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Abstract

Instrumental variables (IV) are commonly used to estimate treatment effects in case of noncompliance. However,

program participation is often misreported in survey data and standard techniques are not sufficient to point

identify and consistently estimate the effects of interest. In this paper, we show that the identifiable IV estimand

that ignores treatment misclassification is a weighted average of local average treatment effects with weights

that can also be negative. This is troublesome because it may fail to deliver a correct causal interpretation,

and this is true even if all the weights are non-negative. Therefore, we provide three IV strategies to bound

the program benefits when both noncompliance and misreporting are present. We demonstrate the gain of

identification power achieved by leveraging multiple exogenous variations when discrete or multiple-discrete

IVs are available. At last, we use our new Stata command, ivbounds, to study the benefits of participating in

the 401(k) pension plan on savings.
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1 Introduction

The instrumental variables (IV) method is commonly used to estimate treatment effects in case of non-

compliance (Athey and Imbens, 2017). Standard approaches for the identification and inference of causal

parameters require that the treatment variable is correctly measured. In program evaluation, misreport-

ing (misclassification) of key variables due to the “desire to shorten the time spent on the interview, the

stigma of program participation, the sensitivity of income information, or changes in the characteristics

of those who receive transfers” is an increasing problem for social scientists (Meyer et al., 2015, p. 219).

Since participation is usually binary, attempting to evaluate the benefits of a program using standard IV

techniques would lead to biased estimates (Kreider, 2010; Millimet, 2011).1 In this paper, we focus on

the IV estimand that captures the average causal effect for compliers (Imbens and Angrist, 1994), and de-

velop IV methods that can be used to measure the benefits of a binary program when both noncompliance

and misreporting of treatment are present.

We aim to address the challenge posed by endogenous (differential) treatment misclassification within

a comprehensive framework that accounts for (i) endogenous treatment selection, (ii) heterogeneous

treatment effects, and (iii) binary, discrete, or multiple-discrete IVs. When the IV is binary, our target

parameter is the local average treatment effect (LATE); with discrete or multiple-discrete IVs, our target

parameter is the weighted average of LATEs (WLATE).2 Recent works have developed methods to deal

with misclassified binary treatment variables.3 When confronted with endogenous (differential) misclas-

sification of the treatment, Kreider et al. (2012) established an approach that necessitates auxiliary data

to partially identify the average treatment effect. Nguimkeu et al. (2018) achieved point identification of

the target parameter(s) by assuming homogeneous treatment effects and a parametric model. Whereas,

Ura (2018) focused on heterogeneous treatment effects and proposed a partial identification strategy for

the LATE using a binary IV.

Our analysis proceeds in three steps. Firstly, we delve into the mismeasured IV estimand, which over-

looks treatment misclassification. We discover that this estimand is a weighted average of LATEs with

potentially negative weights. This poses a significant challenge as the sign of the identifiable effect may

differ from that of the underlying LATEs. To tackle this, we characterize the bias of the mismeasured IV

estimand and establish its link with the true IV estimand. This connection is mediated by a novel param-

eter defined in terms of misclassification probabilities, which can be utilized to approximate the potential

extent of bias in estimated program benefits. Additionally, we provide a straightforward sufficient condi-

tion that ensures the nonnegative weights of the mismeasured IV estimand. These findings complement

the work of Chalak (2017), who also addressed the problem of nonnegative weights in an IV framework

with accurate treatment observations but potentially mismeasured instruments.

Secondly, we demonstrate that even when the mismeasured IV estimand has nonnegative weights, it

fails to accurately interpret the true causal effects of a program. To address this issue, we propose partial

identification methods to study both LATE and WLATE. In this regard, we improve the bound for LATE

1In a classical measurement error scenario, IVs correct for endogeneity and measurement error of the treatment simultaneously. However, mea-
surement error is always nonclassical for a binary treatment, because of the negative correlation between the true treatment and the error term.

2IVs with a support larger than two values are commonly used in empirical research. According to Mogstad et al. (2021), more than half of the
empirical papers using IVs and published in top journals in the last 20 years “make use of multiple instrumental variables for a single treatment.” In
practice, WLATE is often used by applied researchers to combine multiple IVs for estimation efficiency. In heterogeneous treatment effect settings,
WLATE has a causal interpretation as a positively weighted average of LATEs, which has been emphasized in the literature as an attractive property.

3Our paper aligns with a well-established literature concerned with treatment misclassification. This is thoroughly acknowledged in Appendix A.
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of Ura (2018) to accommodate instruments with support expanding from binary to discrete to multiple-

discrete. Compared to the bound for LATE in a binary IV setting, we enhance the identification power by

leveraging multiple exogenous variations that capture the distributional effects of the discrete IV(s) on

observable variables. Moreover, we propose two strategies to establish bounds for the WLATE: first, by

leveraging the bounds of LATEs, and second, by leveraging the bounds of a newly introduced estimand

that captures the local average of treatment misclassifications (LATMs) for compliers. Furthermore, we

provide sufficient conditions that ensure sharp bounds for both LATEs and LATMs.

Finally, we formalize a third partial identification strategy to combine external information about the

extent of misclassification to obtain tighter bounds or even a point estimate.4 Our strategy improves upon

others that rely on auxiliary data because (i) external information are only used to narrow our bounds

(Kreider and Pepper, 2007; Kreider et al., 2012), (ii) we do not need to assume an exogenous treatment

(Imai and Yamamoto, 2010; Battistin and Sianesi, 2011), nor to observe who has missing treatment

(Molinari, 2010), and (iii) treatment misclassification in our case can be endogenous (differential). When

the practitioner has a credible approximation of the misclassification rates, our proposed methods, using

external information, can generate a point estimate that is less biased compared to the naive IV estimate

that ignores treatment misclassification. Hence, our method has a bias reduction property.

