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Good cues to learn from scratch a confidence
measure for passive depth sensors

Matteo Poggi, Member, IEEE, Fabio Tosi, Student Member, IEEE, and Stefano Mattoccia, Member, IEEE

Abstract—As reported in the stereo literature, confidence
estimation represents a powerful cue to detect outliers as well as
to improve depth accuracy. Purposely, we proposed a strategy
enabling us to achieve state-of-the-art results by learning a con-
fidence measure in the disparity domain only with a CNN. Since
this method does not require the cost volume, it is very appealing
because potentially suited for any depth-sensing technologies, in-
cluding, for instance, those based on deep networks. By following
this intuition, in this paper, we deeply investigate the performance
of confidence estimation methods, known in the literature and
new ones proposed in this paper, neglecting the use of the
cost volume. Specifically, we estimate from scratch confidence
measures feeding deep networks with raw depth estimates and
optionally images and assess their performance deploying three
datasets and three stereo algorithms. We also investigate, for the
first time, their performance with disparity maps inferred by deep
stereo end-to-end architectures. Moreover, we move beyond the
stereo matching context, estimating confidence from depth maps
generated by a monocular network. Our extensive experiments
with different architectures highlight that inferring confidence
prediction from the raw reference disparity only, as proposed in
our previous work, is not only the most versatile solution but
also the most effective one in most cases.

I. INTRODUCTION

The availability of accurate 3D data is of paramount impor-
tance for a large number of high-level tasks in computer vision
and, purposely, some active sensing technologies exist. Some
of them are particularly effective for outdoor environments
(e.g., LiDAR) while others for indoor (e.g., devices based
on light pattern projection or Time-Of-Flight technology).
However, regardless of the technology deployed, they require
to perturb the sensed area with signals leading to poor perfor-
mance, for instance, with reflective or absorbing materials.

On the other hand, passive depth sensing techniques have
the potential to overcome all these issues by inferring depth
with standard imaging devices. Although various approaches
exist, stereo represents the most popular and effective tech-
nique for this purpose. Despite the high accuracy achieved by
state-of-the-art stereo algorithms, this technology suffers from
some intrinsic limitations. For example, occluded areas, low
textured and ambiguous regions such as reflective surfaces, are
challenging and thus prone to errors. Therefore, by reliably de-
tecting wrong depth measurements, one can remove or replace
outliers preventing possible failures of high-level applications.

Confidence measures [1], [2] proved to be very effective to
detect wrong measurements as well as to improve the overall
accuracy of stereo matching [3], [4], [5], [6], [7]. Moreover,
their deployment was also beneficial for other purposes such as
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the self-supervised adaptation of deep networks [8], [9], self-
supervised training of confidence measures [10], and sensor
fusion [11], [12]. Recent works concerning confidence esti-
mation highlighted that the disparity domain contains enough
information to detect outliers effectively [13], [13], [14], [15],
[7], enabling to accomplish this task even when the cost
volume is not available. This fact occurs, for instance, when
dealing with deep networks for stereo and monocular depth
estimation or with off-the-shelf stereo cameras. Moreover, it
is also worth pointing out that enabling accurate detection
of outliers from depth data could be potentially useful for
additional purposes too, for instance, for registration of data
with a different modality [16].

In our previous work [13], we showed for the first time that
a Confidence Convolutional Neural Network (CCNN) could be
trained for state-of-the-art confidence estimation from a single
disparity map. Currently, such a network also represents the
basic building block of top-performing methods, processing
either the disparity map [15], [17] or the cost volume [18].

Following this path, in this paper, we deeply evaluate
which features traditionally available from any depth camera,
i.e. disparity map(s) and the RGB image(s), are relevant to
estimate confidence when fed to a deep network trained for this
purpose. To assess the importance of such features, we carry
out an exhaustive evaluation with three standard datasets and
three popular stereo algorithms [2]. Moreover, since end-to-
end stereo architectures represent the state-of-the-art for stereo,
we show that the considered methods can infer, even in this
case, a meaningful confidence estimation whereas other known
techniques based on cost volume processing could not. Finally,
we move beyond stereo matching and evaluate the considered
confidence estimation methods with the maps generated by
deep networks for monocular depth perception.

Our evaluation highlights that CCNN is not only the most
versatile method, being suited for any depth sensing device,
but also, in most cases, the most effective confidence estima-
tion approach for depth data. Nonetheless, in some specific
circumstances, adding additional cues such as RGB image(s)
and the target disparity map, despite this latter cue is not
always available, yields slightly better accuracy.

II. RELATED WORK

Confidence measures for stereo. Confidence measures
were first extensively reviewed and categorized by [1], and
more recently by [2] considering learning-based approaches.
Both works emphasize how different cues can be taken into
account to formulate a confidence score, such as: matching
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Fig. 1. Confidence estimation in the disparity domain. By visually inspecting reference image (left) and corresponding disparity map (center) computed
by a stereo algorithm, outliers can be easily identified. On the same principle, a CNN can predict a reliable confidence map (right) processing the same cues.

cost, local or global property of the cost curve, left-right
consistency and others. Single confidence measures can be
effectively combined with other hand-crafted features and fed
to a classifier (usually, a random forest) to learn a more
accurate confidence score [19]. Some works [20], [4], [6], [7]
adopted this rationale deploying different features. Moreover,
leveraging the learned confidence estimation, these methods
enabled improvements to stereo accuracy.

