined by the orthogonal (vector) eigenfunctions
{φn(s)} then, through the kernel (or tensor) G(r) in (4), the
nth eigenfunction φn(s) of surface ST is put in one-to-one
correspondence with the nth eigenfunction ψn(r) of the receive
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Fig. 2. Communication architecture based on orthogonal parallel channels.

surface SR through the scaling singular value ξn. Therefore,
if one takes as source function the nth eigenfunction, i.e.,
J(s) = φn(s), s ∈ ST, then the output electric field results
ξn ψn(r), r ∈ SR.

The eigenfunction decomposition ensures that the current
distribution φ1(s) in ST leads to the electric field ξ1 ψ1(r)
within SR with the largest intensity (eigenvalue ξ2

1 ). The
current distribution φ2(s) in ST leads to the electric field
ξ2 ψ2(r) within SR, orthogonal to ξ1 ψ1(r), with the second
largest intensity (eigenvalue ξ2

2 ), and so on. Each pair of
functions (φn(s), ψn(r)) determines a spatial dimension of the
system (communication mode) across which one can establish
an orthogonal communication (see Fig. 1).

It is worth to point out that since in general the number
of eigenvalues in the coupled eigenfunction problems (8) is
infinity, the number of communication modes, namely the
DoF, is defined conventionally as the minimum number D
of eigenvalues sufficient to describe the signals within a given
level of accuracy, e.g., compared to the noise intensity. A large
level of coupling means that the generated wave is confined
approximatively within the space between ST and SR. Instead,
a low level of coupling denotes that the generated wave is
mainly dispersed away from the receiver’s surface SR.

By contrast, in MIMO systems the DoF corresponds to the
rank of the channel matrix which is always no larger than
the minimum between the number of transmit and receive
antennas.

In terms of communication system representation, the eigen-
function decomposition leads to the optimal communication
architecture depicted in Fig. 2. From it we obtain the input-
output representation in terms of D parallel channels

yn = ξn xn + wn , n = 1, 2, . . . ,D , (14)

being wn the additive white Gaussian noise (AWGN), where
the D input data streams {xn} are associated to the basis
functions {φn(s)} in ST (i.e., current spatial distribution on
the transmit surface), and they are recovered at the receiver
after the correlation of the received signal E(r) with the
corresponding basis functions {ψn(s)} in SR. This scheme is
information-theoretical optimal.

It is worthwhile to highlight that the capacity gain with
respect to the case where D = 1, for a given signal-to-noise
ratio (SNR), could be significant. For example, supposing
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uniform power allocation among the D parallel channels, such
gain is

GC =
D log2

(
1 + SNR

D

)
log2 (1 + SNR)

, (15)

which increases with D.

B. Maximum Coupling Intensity Between Intelligent Surfaces

The effect of each polarization direction can be studied sep-
arately if the components of J(s) = Jx(s) ûx+Jy(s) ûy+Jz(s) ûz

are taken orthogonal. Therefore, without loss of generality,
suppose we excite the x-component, i.e., J(s) = Jx(s) ûx . By
exploiting the identity (37) in Appendix A and considering
the last term of (3), the total normalized (i.e., dimensionless)
coupling intensity between intelligent surfaces results

cx =
(4π)2

λ2
1
(ωµ)2

∑
n

ξ2
n =

4
η2

∫
SR

∫
ST

| |Gx(r − s)| |2 dr ds

=
1
λ2

∫
SR

∫
ST

(ry − sy)2 + (rz − sz)2

|r − s|4
dr ds , (16)

where r = (rx, ry, rz) ∈ SR and s = (sx, sy, sz) ∈ ST represent
the coordinates of the generic points on the receive and
transmit surfaces, respectively.

The notation Gx(·) indicates we consider only the first col-
umn of tensor G(·), corresponding to the contribution caused
by an excitation in the x-direction. Note that in general the
excitation in the x-direction might contribute to all directions
in the received electric field. The expressions for the other
exciting directions are similars with mutual exchange of x, y
and z.