Building upon the core principle of partial identification, which explores “what can be learned about

the parameter of interest given the data and model assumptions” (Kline and Tamer, 2022), we aim to

provide useful tools to study both LATE and WLATE. Applied researchers can make their own decisions

about which target parameter (LATE, WLATE, or both) they want to pursue in their specific contexts and

research objectives. In cases where the causal effects for compliers do not capture the desired effect

of interest, LATE or WLATE can be employed to extrapolate to causal effects for a wider population.

Notably, recent works by Mogstad et al. (2018, 2020) explore the use of multiple IVs to study policy-

relevant treatment effects (PRTEs) utilizing the marginal treatment effect (MTE) approach. However,

these papers assume that the treatment variable is accurately measured, highlighting the significance of

our approach as a starting point for investigating PRTEs in the presence of treatment misclassification. In

contrast, Acerenza et al. (2021), Acerenza (2021), and Possebom (2021) conduct bounding analyses for

MTEs and PRTEs when the treatment variable suffers from misclassification. Our paper can be viewed as

a valuable complement to these recent works.

The remainder of the paper is organized as follows. Section 2 introduces the model setup and the

limitations of the standard IV approach with misclassified treatment. Section 3 develops the main partial

identification results. Section 4 applies our dedicated Stata command, ivbounds, to reassess the benefits

of participating in the 401(k) pension plan on savings in the US. Concluding remarks are in Section 5. Due

to space constraints, we relegate the proofs for results in the main text to Appendix B and C, extensions of

our findings to settings with multiple treatment proxies and covariates to Appendix D and E, and Monte

Carlo simulations to Appendix F.

4Misclassification rates of program participation are increasingly accessible in various survey data. For example, Meyer et al. (2020) found false
negative rates of 23%, 35%, and 50% for participating in a food stamp program, Supplemental Nutrition Assistance Program (SNAP), in the CPS, ACS,
and Survey of Income and Program Participation (SIPP), respectively.
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2 Setup and Limitations of the Standard IV Approach

In this section, we describe our model setup and show the limitations of the standard IV approach when

the treatment variable is contaminated by measurement error. This leads to a simple relationship between

the true and mismeasured effect, which can be captured by a summary statistic of the misclassification

probabilities.

2.1 True effect

Let D be the true binary treatment variable that affects the outcome of interest. Throughout the paper,

we assume that D is not observed. Let Z be a h×1 vector of discrete instruments. Let ΩZ = {z0, z1, ..., zK}
be the support of Z with zk ∈ Rh. Denote Dk ∈ {0,1}, for k = 0, 1, ..., K , as the potential treatment

corresponding to possible realization zk of Z . By definition,

D =
K
∑

k=0

1[Z = zk]Dk,

where 1[·] denotes the indicator function. Denote by Pr(zk) = E(D|Z = zk) the propensity score. Let

Y be an observed outcome of interest and let Yd be the potential outcome with d ∈ {0,1} for possible

realization of D. Denote by ΩY ⊂ R the support of Y , Y1 and Y0. Then,

Y = DY1 + (1− D)Y0.

A common way to exploit multiple instruments is to introduce a scalar function g : ΩZ 7→ R, for example,

g(z) can be an estimate of Pr(z) or other known functions.5

Assumption 2.1. Y , D and Z satisfy the standard Imbens and Angrist (1994) assumptions:

(i) (i.i.d.) (Y1, Y0, {Dk}Kk=0, Z) are independent and identically distributed across all individuals and have

finite first and second moments;

(ii) (Unconfoundedness) Z ⊥ (Y1, Y0, {Dk}Kk=0) and Pr(z) = E(D|Z = z) for z ∈ ΩZ is a nontrivial function

of z; 0< πk = Pr(Z = zk)< 1, k = 0, 1, ..., K;

(iii) (First stage) Cov(D, g(Z)) ̸= 0;

(iv) (Monotonicity) For any zl , zw ∈ ΩZ , with probability one, either Dl ≥ Dw for all individuals, or Dl ≤ Dw

for all individuals. Furthermore, for all zl , zw ∈ ΩZ , either Pr(zl) ≤ Pr(zw) implies g(zl) ≤ g(zw), or

Pr(zl)≤ Pr(zw) implies g(zl)≥ g(zw).

The monotonicity assumption is satisfied if no subjects respond in the opposite way to their instrument

assignment status (no defiers).6 Throughout the paper, we denote compliers (Dk−1 = 0, Dk = 1) as Ck.

5If Z is a scalar binary or discrete instrument, we can simply set g(z) = z. If Z includes multiple instruments, g(z) can be set as, for example, an
estimate of E[Y |Z = z] or of Pr(T = 1|Z = z) for z ∈ ΩZ , where T represents a proxy of the true treatment and will be introduced later.