Eventually, confidence estimation was tackled exploiting
CNNs. Specifically, in [13] we proposed to learn from scratch
a confidence measure training the CCNN network on samples
extracted from the raw reference disparity map only, while [5]
processing hand-crafted features extracted from the reference
and target disparity maps for their Patch Based Confidence
Prediction (PBCP) approach. In [14] the additional contextual
information from the reference frame is exploited. However,
this method requires a much larger training set compared to
any other method discussed so far because of the increased
variety of data occurring in the image domain. In [21] a com-
parison between random forest and CNN processing the same
features is reported. Differently, arguing local consistency of
confidence maps, in [17], [22] deep networks were trained
to improve the overall accuracy of an input confidence map.
Other effective strategies consist in combining local and global
cues from both image and disparity domains as proposed by
[15] or adding features computed from the cost volume as
shown by [18]. An evaluation of confidence measures suited
for embedded devices was proposed in [23]. Finally, [10]
and [24] proposed two strategies to train confidence measures
without ground-truth labels.

Applications of confidence measures. Confidence estima-
tion has been recently deployed beyond their original outlier
detection scope. Mainly, it has been used to improve stereo
accuracy by detecting ground control points [20], to smooth
the cost volume [4], to improve Semi Global Matching [25]
(SGM) by better combining scanline optimizations [6], [7], [3]
or dynamicaly adjusting penalties [5].

Other applications of confidence prediction concern fusion
of depth sensors with different technology [11], [12], disparity
fusion [26], [27] self-supervised adaptation of deep stereo
models [8], [9] and self-supervised learning of confidence
measures from stereo pairs [10].

Stereo matching. Inferring depth from a couple of synchro-
nized images represents one of the most popular techniques in
computer vision. Conventional stereo algorithms are classified
[28] in local and global, according to the subset of steps
performed, namely i) cost computation ii) cost aggregation
iii) disparity optimization and iv) refinement. Common to all
strategies is matching cost computation, relying on the simple
Sum of Absolute Differences (SAD) or more robust metrics

[29], with census transform [30] often being the preferred
choice. Among traditional algorithms, SGM [25] represents a
good trade-off between speed and accuracy. Nonetheless, the
advent of large and challenging datasets with available ground
truth depth labels, such as KITTI 2012 [31], KITTI 2015 [32]
and Middlebury 2014 [33] highlighted that, despite traditional
algorithms have excellent performance on controlled environ-
ments, they are still far from optimal results when used in real
applications such as autonomous driving.

Deep learning for stereo. The work by Zbontar and
LeCun [34] represented the very first attempt to use deep
learning to tackle stereo matching with a Matching Cost
CNN, namely MC-CNN. Compared to conventional matching
strategies [29], the outcome is a much more effective cost
function according to the evaluation on KITTI and Middlebury
datasets. Other works followed this strategy for matching
cost computation: [35] designed more robust representations
while [36], [37] proposed faster architectures. Later works
proved that dense disparity estimation could be tackled in
an end-to-end fashion with deep learning models trained to
infer per-pixel values directly. A seminal work in this field
was proposed by [38] introducing DispNetC, an encoder-
decoder architecture implicitly solving stereo correspondence
from scratch. Latest works achieved state-of-the-art results on
KITTI datasets by designing end-to-end architectures, with
modules explicitly dealing with the standard phases [28] of
a conventional stereo pipeline. Notable examples are GC-Net
[39], iResNet [40], PSMNet [41], GA-Net [42] and GWC-Net
[43]. To deal with out-of-distribution data, some recent works
proposed self-adapting frameworks [44], [45] and guided deep
networks [46], enabling to take advantage of sparse reliable
depth measurements.

III. LEARNING FROM SCRATCH CONFIDENCE MEASURES

A recent trend concerning confidence estimation proves that
it can be reliably inferred in the disparity domain. The primary
rationale behind this strategy is that, by visual inspection,
several outliers can be easily spotted from the disparity as-
signments of the neighboring pixels, as evident from Fig. 1.

Purposely, in this paper, we thoroughly investigate strategies
to learn from scratch a confidence measure with deep learning
by relying on visual cues only and neglecting the use of
the cost volume, seldom available outside of the conventional
stereo context. For instance, nowadays, the outlined circum-
stance frequently occurs in very relevant cases, such as when
dealing with custom stereo cameras, deep stereo [38] and
monocular [47] depth estimation networks.

A. Input cues
In order to avoid the need for any intermediate representa-

tion, such as the cost volume, we leverage only on the visual
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Fig. 2. Confidence estimation networks.. On the left, the single-stream models processing only disparity cues. On the right, two-streams models processing
both RGB image and disparity cue separately. On top, patch-based networks, on bottom pooling-based. 7 × 7 convolutional layer is used only in case of
15× 15 receptive field.

cues potentially available with a stereo or monocular setup.
Specifically, in the stereo case, given the left and right images
IL and IR and assuming the former as the reference one,
we can always obtain a disparity map for the reference view
and, possibly, a map for the target view, respectively DL and
DR. Nonetheless, it is worth observing that DR might be
not available in some cases, for instance, when dealing with
off-the-shelf stereo cameras (e.g., the Intel RealSense stereo
camera).

Thus, in this paper, we consider an exhaustive combination
of such input cues including configurations already evaluated
and some never explored before. We compare with the same
CNN baseline network different combinations of input features
enabling to highlight which cues are truly useful for confidence
estimation:

Reference disparity map DL: the disparity map aligned
with the input reference frame (typically, the left image). In
[13] this cue proved to be sufficient to learn a confidence
measure.

Reference image IL: RGB input reference frame. [14]
extended CCNN to account for this additional cue.