In [44] the approximate solution to the eigenfunction prob-
lems valid for two collinear rectangular prisms at distance
d, oriented along the z-axis, of volume VT = ∆xT ∆yT ∆zT
and VR = ∆xR ∆yR ∆zR, respectively, is presented. Specifically,
the solution holds when the volumes are far apart compared
to their sizes, i.e., d � ∆xT,∆yT,∆zT,∆xR,∆yR,∆zR, which
means they are in the (Fraunhofer) far-field region. In this
case, the DoF available for communication has been found to
be

D =
∆xT ∆yT∆xR ∆yR

d2λ2 , (17)

whereas the total (un-normalized) coupling factor is

c =
VT VR

(4πd)2
. (18)

Note that the thickness of volumes in the z axis does not
affect the DoF but only the coupling intensity.

Incidentally, for very small antennas, i.e., ∆xT∆xR � λ d,
∆yT∆yR � λ d, only one solution to the eigenfunction
problems exists, corresponding to a plane wave that travels
with direction from the transmit antenna to the receive antenna.
Unfortunately, the result above by [44] is no longer valid when
analyzing a LIS as the assumption of far apart antennas, and
hence the parallax approximation typical of the Fraunhofer
region, does not hold anymore.

The analytical derivation of the eigenfunctions and eigenval-
ues is in general elusive and one has to resort to e.m. simula-
tions, which could be prohibitive for LISs and typically they do

x
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k0

kx
ky

k

s=(sx,sy,sz)

r=(rx,ry,0)

r-s

Transmit
SIS 

Receive
LIS 

Sy
Sx

d

Lx
Ly

Fig. 3. Geometric configuration between SIS and LIS.

not provide general insights. In the next sections we bypass the
direct derivation of the solutions to the eigenfunction problems
by resorting to geometric arguments, with the purpose to
determine the spatial DoF available for communication. Our
aim is to derive simple expressions for particular geometric
configurations of interest, also valid in the radiating near-field.

III. POWER GAIN BETWEEN LARGE AND SMALL-MEDIUM
INTELLIGENT SURFACES

The coupling intensity for any generic geometric con-
figuration of antennas can be easily computed by solving
(16) numerically. Nevertheless, closed-form expressions can
be obtained for some relevant cases from which interesting
considerations can be derived.

Consider a transmit MIS/SIS and a receive LIS at distance
d. This situation is expected to be common in practice where
the MIS/SIS antenna might be embedded, for instance, into a
smartphone or on top of a car, whereas the LIS coats a wall of a
building (as in Fig. 1). Without loss of generality, the receive
LIS is deployed along the xy-plane at z = 0, therefore the
generic point on the surface is represented by the coordinates
r = (rx, ry, 0) ∈ SR (see Fig. 3). Denote with s = (sx, sy, sz) ∈
ST the coordinates of the generic point source of the transmit
surface ST. The centers and sizes of the transmit and receive
intelligent surfaces are, respectively, s0 = (x0, y0, d), (Lx, Ly)

and r0 = (0, 0, 0), (Sx, Sy). The corresponding areas are AT =

Lx Ly and AR = Sx Sy. Since the transmit antenna is a MIS/SIS,
it is reasonable to assume that Lx, Ly � d, Lx � Sx, and
Ly � Sy. Contrarily, Sx and Sy may be of the same order of
magnitude as d.