6When there is more than one instrument, Mogstad et al. (2020, 2021) point out that the monotonicity assumption is satisfied if the selection
into treatment is homogeneous. In the presence of multiple IVs, it may be possible to extend the analysis in this paper via replacing the monotonicity
condition with a weaker “partial monotonicity” condition proposed by Mogstad et al. (2021), where the monotonicity is satisfied for each instrument
separately. We leave it to future research.
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If D was observed, under Assumption 2.1, the Imbens and Angrist (1994)’s weighted average of local

average treatment effect (WLATE) would be identified by the IV estimand:

αIV :=
Cov(Y, g(Z))
Cov(D, g(Z))

=
E[(Y −E(Y ))(g(Z)−E[g(Z)])]
E[(D−E(D))(g(Z)−E[g(Z)])]

=
K
∑

k=1

γIV
k αk,k−1, (1)

where γIV
k := Pr(Ck)

∑K
l=kπl(g(zl)−E[g(Z)])

∑K
m=1 Pr(Cm)
∑K

l=mπl(g(zl)−E[g(Z)])
are the weights, Pr(Ck) = Pr(zk) − Pr(zk−1) and αk,k−1 :=

E[Y1 − Y0|Ck] is the local average treatment effect (LATE) for compliers Ck. The weights {γIV
k }

K
k=1 are

nonnegative and
∑K

k=1 γ
IV
k = 1. The IV estimand αIV has a useful causal interpretation, because it assigns

nonnegative weights to all the LATEs, so that it will be positive (or negative) if all of the underlying LATEs

are positive (or negative). However, since in practice we do not observe D, we cannot implement this

standard approach.

2.2 Mismeasured effect

Instead of D, suppose we can observe a binary treatment indicator T , which could be a proxy for D, or

could correspond to reported values of D that are misclassified for some observations. Define Td ∈ {0, 1}
as the potential observed treatment with d ∈ {0,1} for possible realization of D. Then by definition:

T = DT1 + (1− D)T0.

The variables T0 and T1 can be used to indicate whether the treatment is misclassified or not: if T0 = 1,

then a true D = 0 is misclassified as treated (false positive), and if T1 = 0, then a true D = 1 is misclassified

as untreated (false negative).

Assumption 2.2. The treatment indicator T is such that the following conditions are satisfied:

(i) (Extended unconfoundedness) Z ⊥ (Y1, Y0, {Dk}Kk=0, T1, T0);

(ii) (Extended first stage) Cov(T, g(Z)) ̸= 0.

Assumption 2.2-(i) combines the LATE unconfoundedness assumption that Z ⊥
�

Y1, Y0, {Dk}Kk=0

�

with

the assumption that the instruments are also independent of the treatment measurement errors, and hence

of (T1, T0).7 Assumption 2.2-(ii) is used to ensure that the identifiable estimand from observable data is

well-defined and it is a minimal relevance condition. These assumptions do not impose any restriction

on the type of misclassification error. Thus, we allow both exogenous (non-differential) misclassification

error, in the sense that (T0, T1) ⊥ (Y1, Y0, {Dk}Kk=0), such as clerical errors, as well as endogenous (differ-

ential) misclassification error, in the sense that (T0, T1) ̸⊥ (Y1, Y0, {Dk}Kk=0), such as misreporting due to

fear of stigma.

Using the proxy T in place of D leads to the identification of a new parameter, which is useful to

characterize. Let pd,k = E (Td | Ck) for d ∈ {0, 1} and k = 1, 2, ..., K . By definition, p1,k is the probability

7The assumption of independence between the instrument and treatment misclassification errors is frequently employed in recent literature inves-
tigating self-selection into treatment using a misclassified treatment variable (Ura, 2018; Calvi et al., 2021; Tommasi and Zhang, 2022; Acerenza et al.,
2021; Acerenza, 2021). However, scholars such as Bound et al. (2001), Haider and Stephens Jr. (2019), and Possebom (2021) have raised concerns
about its plausibility across different empirical contexts, where misclassification rates may vary across values of the instrument. Later, we discuss the
validity of this assumption in the context of our empirical illustration. We thank an anonymous referee for pointing this out.
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that compliers Ck would have their treatment correctly observed if they were treated. In contrast, p0,k is

the probability that compliers Ck would have their treatment incorrectly observed if they were untreated.

Theorem 2.1. Let Assumption 2.1 and 2.2 hold. Then, the mismeasured IV estimand

αMis :=
Cov(Y, g(Z))
Cov(T, g(Z))

=
E[(Y −E(Y ))(g(Z)−E[g(Z)])]
E[(T −E(T ))(g(Z)−E[g(Z)])]

=
K
∑

k=1

γMis
k αk,k−1, (2)

where γMis
k := Pr(Ck)

∑K
l=kπl(g(zl)−E[g(Z)])

∑K
m=1(p1,m−p0,m)Pr(Cm)

∑K
l=mπl(g(zl)−E[g(Z)])

are the weights for compliers Ck.

Proof of Theorem 2.1. See Appendix B.1.

Intuitively, αMis denotes the identifiable estimand if we ignore the misclassification error and use

the mismeasured treatment indicator T in place of the true treatment D. We can see that αMis is also

a weighted average of LATEs, but, unlike αIV , its weights may be negative. If the misclassification is

particularly severe, it is possible that p1,k − p0,k < 0 and αMis may become negative (positive) even if

the true treatment effects are positive (negative) for all compliers in the population. In contrast, if the

treatment indicator contains sufficient information about the true treatment, that is, if 0 < p1,k − p0,k ≤
1 for all complier groups, then the weight γMis

k is nonnegative and αMis can sign αIV . That said, the

summation
∑K

l=k γ
Mis
k is greater than one because each γMis

k is biased upward by the misclassification

error in the denominator, leading to overestimation |αMis| ≥ |αIV |. A sufficient condition for αMis = αIV

is that p1,k = 1 and p0,k = 0 for all k (no misclassification error).

2.3 Relationship between the true and mismeasured effect

Denote by ∆pk = p1,k − p0,k the difference between misclassification probabilities for complier group Ck.

We refer to ∆pk as the local average of treatment misclassification (LATM)

LATM=∆pk = E[T1 − T0|Ck], (3)

because it is analogous to the LATE if we replace Y1−Y0 by T1−T0. There is a simple relationship between

αIV and αMis which can be captured by a weighted average of the LATMs.