Warped target disparity map D′R: obtained by warping
target disparity map DR into the left reference frame according
to DL. The absolute difference between D′R and DL encodes
the left-right difference exploited by [5] with PBCP. Purposely,
pixel at coordinates (x, y) is sampled at (x−DL(x, y), y) from
DR as D′R(x, y) = DR(x−DL(x, y), y). This configuration,
referred to as fast in [5], is suited for processing in fully
convolutional manner and thus compatible with both network
architectures adopted in our experiments and detailed in the
reminder, conversely to other configurations in [5] that require
independent processing of each single patch.

Warped target image I ′R: image obtained by warping IR
into the left reference frame according to DL. To the best of
our knowledge, this cue has never been considered before for
confidence prediction. Pixel at coordinates (x, y) is sampled at
(x−DL(x, y), y) from IR as I ′R(x, y) = IR(x−DL(x, y), y).

By designing fully-convolutional architectures, in a single
forward pass, we can estimate confidence for all image pixels.

B. Network architectures and configurations

In the literature, different CNN architectures have been
deployed for confidence estimation. In the remainder, to ad-
equately assess the contribution given by the different input
cues to the final confidence estimation, we focus on two main
categories:

Patch-based [13], [5], [14], made by convolutional layers
only. Spatial resolution is reduced by convolving over valid
pixels (i.e., without padding). For instance, 3×3 convolutions
reduce the resolution by 2 pixels on each dimension, thus
processing a single output value from a 3× 3 patch.

Pooling-based [15], decimating the resolution by means of
pooling operations. The original resolution is restored for the
output through deconvolutions or upsampling operations.

For both, we deploy a baseline architecture regarding the
number of convolutional layers, channels, activation layers and
input dimensions. Precisely, we deploy the architecture from
[13] for patch-based family and ConfNet [15] for pooling-
based. In this latter case, we replace deconvolutions with
nearest neighbour upsampling followed by convolutions to
improve accuracy. The final outputs are normalized in [0, 1]
by a sigmoid layer.

Figure 2 depicts the architectures outlined so far, respec-
tively patch-based (top) and pooling-based (bottom). Regard-
ing patch-based models, we consider two variants with differ-
ent receptive field as proposed in the literature: 9×9 [13] and
15 × 15 [5]. For this latter, a 7 × 7 layer (red in figure) is
added to reduce features dimensions to 1× 1 as well1.

We consider different combinations of the input cues
mentioned above, leading overall to the following six network
configurations:

• CCNN – our Confidence Convolutional Neural Network
processing DL only [13]

• LF – Late Fusion of DL and IL [14]
• PBCP – Patch Based Confidence Prediction from DL

and D′R [5]

1While 9 × 9 patches are reduced by 4 layers to a single pixel, 15 × 15
patches are reduced to 7 × 7 as in [5]. The 7 × 7 layer reduces these latter
to a single pixel as well
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• LF-PBCP – a model mixing information from DL, D′R
and the reference image IL

• LRLF – a late fusion model combining IL, I ′R with
reference disparity map DL

• LRLF-PBCP – a network processing all the information
available from a stereo setup: DL, D′R, IL and I ′R

CCNN and PBCP rely on a single-stream architecture while
the others on two streams. The two resulting variants, for
each family, are depicted respectively at the left and right of
Figure 2. The two streams are combined using concatenation
(white layers). While CCNN, LF and PBCP are known in
the literature, LF-PBCP, LRLF and LRLF-PBCP are new
proposals. Therefore, given the 6 configurations, the 2 patch-
based and the pooling-based models, a total of 18 networks
will be evaluated.

IV. EXPERIMENTAL RESULTS

In this section, we report an exhaustive evaluation concern-
ing the models introduced above.

A. Algorithms and networks for depth from passive sensors

We consider in our evaluation traditional and learning-based
stereo algorithms, an end-to-end model to infer depth from
stereo pairs and a monocular depth estimation network.

AD-CENSUS [30], obtained by applying the census trans-
form with window size 5 × 5 and computing the difference
between left and right transformed images according to the
Hamming distance. A 5× 5 box filtering operation is applied
before the winner takes all (WTA) strategy. This algorithm is
generally considered as the baseline when evaluating confi-
dence measure [2].

MC-CNN [37], CNN based matching cost processing 9×9
or 15× 15 patches (on KITTI and Middlebury, respectively).
As in previous studies [2], in our evaluation we consider MC-
CNN-fst, trained on each dataset by the same authors. From
MC-CNN-fst matching costs, disparity selection is carried out
according to the WTA strategy.

SGM [25], using eight scanline optimizations and cost
volume obtained by normalized AD-CENSUS score. We tuned
penalties to be P1=0.03, P2=3.

DispNetC [38], an encoder-decoder CNN inferring out-of-
the-box a disparity map given a stereo pair. Specifically, we use
the weights made available by the same authors. The output
of this network is the disparity map computed according to
the reference image only. Therefore, with such an algorithm,
the available input clues fit only with CCNN, LF and LRLF.

Monodepth [47], an encoder-decoder model inferring in-
verse depth maps (i.e., disparity) from a single input image.
The network is trained in a self-supervised manner using
image reconstruction losses on frames acquired by a stereo
rig. In our experiments, we consider the VGG model trained
by the same authors. Concerning this method, only CCNN and
LF are compatible with the available input clues.

B. Implementation details and training procedure

All models have been implemented using the TensorFlow
framework. Patch-based models have been trained on batches

TABLE I
RUNTIME ON KITTI IMAGES (375× 1242) ON A TITAN XP GPU.