To calculate the link power gain between the transmit SIS
and the receive LIS, one has to consider only the component
of the power integrand in (16) perpendicular to the surface,
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i.e.,

g =
1
λ2

∫
SR

∫
ST

(ry − sy)2 + (rz − sz)2

|r − s|4
p̂ · n̂ dr ds

'
AT

λ2

∫
SR

(
(ry − y0)

2 + d2) d
|r − s0 |5

dr , (19)

where p̂ = (r − s)/|r − s| is the direction of propagation, and
n̂ = ẑ. In (19), we have made the approximations sz ' d and
|r−s|2 ' |r−s0 |

2, since the transmit antenna is small compared
to the distance d. As a consequence, the result does not
depend on SIS’ orientation but only on its area AT. Equation
(19) can be solved in closed-form but the final expression
is quite articulated and it does not provide important insights.
Therefore, for the sake of space, we report here the result valid
for s0 = (0, 0, d) from which some interesting conclusions can
be drawn. In this case, (19) becomes

g =
AT

λ2

∫ Sx/2

−Sx/2

∫ Sy/2

−Sy/2

d
(
r2
y + d2

)
(
r2
x + r2

y + d2)5/2 drx dry

=
4d ATSx

3λ2

∫ Sy/2

−Sy/2

6d2 + S2
x + 6r2

y(
d2 + r2

y

) (
4d2 + S2

x + 4r2
y

)3/2 dry , (20)

which gives

g =

8AT

(
SxSy d

(S2
x+4d2)

√
S2

x+S
2
y+4d2

+ tan−1
(

SxSy

2d
√
S2

x+S
2
y+4d2

))
3λ2 . (21)

For a square LIS, the last expression simplifies as follows

g =
4AT

3λ2

( √
2F

√
1 + 2F(1 + 4F)

+ 2acot
(√

8F(1 + 2F)
))
, (22)

where F = d2/AR. It can be observed from (22) that the gain is
a function of relative geometric quantities, i.e., the normalized
(to the wavelength) transmit SIS’ area AT and the ratio F.

It is interesting to analyze the behavior of (22) when the
LIS is extremely large compared to the distance d (F → 0),
that is

g(large LIS) =
4πAT

3λ2 , (23)

which becomes independent of the distance. Instead, for large
distances (F → ∞), corresponding to the Fraunhofer far-field
region, (22) gives

g(large d) =
AT AR

λ2d2 . (24)

The latter is the result found by Miller [44] (reported in (18)
with a different normalization factor) when considering thin
volumes and it is nothing else than the well-known Friis’ for-
mula. In fact, if one defines GI = λ

2/(4πd)2, GT = 4πAT/λ
2,

and GR = 4πAR/λ
2, respectively, the isotropic free-space

channel gain, the gain of the transmit and receive antennas
considered as aperture antennas, it is g(large d) = GT GR GI
[47].

It is worth to notice that the comparison between (23)
and (24) puts in evidence the limitation of classical path-loss
formulas when using LISs. In fact, from (24) one could draw

the conclusion that by increasing the size of both the transmit
and receive antenna it is possible to increase the link gain to
any desired level. Instead, (23) tells that this is possible only
up to a certain extent, i.e., until the size of one of the two
antennas becomes very large so that the system works in the
near-field region. In that region, the link gain is limited by the
(normalized) area of the smallest of the two antennas. This
result is a direct consequence of the diffraction effect of e.m.
waves.

Equation (19) and, in particular, (21) and (22) represent sim-
ple design formulas useful to characterize the link budget in
LIS-based communications without resorting to e.m. extensive
simulations.

IV. COMMUNICATION DOF BETWEEN INTELLIGENT
SURFACES

In this section we derive approximate expressions for the
communication DoF between a transmit SIS and a receive
LIS antenna following 2D sampling theory arguments. The
accuracy of such expressions, with respect to the actual DoF
value from the eigenfunction problems in Sec. II, is addressed
in the numerical results.