Corollary 2.1. Let Assumption 2.1 and 2.2 hold and, without loss of generality, assume γIV
k ̸= 0 and γMis

k ̸= 0

for ∀k. Then, there exists a summary statistic ξ such that:

αMis =
K
∑

k=1

γIV
k αk,k−1 ×

γMis
k

γIV
k

=⇒ αIV = ξαMis (4)

where the ratio ξ= γIV
k /γ

Mis
k =
∑K

k=1 γ
IV
k ∆pk.

Proof of Corollary 2.1. See Appendix B.2.

The parameter ξ is a constant across k, with absolute value less than or equal to one, and is unobserved

in practice. Denote the weighted average probability of false negative as wn = 1−
∑K

k=1 γ
IV
k p1,k (this is
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the probability of treated individuals misclassified as untreated) and false positive as wp =
∑K

k=1 γ
IV
k p0,k

(this is the probability of untreated individuals misclassified as treated). Then, by definition,

ξ= 1−wn −wp =⇒ αIV = (1−wn −wp)αMis (5)

which makes clear that ξ can be interpreted as an overall measure of how severe the treatment misclassi-

fication is. When there is no misclassification (wn = wp = 0), ξ = 1 and αMis = αIV . As misclassification

worsens (wn > 0, wp > 0), the value of ξ falls and the bias in αMis becomes increasingly severe. When

0 < ξ < 1, αMis and αIV are of the same sign, while αMis inflates the effect. When ξ < 0, αMis and αIV

have opposite signs.

A similar link between the causal and the identifiable parameter has been established in the literature

under a variety of different conditions.8 Our main contribution with respect to the previous works is

twofold. First, we demonstrate that ξ can be used to derive a sufficient condition under which αMis can

sign αIV . Second, since the probabilities of false positive and false negative are increasingly available to

practitioners through administrative datasets or validations studies, we improve upon the literature by

showing that, using those information, we can approximate the relative bias α
Mis−αIV

αIV = 1/ξ− 1 via ξ.

Assumption 2.3 (Informative Treatment Proxy). For all k = 1,2, ..., K, Pr(T = d|Ck, D = d) > Pr(T =

d|Ck, D = 1− d), d = {0,1}.

Assumption 2.3 requires that T is an informative proxy of the actual treatment status, and it does not

impose further restrictions regarding the dependence of misclassification errors on the potential outcomes.

One sufficient condition for it is that max{Pr(T = 1|Ck, D = 0), Pr(T = 0|Ck, D = 1)} < 1/2 for all

k, meaning that the observations of T are more accurate than pure guesses about the true treatment.

Similar restrictions are widely invoked in the measurement error literature (e.g., Hausman et al., 1998).

This assumption is sufficient to ensure that αMis and αIV have the same sign.

Corollary 2.2. Under Assumption 2.1, 2.2 and 2.3, we have

(i) Pr(T = 1|Z = zl)≤Pr(T = 1|Z = zw) implies Pr(zl)≤ Pr(zw) for ∀zl , zw ∈ ΩZ ;

(ii) γMis
k ≥ 0 for all k and sign(αMis) =sign(αIV ).

Proof of Corollary 2.2. See Appendix B.3.

Corollary 2.2 says that if the proxy T is informative, we can reveal the direction of the effect of the

instrumental variable(s) Z on the true treatment status D by using the naive propensity score Pr(T = 1|Z).
This is still possible even though the magnitude of the propensity score Pr(z)=Pr(D = 1|Z = z) cannot

be recovered from the observed data. Hereafter, we assume the elements {z0, z1, ..., zK} of the support ΩZ

follow an ascending order, in the sense that ∀l, w ∈ {0,1, ..., K}, l < w implies Pr(zl) ≤ Pr(zw). Such an

ascending order assures that the weights in the true effect αIV are nonnegative. More importantly, the

informative proxy T rules out negative weights in αMis since all LATMs are strictly positive, hence αMis

and αIV have the same sign.
8First, differently from Frazis and Loewenstein (2003) and Stephens Jr and Unayama (2019), we establish a link between the causal and identifiable

parameter in a heterogeneous treatment effect framework, while they assume homogeneous treatment effects. Second, Lewbel (2007) and Battistin
and Sianesi (2011) assume an exogenous treatment, which is not required in our context. Third, we generalizes the B-LATE (for Biased LATE) estimator
of Calvi, Lewbel, and Tommasi (2021) and its link to the true effect to a discrete and multiple-discrete-instrument setting. All these papers, including
ours, are related to one another and benefited from the result by Hausman et al. (1998).
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Table 1: Bias of αMis relative to αIV for different misclassification probabilities

Bias = (1/ξ− 1)×αIV

wn ↓ | wp→ 0 0.05 0.10 0.20 0.30 0.40

0.00 0.000 0.053 0.111 0.250 0.429 0.667
0.05 0.053 0.111 0.176 0.333 0.538 0.818
0.10 0.111 0.176 0.250 0.429 0.667 1.000
0.20 0.250 0.333 0.429 0.667 1.000 1.500
0.30 0.429 0.538 0.667 1.000 1.500 2.333
0.40 0.667 0.818 1.000 1.500 2.333 4.000

Notes: Each cell reports (1/ξ− 1)×αIV for different values of wn (false negative) and wp (false positive). αIV is set to 1.

Finally, a practitioner can use relationship (5) to approximate the possible level of bias of the estimated

benefits of a program for different misclassification probabilities.9 In Table 1 we report the difference in

the values between αMis and αIV for different values of wn and wp. The true effect αIV is normalized

to 1. Hence, if the sample contains, e.g., 10% false negative and 5% false positive, this table tells the

practitioner that the estimated effect αMis is approximately 17.6% larger than the (unknown) true effect.