Architecture Single-Stream Two-Streams
Variant 9× 9 15× 15 Pool 9× 9 15× 15 Pool

Runtime 0.07 s 0.10s 0.02 0.09s 0.13s 0.03

of 128 image patches, while and pooling-based models on
batches of 4 crops of size 256 × 512, both with Binary
Cross Entropy (BCE) loss between estimated confidence ci
and ground truth confidence label yi, for central pixel i in
each patch in the former case or for all the pixels in each crop
in the latter. Labels yi are set to 0 if, in the case of stereo
algorithms, the difference between estimated and ground-truth
disparity is higher than a threshold τ and 1 otherwise. For
Monodepth, we follow a slightly different protocol, described
in detail in Sec. IV-E.

We used Stochastic Gradient Descent (SGD) as the opti-
mizer and a learning rate of 3× 10−3. Training samples have
been generated inferring disparity maps for each of the five
considered depth sensing methods on the KITTI 2012 dataset.
In particular, we sampled two different training splits out of the
total 200 stereo pairs with ground truth depth labels available:

KITTI-small, made of the first 20 frames [2], providing
about 2.7 million pixels with available ground truth labels.

KITTI-large, made of the first 94 frames [14]. This con-
figuration yields about 8 million depth samples.

In order to assess the performance of confidence prediction
across different domains, we train on both splits and test on
remaining samples from KITTI 2012, as well as on KITTI
2015 and Middlebury without re-training the networks [2] to
highlight how each input feature or their combinations are
robust to domain shift. Indeed, since all the networks have
been designed starting from the same baseline structure, such
evaluation will be able to assess the impact of each input cue.
Given the six combinations of input cues, the two patch-based
and the pooling-based models and the two training portions
described so far we trained: 12 models for the Monodepth
algorithm, 18 for DispNetC and 36 for each stereo algorithms.
Overall, we trained 138 networks in about one week with an
NVIDIA Titan Xp GPU. Concerning runtime, Table I reports
the time required on the same GPU to estimate a confidence
map at KITTI resolution (about 375× 1242), showing almost
equivalent runtime for the two patch-based models. Pooling-
based models are much faster, thanks to the reduction of
spatial resolution, but less accurate as we will see through
the evaluation reported next.

C. Evaluation protocol

To quantitatively measure the effectiveness of confidence
prediction, we use the standard protocol adopted in this field
[1], [2]. To this aim, given a disparity map, we sort all pixels
according to their confidence scores in descending order. Then,
a defined sampling interval is used to iteratively extract a fixed
number of samples from the sorted set of pixels and compute
the percentage of outliers after each extraction. The outcome of
this process is a discretized curve from which we compute the
Area Under the Curve (AUC). An optimal confidence measure
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TABLE II
AVERAGE AUC MARGIN (%) ON DISPARITY MAPS BY DIFFERENT STEREO METHODS.

CCNN 1.204 1.171 1.256 1.173 1.286 1.232 1.024 1.031 1.077 1.035 1.138 1.116 1.124 1.1 1.169 1.123 1.288 1.239
PBCP 1.238 1.181 1.304 1.211 1.287 1.29 1.079 1.061 1.14 1.091 1.138 1.176 1.189 1.101 1.193 1.177 1.264 1.263
LF 1.214 1.189 1.301 1.189 1.28 1.228 1.036 1.042 1.13 1.061 1.122 1.11 1.174 1.133 1.26 1.181 1.254 1.234
LF-PBCP 1.228 1.176 1.319 1.205 1.309 1.243 1.075 1.055 1.167 1.089 1.153 1.124 1.195 1.159 1.291 1.284 1.324 1.302
LRLF 1.217 1.182 1.282 1.177 1.299 1.3 1.034 1.045 1.109 1.045 1.131 1.203 1.14 1.148 1.274 1.156 1.307 1.312
LFLR-PBCP 1.237 1.192 1.328 1.207 1.285 1.351 1.084 1.073 1.187 1.091 1.123 1.214 1.162 1.206 1.363 1.204 1.252 1.44
Opt. 1.067 1.035 1.067 1.035 1.067 1.035 0.883 0.883 0.883 0.883 0.883 0.883 0.899 0.899 0.899 0.899 0.899 0.899

small large small large small large small large small large small large small large small large small large
CCNN 12.84 13.14 17.71 13.33 20.52 19.03 15.97 16.76 21.97 17.21 28.88 26.39 25.03 22.36 30.03 24.92 43.27 37.82
PBCP 16.03 14.11 22.21 17 20.62 24.64 22.2 20.16 29.11 23.56 28.88 33.18 32.26 22.47 32.7 30.92 40.6 40.49
LF 13.78 14.88 21.93 14.88 19.96 18.65 17.33 18.01 27.97 20.16 27.07 25.71 30.59 26.03 40.16 31.37 39.49 37.26
LF-PBCP 15.09 13.62 23.62 16.43 22.68 20.1 21.74 19.48 32.16 23.33 30.58 27.29 32.93 28.92 43.6 42.83 47.27 44.83
LRLF 14.06 14.2 20.15 13.72 21.74 25.6 17.1 18.35 25.59 18.35 28.09 36.24 26.81 27.7 41.71 28.59 45.38 45.94
LRLF-PBCP 15.93 15.17 24.46 16.62 20.43 30.53 22.76 21.52 34.43 23.56 27.18 37.49 29.25 34.15 51.61 33.93 39.27 60.18

Patch (15x15) Pool
KITTI 2012 KITTI 2015 Middlebury 2014

Patch (9x9) Patch (15x15) Pool Patch (9x9) Patch (15x15) Pool Patch (9x9)