With reference to Fig. 3, the wave originated by the point
source s has wavenumber k0 in the radial direction r − s
between the point source and the generic point r on the
receive (observation) surface SR. Contrarily to what happens
in the 1D coordinate system, where a linear transformation
never changes or generates new frequency components, when
moving to 2D and 3D coordinate systems, it may happen
that the observed wavenumber is different from k0 if the
observation direction is different from that of r − s. More
specifically, along the x and y directions of the receive surface,
the observed wave is characterized by wavenumber

k(r, s) = k0 (p̂ − n̂ (p̂ · n̂)) = (kx(r, s), ky(r, s)) , (25)

where p̂ = (r−s)/|r−s|, and n̂ is the unit vector perpendicular
to the surface in the point r, so that

kx(r, s) = k0
rx − sx√

(rx − sx)2 + (ry − sy)2 + s2
z

ky(r, s) = k0
ry − sy√

(rx − sx)2 + (ry − sy)2 + s2
z

. (26)

Consider now an infinitesimal surface dr centered in r.
The received wave observed in dr can be seen as a two-
dimensional signal whose local bandwidth changes slowly
with r− s, and it is approximatively constant in dr. The local
bandwidth in the wavenumber domain observed in dr is the
maximum wavenumber spread related to all point sources in
ST. Specifically it is

B(r) =
1
4

area [k(r, s)]s∈ST
, (27)

where the operator area[·]s∈ST returns the area of the region
in the complex plane spanned by the function k(r, s) when
parameter s varies in ST.

Considering that the number of requested samples at
Nyquist rate (i.e., the DoF) to represent a 2D signal of spatial
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bandwidth B in an area S is equal to4 B S/π2, the DoF of the
signal “projected” onto SR results

D =
1
π2

∫
SR

B(r) dr . (28)

In the next section we will make (28) particular to some LIS
configurations with the purpose to derive simple expressions
of the DoF and obtain some interesting insights.

A. DoF of Communicating Parallel LIS and SIS

For parallel intelligent surfaces, a way to compute (27) is
to approximate the curve delimiting the area [k(r, s)]s∈ST

with
a quadrilateral having vertices given by k(i)x (r) = kx

(
r, s(i)

)
,

k(i)y (r) = ky
(
r, s(i)

)
, i = 1, 2, . . . , 5, with s(1) = (x0 − Lx/2, y0 −

Ly/2, d), s(2) = (x0 + Lx/2, y0 − Ly/2, d), s(3) = (x0 − Lx/2, y0 +
Ly/2, d), s(4) = (x0 + Lx/2, y0 + Ly/2, d), s(5) = s(1), and then
by applying the Gauss’ formula

A(r) '
1
2

����� 4∑
i=1

(
k(i)x (r) k

(i+1)
y (r) − k(i+1)

x (r) k(i)y (r)
)����� . (29)

From (27), (28) and (29) it follows that

D | | '
1

4π2

∫
SR

A(r) dr . (30)

Unfortunately, (30) does not admit a closed-form expression
in general. However, even though it requires the evaluation of a
two-folded integral, its numerical computation is very fast and
it does not pose any particular issue compared to the numerical
complexity of the eigenfunction problems (8) and (9).

Nevertheless, it could be of interest to derive closed-form
expressions of (30) for some significant cases. Specifically,
since Lx, Ly � d, setting x0 = y0 = 0, (30) gives (details are
reported in Appendix B)

D | | '
2LxLy

λ2

©«
Sx tan−1

(
Sy√

4d2+S2
x

)
√

4d2 + S2
x

+

Sy tan−1
(

Sx√
4d2+S2

y

)
√

4d2 + S2
y

ª®®®®¬
.

(31)

For d � Sx, Sy, i.e., in the far-field region, it is

D | |large =
AT AR

λ2d2 , (32)

which gives (17) derived in [44].
The limit of (31) for Sx, Sy → ∞, i.e., very large surfaces,

is

D | |asympt =
π Lx Ly

λ2 =
πAT

λ2 . (33)

Equation (33) indicates that the maximum DoF depends
only on the area of the transmit surface (normalized to the
square half-wavelength), i.e., the area of the smallest of the
2 antennas, and it represents the ultimate DoF limit which
is independent of the distance. This result is reminiscent of

4Since a signal cannot be limited in both domains, this expression represents
an approximation. An extensive discussion on this subject can be found in
[50].

the DoF in MIMO systems when the channel matrix is full
rank, i.e., in the presence of rich multipath [5]. Unfortunately,
in LOS channel condition, the rank of the MIMO channel
matrix is 1, and hence D = 1 (only beamforming gain is
present). Instead, result (31) indicates that with a LIS one can
obtain DoF larger than 1 even in LOS. Having large DoF in
LOS could significantly increase the link capacity according
to (15), especially at millimeter waves or in the THz band
where the multipath is not rich or could be dominated by the
LOS component.