Results in Table 1 confirm that even with nonnegative weights, αMis still overestimates (in absolute value)

αIV , and the overestimation can be severe even with small or moderate misclassification rates.

3 Partial Identification Strategies

This section proceeds in three acts. First, we present tractable outer sets of the LATEs and the LATMs, and

provide sufficient conditions for the sharp identified sets. Second, we develop two strategies to partially

identify αIV based on the LATEs and the LATMs, respectively. Finally, we show how to use external

information regarding the extent of the misclassification probabilities to obtain tighter bounds of αIV or,

under certain conditions, to obtain its point estimate. All of our results remain valid when conditioning

on covariates (see Appendix E for more details).

3.1 Bounds of the LATEs and the LATMs

Bounding the probability of compliers. To bound the probability of compliers, we use the concept

of total variation (TV) distance. For any generic random variable (or vector) A and zk, zk−1 ∈ ΩZ , the TV

distance is a L1 distance between the two conditional distribution functions fA|Z=zk
and fA|Z=zk−1

, defined

as follows:

T VA,k =
1
2

∫

| fA|Z=zk
(a)− fA|Z=zk−1

(a)|dµA(a),

where µA denotes a dominating measure for the distribution of A. If A is discrete, the integral is replaced

by summation across all possible values of A. The T VA,k captures the extent of the distributional effect

of Z on A, when Z changes from zk−1 to zk. For example, if we set A = Y , then T VY,k is the distribution

9Notice that a practitioner does not need to know the values of p1,k and p0,k for all k, to be able to approximate the value of ξ. This is because, in
practice, the type of information that is increasingly reported in the data is the overall misclassification probabilities, wn and/or wp. These are the only
information actually required to approximate ξ.
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version of the “intention-to-treat” effect.

Lemma 3.1. Let Assumption 2.1-(ii) to (iv), 2.2-(i) and 2.3 hold. We have that, for ∀k = 1, 2, ..., K:

T V(Y,T ),k ≤ Pr(Ck)≤ 1−
∑

k′ ̸=k

T V(Y,T ),k′.

Proof of Lemma 3.1. See Appendix C.1.

Using a binary IV, Ura (2018, Lemma 3) shows that the probability of compliers can be bounded from

below by the TV distance and from above by one. In Lemma 3.1, our lower bound, T V(Y,T ),k, is the same

to the one obtained using a binary instrument. However, when the instrument(s) are discrete, our upper

bound, 1−
∑

k′ ̸=k T V(Y,T ),k′, is novel as it improves the upper bound of Ura (2018) and gains identification

power by incorporating multiple exogenous variations captured by the TV distances of other complier

groups. The magnitudes of the two bounds in Lemma 3.1 depend on the strength of the instrument(s).

For example, if the change of Z from zk−1 to zk causes no distributional variation in Y and T , the lower

bound reduces to 0. Similarly, if no distributional variation is triggered by the change of Z from zk′−1 to

zk′ for all k′ ̸= k, the upper bound increases to 1.

Bounds of the LATEs. Let P be an arbitrary data generating process (DGP) of (Y, T, Z). Denote the

class of DGPs of P as P0, then we have P ∈ P0. Denote Θ to be the parameter space of αIV and of all

αk,k−1.10 For example, Θ = [−1,1] if outcome Y is binary. For A = {Y, T}, denote ∆kE(A|Z) = E(A|Z =
zk) − E(A|Z = zk−1). Theorem 1 in Imbens and Angrist (1994) says that under Assumption 2.1 in our

paper, we have:

∆kE(Y |Z) = αk,k−1Pr(Ck). (6)

Multiplying both sides of (6) by αk,k−1, we obtain that:

αk,k−1∆kE(Y |Z) = α2
k,k−1Pr(Ck)≥ 0. (7)

Moreover, by applying Lemma 3.1 to the absolute value of (6), we have:

|∆kE(Y |Z)| ≤ |αk,k−1|



1−
∑

k′ ̸=k

T V(Y,T ),k′



 , (8)

|∆kE(Y |Z)| ≥ |αk,k−1|T V(Y,T ),k. (9)

Thus, under Assumptions 2.1, 2.2 and 2.3, each LATE (αk,k−1) satisfies the inequalities (7)-(9). Inequality

(7) indicates that the sign of αk,k−1 is identified by ∆kE(Y |Z) whenever Pr(Ck) is nonzero. In addition,

when ∆kE(Y |Z) ̸= 0, inequalities (8) and (9) give the lower and upper bounds of |αk,k−1|, respectively.

Denote the set characterized by (7)-(9) as Θαk (P) ⊂ Θ. In the next Lemma, we derive explicit expres-

sions for Θαk (P) and provide sufficient conditions under which Θαk (P) is a sharp identified set of αk,k−1.

10The parameter space for αk,k−1 may be different for each k. However, we ignore this possibility for notational simplicity.
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Lemma 3.2. Let Assumption 2.1-(ii)-(iv), 2.2-(i) and 2.3 hold. Then, for ∀k = 1,2, ..., K:

(i) If T V(Y,T ),k = 0, then Θαk (P) = Θ. Whereas if T V(Y,T ),k > 0, then:

Θαk (P) =



















h

∆kE(Y |Z)
1−
∑

k′ ̸=k T V(Y,T ),k′
, ∆kE(Y |Z)

T V(Y,T ),k

i

, if ∆kE(Y |Z)> 0,

{0}, if ∆kE(Y |Z) = 0,
h

∆kE(Y |Z)
T V(Y,T ),k

, ∆kE(Y |Z)
1−
∑

k′ ̸=k T V(Y,T ),k′

i

, if ∆kE(Y |Z)< 0;

(10)

(ii) If max
0≤m≤K

T V(Y,T ),m = 0, then Θαk (P) = Θ is the sharp identified set of αk,k−1. Whereas, if T V(Y,T ),k > 0

and T V(Y,T ),k′ = 0 for all k′ ̸= k, then Θαk (P) in (10) is the sharp identified set of αk,k−1.