(a) CENSUS algorithm

CCNN 0.292 0.274 0.322 0.288 0.328 0.317 0.291 0.287 0.319 0.298 0.327 0.331 0.637 0.623 0.67 0.62 0.649 0.65
PBCP 0.299 0.275 0.329 0.288 0.314 0.298 0.302 0.291 0.325 0.301 0.32 0.311 0.645 0.629 0.686 0.618 0.643 0.631
LF 0.296 0.275 0.323 0.294 0.342 0.34 0.294 0.295 0.321 0.302 0.358 0.36 0.68 0.673 0.719 0.694 0.87 0.869
LF-PBCP 0.301 0.276 0.323 0.292 0.331 0.301 0.3 0.293 0.337 0.31 0.336 0.32 0.69 0.651 0.772 0.69 0.823 0.732
LRLF 0.299 0.276 0.314 0.303 0.333 0.318 0.305 0.289 0.319 0.316 0.342 0.338 0.642 0.654 0.682 0.689 0.839 0.821
LRLF-PBCP 0.3 0.277 0.319 0.289 0.315 0.305 0.304 0.293 0.328 0.303 0.322 0.323 0.669 0.712 0.746 0.671 0.747 0.75
Opt. 0.231 0.224 0.231 0.224 0.231 0.224 0.212 0.212 0.212 0.212 0.212 0.212 0.458 0.458 0.458 0.458 0.458 0.458

small large small large small large small large small large small large small large small large small large
CCNN 26.41 22.32 39.39 28.57 41.99 41.52 37.26 35.38 50.47 40.57 54.25 56.13 39.08 36.03 46.29 35.37 41.7 41.92
PBCP 29.44 22.77 42.42 28.57 35.93 33.04 42.45 37.26 53.3 41.98 50.94 46.7 40.83 37.34 49.78 34.93 40.39 37.77
LF 28.14 22.77 39.83 31.25 48.05 51.79 38.68 39.15 51.42 42.45 68.87 69.81 48.47 46.94 56.99 51.53 89.96 89.74
LF-PBCP 30.3 23.21 39.83 30.36 43.29 34.38 41.51 38.21 58.96 46.23 58.49 50.94 50.66 42.14 68.56 50.66 79.69 59.83
LRLF 29.44 23.21 35.93 35.27 44.16 41.96 43.87 36.32 50.47 49.06 61.32 59.43 40.17 42.79 48.91 50.44 83.19 79.26
LRLF-PBCP 29.87 23.66 38.1 29.02 36.36 36.16 43.4 38.21 54.72 42.92 51.89 52.36 46.07 55.46 62.88 46.51 63.1 63.76

Pool Patch (9x9) Patch (15x15) Pool
KITTI 2012 KITTI 2015 Middlebury 2014

Patch (9x9) Patch (15x15) Pool Patch (9x9) Patch (15x15)

(b) MC-CNN algorithm

CCNN 0.191 0.175 0.193 0.194 0.193 0.185 0.197 0.196 0.196 0.215 0.203 0.206 0.769 0.742 0.786 0.796 0.802 0.822
PBCP 0.19 0.177 0.185 0.174 0.201 0.181 0.198 0.198 0.195 0.2 0.214 0.197 0.782 0.764 0.805 0.765 0.84 0.799
LF 0.199 0.173 0.199 0.188 0.243 0.197 0.206 0.197 0.216 0.205 0.308 0.231 0.803 0.826 0.867 0.797 1.262 0.985
LF-PBCP 0.178 0.168 0.185 0.18 0.263 0.226 0.195 0.193 0.211 0.205 0.318 0.288 0.834 0.763 0.851 0.788 1.378 1.254
LRLF 0.202 0.178 0.305 0.212 0.294 0.18 0.204 0.206 0.328 0.226 0.326 0.222 0.831 0.856 1.07 0.794 1.504 1.04
LRLF-PBCP 0.187 0.169 0.201 0.182 0.355 0.227 0.197 0.194 0.219 0.204 0.389 0.272 0.814 0.799 0.819 0.773 1.734 1.194
Opt. 0.088 0.086 0.088 0.086 0.088 0.086 0.091 0.091 0.091 0.091 0.091 0.091 0.454 0.454 0.454 0.454 0.454 0.454

small large small large small large small large small large small large small large small large small large
CCNN 117.05 103.49 119.32 125.58 119.32 115.12 116.48 115.38 115.38 136.26 123.08 126.37 69.38 63.44 73.13 75.33 76.65 81.06
PBCP 115.91 105.81 110.23 102.33 128.41 110.47 117.58 117.58 114.29 119.78 135.16 116.48 72.25 68.28 77.31 68.5 85.02 75.99
LF 126.14 101.16 126.14 118.6 176.14 129.07 126.37 116.48 137.36 125.27 238.46 153.85 76.87 81.94 90.97 75.55 177.97 116.96
LF-PBCP 102.27 95.35 110.23 109.3 198.86 162.79 114.29 112.09 131.87 125.27 249.45 216.48 83.7 68.06 87.44 73.57 203.52 176.21
LRLF 129.55 106.98 246.59 146.51 234.09 109.3 124.18 126.37 260.44 148.35 258.24 143.96 83.04 88.55 135.68 74.89 231.28 129.07
LRLF-PBCP 112.5 96.51 128.41 111.63 303.41 163.95 116.48 113.19 140.66 124.18 327.47 198.9 79.3 75.99 80.4 70.26 281.94 163

Patch (9x9) Patch (15x15) PoolPatch (9x9) Patch (15x15) Pool Patch (9x9) Patch (15x15) Pool
KITTI 2012 KITTI 2015 Middlebury 2014