B. DoF of Communicating Perpendicular LIS and SIS

Consider now a transmit surface along the plane xz with co-
ordinates s = (sx, y0, sz) ∈ ST and a perpendicular receive LIS
at distance d with coordinates r = (rx, ry, 0) ∈ SR. The centers
and sizes of the transmit and receive intelligent surfaces are,
respectively, s0 = (x0, y0, d), (Lx, Lz) and (0, 0, 0), (Sx, Sy). The
corresponding areas are AT = Lx Lz and AR = Sx Sy.

Following a similar approach as in Sec. IV-A, by setting
s(1) = (x0 − Lx/2, y0, d − Lz/2), s(2) = (x0 + Lx/2, y0, d − Lz/2),
s(3) = (x0 − Lx/2, y0, d + Lz/2), s(4) = (x0 + Lx/2, y0, d + Lz/2),
it is

D⊥ '
2LxLz

(√
4d2 + S2

y cot−1
(

2d
Sx

)
− 2d tan−1

(
Sx√

4d2+S2
y

))
λ2

√
4d2 + S2

y

.

(34)

For d � Sx, Sy one gets

D⊥large =
AT ARSy

4λ2d3 , (35)

which, compared to (32) valid for parallel surfaces, denotes
a dependence on the ratio Sy/d. Such a term contributes to
increase the DoF when the LIS is tall and hence is capable to
“see” better the transmit surface lying on the horizontal plane.

The limit of (34) for Sx, Sy →∞, i.e., very large surface, is

D⊥asympt =
πAT

λ2 , (36)

that is, the same as parallel surfaces.

V. NUMERICAL RESULTS

In this section, we present some numerical examples with
the purpose to illustrate the potential advantages in commu-
nicating with LISs and to assess the validity of the method
proposed to compute the DoF.

In Fig. 4, the link gain between a SIS communicating with
a LIS using (21), normalized to GT = AT 4π/λ2, is shown
as a function of F and for different values of LIS’ aspect
ratio AR = Sx : Sy. Notice that this plot does not depend on
λ, on the absolute distance between the intelligent surfaces,
and the dimension of the receive LIS, but only on the relative
quantities F = d2/AR and AR. When the size of the LIS is
comparable or larger than the distance from the transmitter
(small F), near-field effects become dominant leading to a
saturation of the link gain toward the limit value (23). This can
be ascribed to diffraction effects, which make the commonly



8

-20 -15 -10 -5 0 5 10 15 20

F [dB]

-35

-30

-25

-20

-15

-10

-5

0

5

10
G

a
in

 [
d

B
]

AR=1:1

AR=2:1

AR=4:1

AR=8:1

AR=16:1

Friis

Fig. 4. Normalized gain vs F = d2/AR of a SIS-LIS link.
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Fig. 5. DoF vs F = d2/AR for parallel surfaces. AR = 25 cm2, fc = 28 GHz.
Blue markers refer to numerical solution to the eigenfunction problems.

used antenna aperture formula, according to which the antenna
gain is proportional to the geometric area, no longer valid.
From Fig. 4, it can also be noticed that the best geometric
shape is the square one (AR = 1 : 1). For comparison, the
gain obtained using the Friis’ formula (24) is also shown, from
which it is evident that it fails in modeling the link budget
when LISs are used, especially for low F.