Proof of Lemma 3.2. See Appendix C.2.

Lemma 3.2 (i) shows that, if T V(Y,T ),k = 0, then no useful information about how the instrument’s

value changing from zk−1 to zk affects the treatment can be extracted from the observable data. If this is

the case, then we fail to exclude any values from the parameter space of the LATE, Θ. Once T V(Y,T ),k > 0,

the instrument has nontrivial identification power, and analytic bounds can be derived for the LATE.

Importantly, Θαk (P) can be seen as an informative bound for LATE, because it excludes the intention-to-

treat effect ∆kE(Y |Z) and the naive Wald estimand ∆kE(Y |Z)/∆kE(T |Z),11 which are the two trivial

bounds of the LATE. Moreover, if the TV distance is nonzero only when Z changes from zk−1 to zk, then

Θαk (P) is the sharp identified set and it reduces to the identified set of Ura (2018). This is intuitive because

T V(Y,T ),k′ = 0 for all k′ ̸= k implies that the multiple TV distances generated from the discrete IV(s) are

essentially equivalent to that generated from a binary IV.

Bounds of the LATMs. We are interested in bounding ∆pk because it plays a crucial role in con-

necting αMis to the object of interest, αIV . Similar arguments for (7)-(9) can be applied to obtain the

inequalities (11)-(13) below, satisfied by each ∆pk:

∆pk∆kE(T |Z)≥ 0, (11)

|∆kE(T |Z)| ≤ |∆pk|



1−
∑

k′ ̸=k

T V(Y,T ),k′



 , (12)

|∆kE(T |Z)| ≥ |∆pk|T V(Y,T ),k. (13)

Denote the set characterized by (11)-(13) as Θp
k(P). The Lemma below gives analytic bounds of ∆pk, as

well as sufficient conditions for the sharp identified set.

Lemma 3.3. Let Assumption 2.1-(ii)-(iv), 2.2-(i) and 2.3 hold. For ∀k = 1,2, ..., K,

11See Lemma C.1 in Appendix C.2.
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(i) If T V(Y,T ),k = 0, then Θp
k(P) = [−1, 1]. Whereas, if T V(Y,T ),k > 0, then:

Θ
p
k(P) =



















h

∆kE(T |Z)
1−
∑

k′ ̸=k T V(Y,T ),k′
, ∆kE(T |Z)

T V(Y,T ),k

i

, if ∆kE(T |Z)> 0,

{0}, if ∆kE(T |Z) = 0,
h

∆kE(T |Z)
T V(Y,T ),k

, ∆kE(T |Z)
1−
∑

k′ ̸=k T V(Y,T ),k′

i

, if ∆kE(T |Z)< 0;

(14)

(ii) If max
0≤m≤K

T V(Y,T ),m = 0, thenΘp
k(P) = [−1,1] is the sharp identified set of∆pk. Whereas, if T V(Y,T ),k > 0

and T V(Y,T ),k′ = 0 for all k′ ̸= k, then Θp
k(P) in (14) is the sharp identified set of ∆pk.

Proof of Lemma 3.3. See Appendix C.3.

As shown in Lemma 3.3, the sign and an analytic bound for∆pk can be obtained as long as T V(Y,T ),k >

0.12 It is also clear that, in order to partially identify∆pk, we do not need any prior or external information

about how severely the treatment proxy T is contaminated by measurement error.

When Bounds of the LATEs and LATMs are Sharp. Lemma 3.2 and 3.3 establish that the bounds of

the LATE (αk,k−1) and LATM (∆pk) are sharp if the TV distance is nonzero only when Z changes from zk−1

to zk. For more general cases where more than one TV distances are nonzero, the sharpness result is not

established. However, in this scenario, the outer sets Θαk (P) and Θp
k(P) still possess desirable properties.

First, the bound for LATE excludes the intention-to-treat effect and the Wald estimand. Second, the

bound for αk,k−1 is tighter than the bound provided by Ura (2018) using only two values zk−1 and zk of

Z . Third, since an outer set is always a superset of the sharp identified set, inference based on the outer

set is conservative yet valid. Finally, if T V(Y,T ),k = 1 −
∑

k′ ̸=k T V(Y,T ),k′, then Θαk (P) and Θp
k(P) reduce to

a point so that αk,k−1 and ∆pk are both point identified. This is the case if two conditions are satisfied

simultaneously (see the proof of Lemma 3.1): (i) there is no misclassification (T1 = 1, T0 = 0), and (ii)

there are no always takers and no never takers. The bounds of LATEs and LATMs will be tighter in cases

that are "closer" to this extreme case.

3.2 Bounds of αIV

Recall that the estimand αIV is a weighted average of LATEs with nonnegative weights summing up to

one. Hence, our first partial identification result of αIV can be obtained from the union of bounds of LATEs

given in Lemma 3.2.

Theorem 3.1 (First Strategy). Let Assumption 2.1, 2.2, and 2.3 hold. Denote Θα(P) =
⋃

k∈{1,2,...,K}Θ
α
k (P).

Then we have αIV ∈ Θα(P).

Proof of Theorem 3.1. See Appendix C.4.