(c) SGM algorithm

CCNN 0.539 0.493 0.627 0.633 1.09 0.807 0.58 0.516 0.751 0.72 0.856 0.824 2.917 2.924 2.724 2.8 3.588 3.117
LF 0.605 0.529 0.584 0.69 0.669 0.607 0.645 0.548 0.619 0.77 0.649 0.732 3.082 2.95 3.004 2.954 3.289 3.126
LRLF 0.682 0.549 0.654 0.686 0.654 0.669 0.748 0.518 0.722 0.762 0.717 0.723 3.014 3.029 2.964 2.769 3.249 3.021
Opt. 0.083 0.086 0.083 0.086 0.083 0.086 0.107 0.107 0.107 0.107 0.107 0.107 0.978 0.978 0.978 0.978 0.978 0.978

small large small large small large small large small large small large small large small large small large
CCNN 549.4 473.26 655.42 636.05 1213.25 838.37 442.06 382.24 601.87 572.9 700 670.09 198.26 198.98 178.53 186.3 266.87 218.71
LF 628.92 515.12 603.61 702.33 706.02 605.81 502.8 412.15 478.5 619.63 506.54 584.11 215.13 201.64 207.16 202.04 236.3 219.63
LRLF 721.69 538.37 687.95 697.67 687.95 677.91 599.07 384.11 574.77 612.15 570.09 575.7 208.18 209.71 203.07 183.13 232.21 208.9

CCNN 0.451 0.408 0.983 1.141 1.527 0.51 0.635 0.573 1.56 1.77 2.226 0.668
LF 0.521 0.411 0.665 0.838 0.617 0.727 0.703 0.66 1.17 1.175 0.758 0.941
Opt. 0.113 0.111 0.113 0.111 0.113 0.111 0.157 0.157 0.157 0.157 0.157 0.157

small large small large small large small large small large small large
CCNN 299.12 267.57 769.91 927.93 1251.33 359.46 304.46 264.97 893.63 1027.39 1317.83 325.48
LF 361.06 270.27 488.5 654.95 446.02 554.95 347.77 320.38 645.22 648.41 382.8 499.36

Pool

Patch (9x9) Patch (15x15) Pool

KITTI 2012 KITTI 2015
Patch (9x9) Patch (15x15) Pool Patch (9x9) Patch (15x15)

Patch (9x9) Patch (15x15) Pool Patch (9x9) Patch (15x15) Pool
KITTI 2012 KITTI 2015 Middlebury 2014

(d) DispNetC network

would allow sampling of all pixels with correct disparities first,
thus resulting in the lowest AUC score. Thus, given a disparity
map with a percentage ε of outliers, the optimal AUC value
is obtained as follows [1]:

AUCopt =

∫ ε

1−ε

p− (1− ε)

p
dp = ε+ (1− ε) ln (1− ε) (1)

Then, we measure the effectiveness of a confidence measure
by computing the relative margin with respect of the optimal
AUC score as AUC−AUCopt

AUCopt
.

In our experiments, we sampled pixels at intervals of 5%
of the overall amount and we label as outliers pixels with an
absolute disparity error larger than 3 for KITTI datasets and
1 for Middlebury, this latter processed at quarter resolution.
We refer to this amount of erroneous pixels as, respectively,
bad-3 and bad-1 error rates. For training, we set τ to 3. As
already pointed out, when dealing with a monocular network,
we change the method to detect outliers, as will be explained
in detail later.

Considering the vast amount of data collected, before report-
ing the outcome of our evaluation we describe in detail how to
correctly parse the information provided. In particular, for each
depth estimation method, we will report tables organized into
three main blocks for the three datasets, respectively KITTI
2012, KITTI 2015 and Middlebury 2014 from left to right.

Each block is divided into three groups of two columns regard-
ing patch-based models (9× 9 and 15× 15) and the pooling-
based model (Pool) as third. In each group, the two columns
concern the KITTI-small and KITTI-large splits. Each row
reports averaged AUC values for a specific combination of
input cues. Thus, each score refers to a features configuration
tested on a particular dataset after being trained on one of the
two possible training splits. For each single dataset, we apply
a heatmap to better distinguish top-performing configurations
(in green) from those less effective (in red).

D. Evaluation with stereo algorithms

Table II reports results concerned with confidence estima-
tion from disparity maps computed by the aforementioned
stereo algorithms. We will now discuss on each one.

AD-CENSUS. Table II (a) reports results concerned AD-
CENSUS algorithm [30]. Such a method achieves quite high
error rate on the three datasets, respectively, about 39% bad-
3, 35% bad-3 and 37% bad-1 on KITTI 2012, KITTI 2015
and Middlebury 2014. Nonetheless, its cost volume is often
deployed inside well-known pipelines such as SGM [25].
Thus, inferring an effective confidence scoring in this case
allows for deployment of techniques such as [20], [4], [5].

Concerning patch-based methods, we can notice from the
table how the reference disparity map alone contains enough
information to detect outliers with this stereo algorithm nearly
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TABLE III
AVERAGE AUC MARGIN (%) ON DISPARITY MAPS BY MONODEPTH.