Now we investigate the DoF available when a LIS and a SIS
are communicating in the near- and far-field. Fig. 5 shows the
DoF in (31) related to parallel surfaces as a function of F for
different values of AR, with λ = 1 cm ( fc = 28 GHz), and
5 × 5 cm2 LIS (AT = 25 cm2).5

For low F (very large LIS), the DoF saturates to the
limit value given by (33), in this case equal to 78. As far
as the Fraunhofer far-field regime is approached (large F),
the DoF tends to one, as in conventional MIMO systems in
LOS condition where only the beamforming gain is present.

5Although the values obtained from (31) should be rounded to the nearest
integer value larger or equal to 1, here the continuous version is plotted to
easy the reading.

(a) n = 1 (b) n = 2

(c) n = 3 (d) n = 4

Fig. 6. Amplitude of the x-component of eigenfunctions {ψn(r)} (receive
LIS).

(a) n = 1 (b) n = 2

(c) n = 3 (d) n = 4

Fig. 7. Phase of the x-component of eigenfunctions {ψn(r)} (receive LIS).

Again, the best LIS configuration is given by the square shape
(AR = 1 : 1). The result obtained using (17) by [44] is also
reported. It is evident how this expression, valid for antennas
at distances much larger than their dimension, is not accurate
for small F and it is not able to capture the effect of the aspect
ratio of the LIS.

In order to validate the approach proposed in Sec. IV, results
have been compared to those obtained by solving numerically
the eigenfunction problems in Sec. II. To this purpose, differ-
ent numerical approximation methods exist (e.g., Galerkin’s
method) [45]. Among them, we considered the following one:
we decomposed each surface in very small square patches
of side ∆ = λ/16 and we considered them as piece-wise
constant basis functions for the surfaces. In this way, the
eigenfunction problems can be approximated into a singular-



9

value decomposition problem with dimension AR/∆
2×AT/∆

2.
Unfortunately, such a method becomes intractable as soon
as the surfaces become large compared to λ due to the
corresponding huge dimension of the matrix to decompose. To
make the computation time affordable, we considered a MIS
with AR = 1 m2. The DoF has been computed by considering
the largest eigenvalues within a tolerance of 3 dB. Results are
plotted in Fig. 5 (blue markers) and show a good agreement
with the model developed in Sec. IV, especially for small F.
For large F, there are some discrepancies, but the fact that our
results are consistent with the analytical expression (17), which
is accurate for large F, generates the suspect of numerical
evaluation issues caused by the singular-value decomposition
of huge likely ill-posed matrices.

To get a qualitative idea about the shape of the correspond-
ing eigenfunctions, in Figs. 6-9 the amplitude and phase of the
x-component of eigenfunctions {ψn(r)}, for n = 1, 2, . . . 4, and
{φn(r)}, for n = 1, 2, are reported, respectively, under the same
parameters used for the results in Fig. 5. For instance, Figs.
6a and 7a show the electric field observed at the receive LIS
when the exciting current φ1(r), corresponding to the largest
coupling (i.e., the largest eigenvalue ξ2

1 ) reported in Figs.
8a and 9a, is considered. From these figures one can notice
that orthogonality does not involve in general non-overlapped
waves. In fact, the received waves in Figs. 6a and 6b (or
Figs. 6c and 6d) are almost overlapped, but the particular
phase distribution deriving from the eigenfunction problems,
reported in Fig. 7, guarantees the orthogonality between them.
This means that classical beamforming or focusing schemes
aiming at obtaining spatially non-overlapped waves are not in
general optimal when using LISs. Similar considerations can
be done with reference to the transmit SIS by observing Figs.
8a and 8b. Obviously, the generation of such eigenfunctions
require a certain level of flexibility in the antenna configuration
and signal processing capabilities which implies the adoption
of dedicated architectures [20].

The DoF for perpendicular surfaces, given by (34), is
reported in Fig. 10 as a function of F for different values
of AR under the same conditions as that of Fig. 5. As it
can be noticed, the achievable DoF is less than that obtained
for parallel surfaces, which represents the best geometric
configuration to maximize the DoF. It this case, the result
in [44], reported in (17), is not applicable because it is not
able to capture the DoF along the z direction of the SIS.