Note that the set Θα(P) might be uninformative about the sign of αIV if two LATEs, say αk,k−1 and

αk′,k′−1, have opposite signs. Fortunately, because we can recover the sign of all the LATEs from the

12Since, without loss of generality, we assume {z0, z1, ..., zK} follow the ascending order which can be identified by Corollary 2.2, then it is clear that
∆kE(T |Z)≥ 0 for all k. For the sake of completeness, in Lemma 3.3 we still present the result for the case ∆kE(T |Z)< 0.
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observed data (Lemma 3.2), we are able to recover the sign of αIV as long as all the LATEs stand on the

same side of zero.

Our second strategy is built upon the relation between αIV and αMis, and the bounds of LATMs. Recall

from Corollary 2.1 that αIV = ξαMis, where ξ =
∑K

k=1 γ
IV
k ∆pk. Again, due to the nonnegative weights,

γIV
k , summing up to one, our second partial identification result of αIV is characterized using the identifi-

able estimand αMis and the union of bounds of LATMs.

Theorem 3.2 (Second Strategy). Let Assumption 2.1, 2.2, and 2.3 hold. Denote

Θp(P) =
�

αMis ×∆p : ∆p ∈
⋃

k=1,2,...,K Θ
p
k(P)
	

, where∆p represents any generic value in the union
⋃

k=1,2,...,K Θ
p
k(P).

Then we have αIV ∈ Θp(P).

Proof of Theorem 3.2. See Appendix C.5.

If αMis = 0, αIV is point identified as zero. In addition, we can identify the sign of αIV as long as all the

LATMs stand on the same side of zero, which is actually guaranteed by Assumption 2.3.13 The two partial

identification strategies make distinct contributions to the identification of αIV because they are based on

different sources of information. We discuss and compare their relative performance in Appendix C.8.

When Bounds of αIV are Sharp. For both strategies, we can distinguish two cases. First, if the

instrument is binary, αIV is just the LATE and αMis reduces to:

αMis =
E[Y |Z = 1]−E[Y |Z = 0]
E[T |Z = 1]−E[T |Z = 0]

=
E[Y1 − Y0|D1 = 1, D0 = 0]

p1 − p0
.

Then, the bounds of αIV in Theorem 3.1 and 3.2 will be identical, sharp, and also coincide with the sharp

identified set of LATE in Ura (2018). This is because K = 1 and
∑

k′ ̸=k T V(Y,T ),k′ degenerates to zero.

Second, if the instrument(s) are discrete or multiple-discrete, and more than one total variation distances

are nonzero, the sharpness of the bounds of LATEs and LATMs are not established. This means that the

bounds of αIV in the above two strategies may not be sharp identified sets but are valid outer sets. The

outer set is still considered useful in practice, since it may be sufficient to answer important empirical

questions, such as whether the treatment effect is positive or negative, and what is the possible range of

program benefits (see Molinari, 2020, for more details). As discussed above, when all the LATEs and all

the LATMs have the same sign, our outer sets Θα(P) and Θp(P) are meaningful in revealing the sign of

αIV and its possible range.

3.3 Bounds of αIV Using External Information

Administrative records of program receipts are not easily accessible to all researchers. Hence, when work-

ing on a standard survey dataset, often times we cannot know whose individual treatment is misclassified.

However, an increasing number of studies report the average extent of misreporting for a wide range of

programs. This information often comes in the form of possible values of average false negative probabil-

ity (wn) and/or false positive probability (wp) in the sample. Validation studies or repeated measurements

of the same individual can also provide valuable information. Suppose the practitioner has some prior or
13For both Strategy 1 and 2, we provide analytical expressions for the bounds of αIV when all LATEs or all LATMs have the same sign in Appendix

C.7.
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external information about the range of ξ= 1−wn−wp. Then we can utilize this information to further

tighten the bounds using the fact that αIV = ξαMis.

Theorem 3.3 (Third Strategy). Let Assumption 2.1 and 2.2 hold. Suppose there exist two known constants

ξ≤ ξ and ξ,ξ ∈ [0, 1], such that ξ≤ ξ≤ ξ.

(i) If αMis ≥ 0, denote Θξ(P) =
�

ξαMis,ξαMis
�

. Then, αIV ≥ 0 and αIV ∈ Θξ(P).

(ii) If αMis < 0, denote Θξ(P) =
�

ξαMis,ξαMis
�

. Then, αIV < 0 and αIV ∈ Θξ(P).

Proof of Theorem 3.3. See Appendix C.6.

The constants ξ and ξ are two bounds of the weighted average of LATMs, ξ. If researchers are certain

that every value in the interval [ξ,ξ] can be the true value of ξ, then Θξ(P) is the sharp identified set of

αIV . By using these extra information, the set Θξ(P) will be at least as good as that in Theorem 3.2 (the

second strategy). This is because one could always set ξ and ξ as the ending points of
⋃

k=1,2,...,K Θ
p
k(P).

Therefore, compared to the first two partial identification strategies, which are based purely on the ob-

servable data, by following our third strategy one can further tighten the bounds of αIV and obtain (po-

tentially) significant improvements.14 In empirical illustration section, we provide guidance regarding

how to incorporate external information about the misclassification error to find [ξ,ξ].