CCNN 0.539 0.493 0.627 0.633 1.09 0.807 0.58 0.516 0.751 0.72 0.856 0.824 2.917 2.924 2.724 2.8 3.588 3.117
LF 0.605 0.529 0.584 0.69 0.669 0.607 0.645 0.548 0.619 0.77 0.649 0.732 3.082 2.95 3.004 2.954 3.289 3.126
LRLF 0.682 0.549 0.654 0.686 0.654 0.669 0.748 0.518 0.722 0.762 0.717 0.723 3.014 3.029 2.964 2.769 3.249 3.021
Opt. 0.083 0.086 0.083 0.086 0.083 0.086 0.107 0.107 0.107 0.107 0.107 0.107 0.978 0.978 0.978 0.978 0.978 0.978

small large small large small large small large small large small large small large small large small large
CCNN 549.4 473.26 655.42 636.05 1213.25 838.37 442.06 382.24 601.87 572.9 700 670.09 198.26 198.98 178.53 186.3 266.87 218.71
LF 628.92 515.12 603.61 702.33 706.02 605.81 502.8 412.15 478.5 619.63 506.54 584.11 215.13 201.64 207.16 202.04 236.3 219.63
LRLF 721.69 538.37 687.95 697.67 687.95 677.91 599.07 384.11 574.77 612.15 570.09 575.7 208.18 209.71 203.07 183.13 232.21 208.9

CCNN 0.451 0.408 0.983 1.141 1.527 0.51 0.635 0.573 1.56 1.77 2.226 0.668
LF 0.521 0.411 0.665 0.838 0.617 0.727 0.703 0.66 1.17 1.175 0.758 0.941
Opt. 0.113 0.111 0.113 0.111 0.113 0.111 0.157 0.157 0.157 0.157 0.157 0.157

small large small large small large small large small large small large
CCNN 299.12 267.57 769.91 927.93 1251.33 359.46 304.46 264.97 893.63 1027.39 1317.83 325.48
LF 361.06 270.27 488.5 654.95 446.02 554.95 347.77 320.38 645.22 648.41 382.8 499.36

Pool

Patch (9x9) Patch (15x15) Pool

KITTI 2012 KITTI 2015
Patch (9x9) Patch (15x15) Pool Patch (9x9) Patch (15x15)

Patch (9x9) Patch (15x15) Pool Patch (9x9) Patch (15x15) Pool
KITTI 2012 KITTI 2015 Middlebury 2014

optimally. Indeed, CCNN always achieves the lowest average
AUC margin . The reason is that the network effectively learns
to detect from this cue glaring error patterns, clearly visible
in the disparity map, as well as high-frequency noise often
present in regions supposed to be smooth. Adding other cues
reduces confidence estimation capability slightly, probably
because they are scarcely informative (e.g., the algorithm
often fails where the original stereo images lack information,
as in textureless regions). Processing 9 × 9 patches catches
enough context with all datasets, while including more training
samples from KITTI 2012 (large vs small splits) improves the
results on the remaining of KITTI 2012 and on Middlebury.
Nonetheless, this strategy yields slightly worse accurate con-
fidence prediction on KITTI 2015.

Pooling-based models, although faster, typically perform
worse than patch-based methods confirming the findings in
[15], because of pooling operations losing high-frequency
details. Nonetheless, additional cues, e.g. the LF configuration,
enable to reduce the gap on all the datasets partially.

MC-CNN. Table II (b) reports the outcome of the evaluation
with MC-CNN-fst. This algorithm almost halves the number
of outliers compared to AD-CENSUS, leading respectively to
about 17%, 15% and 26% error rates on KITTI 2012, KITTI
2015 and Middlebury. Nevertheless, its local nature yields
error patterns similar to those observed with AD-CENSUS.

Therefore for patch-based models, in most cases, the DL

features alone still leads to the best overall performance. The
most notable exception is on Middlebury; in fact, using a
15×15 receptive field and KITTI-large for training, the warped
disparity D′R processed by PBCP enables to achieve slightly
better confidence prediction accuracy compared to CCNN.
This outcome might be the consequence of the stereo method
itself processing larger patches (i.e., 11× 11) on Middlebury.
Moreover, in this case the large split is always beneficial to
obtain the best accuracy, while the size of the receptive fields
impacts differently according to the dataset.

Again, pooling-based models perform consistently worse
than patch-based approaches, although they benefit more of
additional information and achieve the best results with PBCP.

SGM. Table II (c) collects results concerning SGM, with
error rates of about 9%, 10% and 27%.

For patch-based models, we can notice that even with
much more accurate disparity maps, CCNN is still effective.
Nonetheless, in this case, it is no longer the best overall
solution to detect outliers as in the previous two experiments.
In particular, PBCP improves confidence prediction of patch-
based models on KITTI 2012 for three out of four cases, while

adding the left image to CCNN seems effective only for 15×15
models. On KITTI 2015, mixed results are achieved by the
three variants. However, LF-PBCP yields optimal performance
on both KITTI datasets when training on the large split with a
9×9 receptive field. On the other hand, adding the warped right
images seems not effective at all. Conversely, for Middlebury
2014 we can notice the best overall results are achieved by
CCNN trained on KITTI-large with receptive field 9 × 9.
Although the disparity cue alone is not optimal on data similar
to the training images, it achieves better generalization across
datasets, proving to be more robust when deployed in totally
unseen environments.

Concerning pooling-based methods, in this case, more input
cues seem useful only when more training data are available,
with mixed configurations outperforming CCNN, still not
matching the performance of patch-based networks.

DispNetC. Table II (d) reports the outcomes of experiments
on DispNetC. Although this deep stereo network achieves
about 6% and 7% bad-3 error rate on KITTI 2012 and 2015, its
performance dramatically drops with the more heterogeneous
indoor scenes depicted in the Middlebury 2014 dataset, falling
to more than 30% bad-1 score. In this latter case, although
the produced disparity maps look visually consistent, depth
prediction is often inaccurate and detecting outliers becomes
of paramount importance, yet very challenging. Being no cost
volume available in this case, visual cues are crucial for the
purpose. Since it provides a single disparity map aligned
with the reference image without processing any traditional
cost volume, only configurations CCNN, LF and LRLF are
suitable. First of all, we can notice how AUC margins are
much higher compared to what observed on previous evalua-
tions. This fact can be explained considering the very accurate
results yielded by the DispNetC network on KITTI datasets
and the erroneous, yet visually consistent maps obtained on
Middlebury.