Interestingly, from the results in Figs. 5 and 10 it turns
out that DoF significantly larger than 1 can be obtained at
practical distances in LOS channel condition, which can have
important implications in next generation wireless networks
operating at millimeter wave and THz bands. For instance,
suppose a typical industrial scenario is considered, where a
LIS of size 5×5 m2 is deployed on the factory ceiling at heigh
d = 5 m. Supposing the transmitting sensors are equipped with
SIS of area AT = 25 cm2 located close to the floor, from Fig.
5 it follows that the DoF is D ' 20 (F = 0 dB, AR = 1 :
1). This corresponds to a significant increase of link capacity
with respect to the situation where only beamforming gain is
exploited and D = 1. For instance, using (15), the capacity
gain at SNR = 20 dB is about 7.76.

(a) n = 1 (b) n = 2

Fig. 8. Amplitude of the x-component of eigenfunctions {φn(r)} (transmit
SIS).

(a) n = 1 (b) n = 2

Fig. 9. Phase of the x-component of eigenfunctions {φn(r)} (transmit SIS).

This result can be interpreted also from another point of
view: in fact, equivalently up to D/AT ' 8, 000 orthogonal
links per square meter can be activated, which is very promis-
ing for the factories of the future where extremely high nodes
densities are expected. In addition, the ability to create wireless
links orthogonal at e.m. level, simplifies the channel multiple
access, thus significantly reducing the communication latency.

VI. CONCLUSION

We have shown that the optimal communication between
LIS/SIS can be formulated as an eigenfunctions problem
starting from e.m. arguments. To obtain high-level descriptions
of LIS-based communication and to avoid extensive and some-
times prohibitive e.m.-level simulations, simple but accurate
analytical expressions for the link gain and the communication
modes (i.e., DoF) between the transmitter and the receiver have
been derived. The obtained expressions allow to get important
insights about the communication between intelligent surfaces
and can serve as design guidelines in future wireless networks
employing LISs.

In particular, it has been shown that the achievable DoF and
gain offered by the LIS-enabled wireless link are determined
only by geometric factors normalized to the wavelength, and
that the classical Friis’ formula is no longer valid in this
scenario. The fundamental limits for very large intelligent sur-
faces have been found to be dependent only on the normalized
area of the smallest antenna involved in the communication.

Another important result is that using LISs one can exploit
the spatial multiplexing even in LOS channel condition at
practical distances, contrarily to conventional MIMO systems
that can only exploit SNR enhancement (beamforming) when
in strong LOS. This opens the possibility to satisfy the
challenging requirements of next generation wireless networks
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operating at millimeter waves or THz bands in terms of
massive communications and high capacity per square meter.

Obviously, several practical open issues need to be ad-
dressed before such limits can be approached by real sys-
tems. For instance, one fundamental research direction is
the design of holographic metasurface technologies capable
of approximating the eigenfunctions required to reach the
fundamental limits with affordable complexity. Another is-
sue, which deserves particular attention, is the definition of
the regulatory power emission masks for LISs. In fact, the
question is whether to define the emission masks at the whole
antenna level, as done in current regulations with conventional
antennas, or to define ad hoc emission masks, for instance,
related to the effective radiated power (ERP) per square meter
(ERP spatial density).
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APPENDIX A

In this Appendix, we show that∑
n

ξ2
n =

∫
SR

∫
ST

| |G(r − s)| |2 dr ds . (37)

From (12), tensor G(r − s) allows the bilinear expansion

G(r − s) =
∑
n

ξn ψn(r) ⊗ φ†n(s) . (38)

The k jth element of tensor G(r − s) can be written as

{G(r − s)}k j =
∑
n

ξn {ψn(r)}k ·
{
φ†n(s)

}
j
, (39)

then��{G(r − s)}k j
��2 (40)

=
∑
n

∑
m

ξn ξm {ψn(r)}k
{
ψ†m(r)

}
k

{
φ†n(s)

}
j
{φm(s)} j .