For patch-based models, CCNN achieves the best results
in most cases. In general, on KITTI the best results are
achieved by 9 × 9 models, while on Middlebury 2014 the
15 × 15 architectures are more effective. LF seldom yields
better performance (only in 2 out of 12 cases) and never
enables to achieve the best accuracy. A possible cause is
the fact that disparity maps produced by end-to-end models
are particularly consistent with the reference image shape,
thus adding such cue as input to detect outliers does not
add particular information for the purpose. Interestingly, on
Middlebury the best performance are achieved by training on
the small split using a receptive field of 15× 15.
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As for traditional algorithms, pooling-based models cannot
compete with patch-based ones and processing DL alone leads
most times to the worst results.

E. Evaluation with monocular depth estimation network

Finally, we inquire about the effectiveness of confidence
measures initially conceived for stereo when dealing with
monocular depth estimation networks. As a representative
method in this field, we choose Monodepth [47], trained in a
self-supervised manner on stereo pairs, for historical reasons
and reproducibility. Given its input and output cues, only
CCNN and LF can be deployed with this network. Moreover,
we also point out that the authors have trained Monodepth on
KITTI raw sequences [48], and thus it performs quite well
in similar environments. However, it performs poorly when
deployed in entirely different environments, such as the indoor
scenes depicted in Middlebury 2014. For this reason, we
evaluate the performance of confidence prediction frameworks
for Monodepth only on the KITTI 2012 and 2015 datasets.

Metrics. In contrast to stereo, monocular depth estimation
is an ill-posed problem enabling to infer depth up to a scale
factor. Thus, we change the criterion to label pixels as outliers
following the methodology used to evaluate monocular depth
estimation methods. Explicitly, we follow [49] and consider
outliers all pixels having max(DL

G , G
DL

) > 1.25, being DL

estimated depth and G ground truth depth. The same criterion
is used at training time. Accordingly, Monodepth produces
respectively 10% and 16% outliers on KITTI 2012 and 2015.

Evaluation. Table III collects the results regarding this
experiment. Similarly to the evaluation with DispNetC, we
can notice larger AUC margins compared to traditional stereo
algorithms. Nonetheless, we can notice how CCNN always
achieves the best accuracy for outliers detection among all
considered measures with a 9×9 receptive field. In particular,
trained on a smaller amount of images, it achieves the best re-
sults on KITTI 2015, granting better generalization capability.
On the other hand, using 94 pairs for training yields optimal
results on KITTI 2012 but at the same time, reduces confidence
estimation accuracy on KITTI 2015. Adding the left image to
the 9×9 networks does not increase accuracy except on KITTI
2015 when training on the more extensive training set. By
enlarging the receptive field, CCNN loses accuracy. Processing
the left image attenuates this effect, but still does not vouch
for the same performance obtained by processing only the
inverse depth map with a 9 × 9 receptive field. Concerning
pooling-based strategy, this time it outperforms 15×15 patch-
based networks when trained on a broader training set, but still
cannot compete with 9×9. Surprisingly, CCNN configurations
perform better than LF when trained on more samples.

F. Qualitative analysis

Finally, we report qualitative examples to highlight both
the different nature of noise in the estimated disparity/depth
maps and the effectiveness of confidence measures at detecting
outliers. Figure 3 shows an example from the KITTI 2015
dataset. It reports the disparity map, for stereo, and the inverse
depth maps, for the monocular network, generated by some of

the method considered in our evaluation and the corresponding
best confidence map for each one. We can notice how, with
different degrees of reliability, a low confidence score (black)
generally corresponds to an erroneous depth estimation on the
top map. Figure 4 collects results on the Adirondack stereo
pair from Middlebury 2014. We point out that, for the reasons
outlined before, the confidence scores are more likely to fail
in this case, for instance on the disparity map inferred by
DispNetC (right), where part of the armchair is missing and
the corresponding confidence values are high instead.

V. CONCLUSIONS

In this paper, we studied the importance of input cues
processed to infer confidence scores from depth data gen-
erated by passive depth sensors with a CNN. Considering
the same baseline architectures, we extensively assessed the
performance of six models processing different input cues with
different stereo and mono depth sensing strategies, including
learning-based approaches.

Our in-depth evaluation yields the following insights. 1)
Despite slower, patch-based models outperform pooling-based
ones. 2) The DL cue, i.e. CCNN configuration, allows for the
best results when dealing with disparity maps generated by
local approaches either conventional (CENSUS) or learning-
based (MC-CNN). 3) For algorithms generating smoother
disparity maps like SGM, the most effective configuration is
PBCP coupled with the reference image. Nonetheless, CCNN
is still competitive and the right disparity map required by
PBCP is not always available, especially when dealing with
end-to-end depth sensing networks. 4) In such a case, exper-
iment on DispNetC maps highlight once again that CCNN is
the best option among the considered ones, stressing the low
contribution given by reference image, already exploited at
its best to estimate the disparity map. 5) The same behaviour
is also confirmed when tackling confidence estimation from
monocular depth estimation models such as Monodepth.

In summary, processing the disparity map alone, as done
by the original CCNN network [13], turns out the most
versatile and overall effective strategy across all algorithms
and datasets.
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