For each k it is
3∑
j=1

��{G(r − s)}k j
��2

=
∑
n

∑
m

ξn ξm {ψn(r)}k
{
ψ†m(r)

}
k

3∑
j=1

{
φ†n(s)

}
j
{φm(s)} j

=
∑
n

∑
m

ξn ξm {ψn(r)}k
{
ψ†m(r)

}
k
φ†n(s) φm(s) . (41)

By integrating in ST with respect to s and thanks to the
orthogonality condition (10), we obtain∫
ST

3∑
j=1

��{G(r − s)}k j
��2 ds =

∑
n

ξ2
n {ψn(r)}k

{
ψ†n (r)

}
k
. (42)

From the previous result, it follows that∫
ST

| |G(r − s)| |2 ds =
∫
ST

3∑
k=1

3∑
j=1

��{G(r − s)}k j
��2 ds

=
∑
n

ξ2
n

3∑
k=1
{ψn(r)}k

{
ψ†n (r)

}
k

=
∑
n

ξ2
n |ψn(r)|2 . (43)

By integrating (43) in SR and exploiting again the orthog-
onality condition (10), we obtain the final result (37).

APPENDIX B

We show here the derivation of (31) from (30). Since
Lx, Ly � d, setting x0 = y0 = 0, (30) can be expanded as

D '
k2

0
8π2

∫ Sx/2

−Sx/2

∫ Sy/2

−Sy/2

−
U−x (rx)U

+
y (ry)√(

(U−x (rx))
2 +U+y (ry)

)2
+ d2

√
(U+x (rx))

2 +
(
U+y (ry)

)2
+ d2

+
U+x (rx)U

+
y (ry)√

(U+x (rx))
2 +

(
U+y (ry)

)2
+ d2

√
(U−x (rx))

2 +
(
U+y (ry)

)2
+ d2

−
U−x (rx)U

+
y (ry)√

(U−x (rx))
2 +

(
U−y (ry)

)2
+ d2

√
(U−x (rx))

2 +
(
U+y (ry)

)2
+ d2

+
U+x (rx)U

+
y (ry)√

(U+x (rx))
2 +

(
U+y (ry)

)2
+ d2

√
(U+x (rx))

2 +
(
U−y (ry)

)2
+ d2

−
U+x (rx)U

−
y (ry)√

(U+x (rx))
2 +

(
U+y (ry)

)2
+ d2

√
(U+x (rx))

2 +
(
U−y (ry)

)2
+ d2

+
U−x (rx)U

−
y (ry)√

(U+x (rx))
2 +

(
U−y (ry)

)2
+ d2

√
(U−x (rx))

2 +
(
U−y (ry)

)2
+ d2
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+
U−x (rx)U

−
y (ry)√

(U−x (rx))
2 +

(
U+y (ry)

)2
+ d2

√
(U−x (rx))

2 +
(
U−y (ry)

)2
+ d2

−
U+x (rx)U

−
y (ry) drx dry√

(U+x (rx))
2 +

(
U−y (ry)

)2
+ d2

√
(U−x (rx))

2 +
(
U−y (ry)

)2
+ d2

,

(44)

where U+x (rx) = rx + Lx/2, U−x (rx) = rx − Lx/2, U+y (ry) =
ry + Ly/2, and U−y (ry) = ry − Ly/2.

The integrand of (44) can be approximated with the first-
order Taylor double series expansion in Lx and Ly

2d2LxLy(
d2 + r2

x + r2
y

)2 +O
(
L2

x

)
+O

(
L2

y

)
, (45)

resulting in

D '
d2LxLy

λ2

∫ Sx/2

−Sx/2

∫ Sy/2

−Sy/2

1(
d2 + r2

x + r2
y

)2 drx dry , (46)

which admits a closed-form solution given by (31). Using
similar arguments, a closed-form expression can be derived
also for the more general case of x0, y0 , 0, but it is not
reported here due to space constraints and also because no
particular insights can be drawn from it.
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