Point estimate. From Theorem 3.3, two sets of conditions suffice to obtain tighter bounds. Firstly,

having ξ close to 1 means less overall misclassification. At the extreme, when ξ= 1, we have no misclas-

sification error at all (wn = wp = 0), hence we can achieve point identification of αIV = αMis. Secondly,

having ξ and ξ close to each other indicates more accurate knowledge of the overall misclassification

probabilities, which produces a narrower bound as well. At the extreme, when ξ = ξ = ξ, we can also

achieve point identification of αIV = ξαMis. Notice that, in application, the constants ξ and ξ are going

to be two approximations of the bounds of the misclassification probabilities. Hence, if the practitioner

set ξ = ξ = ξ, the point estimate ξαMis is likely biased with respect to αIV , unless ξ is the exact value of

misclassification rate. If ξ and ξ are credible approximations, then our approach, in general, can be used

as a bias reduction method with respect to a naïve IV estimator, αMis.

4 Empirical Illustration

In this section, we utilize our dedicated Stata command, ivbounds, to investigate the impact of partic-

ipating in the 401(k) pension plan on savings in the U.S. To conduct statistical inference, we construct

confidence intervals for the bounds using a two-step bootstrap procedure proposed by Chernozhukov,

Chetverikov, and Kato (2019). This procedure guarantees both uniform and asymptotic size control,

which are crucial for meaningful empirical analyses. For the sake of clarity and due to space constraints,

we leave detailed explanations of the inference procedure to a compendium paper (Lin, Tommasi, and

Zhang, 2021), and Monte Carlo simulations that verify the finite sample performance of our partial iden-

tification strategies to Appendix F.
14Since the bounds of αIV obtained under different partial identification strategies can be different, in principle, we can intersect Θα(P), Θp(P)

and Θξ(P) (if available) to take advantage of all identifying information and achieve a tighter bound: αIV ∈ Θα(P)
⋂

Θp(P)
⋂

Θξ(P). For intersection
bounds, it has been noticed that their sample analog estimators are systematically biased (e.g. Manski and Pepper, 2000, 2009; Kreider and Pepper,
2007; Chernozhukov et al., 2013). We defer a comprehensive investigation of this issue to future research.
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4.1 The effect of the 401(k) pension plan on savings

The 401(k) pension plan is one of the most popular defined contribution (DC) retirement plans in the

US. It aims at increasing financial savings through the tax deductibility of contributions to retirement

accounts. We study its effects using data from the SIPP round of 1991 following the construction Abadie

(2003). The resulting sample size is 9,275. Table G.1 in appendix reports the summary statistics of

the main variables used in the empirical analysis. Although the effects of this plan have been examined

elsewhere (e.g., Abadie, 2003; Ura, 2018), the application contains all the ingredients to demonstrate the

full extent of the usefulness of the approach proposed in our paper.

First, the participation to the program is binary and notoriously misreported in survey data. Second,

the eligibility to the pension plan, which is provided only to workers in firms offering the plan, is arguably

a valid instrument (e.g., Poterba et al., 1995). Third, the eligibility can be interacted with the year of

introduction of the plan, which yields a discrete instrument that accounts for the duration of the exposure

to the plan.15 Fourth, credible information on treatment misclassification probabilities are available from

the literature and can be incorporated in estimation. Fifth, although our main theoretical results hold

without covariates, including covariates is almost always crucial in application. In our specific context,

for the instrument to be valid, it is really important to condition on family income and age. Hence, this

specific application gives us also the opportunity to show the performance of our proposed suggestions to

incorporate covariates in a realistic context. Finally, the fact that the application is well known makes it

easier for us to evaluate our results in light of the existing literature.

In measuring the benefits of the 401(k) pension plan, a researcher would face two main difficulties:

endogenous participation in the plan and misreporting of participation. The first problem may arise due

to unobserved differences in saving behaviors. That is, participants in the plan might save more in gen-

eral than those who do not participate. Hence, a comparison of accumulated financial assets between

participants and nonparticipants is likely to yield a positive bias of the true effect of the program. If

this was the only problem in the data, a practitioner could just use the eligibility to the plan as a valid

instrument and perform inference on the causal parameter as in Abadie (2003). However, the contempo-

raneous presence of the second problem makes the task difficult. Misreporting in this context may arise

because individuals find it difficult to remember or understand their pension plan, leading to reporting

error. Indeed, Dushi and Iams (2010) documented that in the SIPP, over 17% of participants in the 401(k)

pension plan self-report as nonparticipants (false negative) and almost 10% of nonparticipants self-report

as participants (false positive). Understanding plan benefits is relevant for the economic well-being of

future retirees because these plans are important for retirement income security. This is the economic

motivation underlying our efforts.

15In both the binary and discrete instrument cases, our empirical analysis relies on the assumption of independence between the instrument and
misclassification errors (Assumption 2.2-(i)). In our specific context, the binary instrument reflects the firm’s decision to introduce the 401(k) plan,
while the treatment signifies the worker’s choice to participate in the same plan. To justify the validity of Assumption 2.2-(i), we must assume that the
misreporting of pension plan participation by workers, influenced by their awareness (or lack thereof) of the plan, is reasonably uncorrelated with the
firm’s decision, after adjusting for workers’ income levels. Similarly, the discrete instrument relies on data concerning the introduction of the new pension
plan. To justify the validity of Assumption 2.2-(i) in this case, we need to assume that, given the worker’s age, misreporting is reasonably unrelated
to their knowledge of the pension plan. However, we acknowledge a valid concern raised by a referee: in our context, treatment misclassification
rates may vary across different values of the instrument (Haider and Stephens Jr., 2019; Possebom, 2021). As such, we caution against interpreting
our findings as definitive causal effects. Instead, our empirical application primarily serves to illustrate a novel theoretical tool applied in a real-world
setting.
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4.2 Results

Given the three main theoretical contributions of the paper, we aim to answer the following questions:

(i) What is the likely bias of the estimated program benefits if we do not account for treatment mis-

classification? (ii) In case of a binary instrument, how do the bounds of the program benefits shrink

by incorporating external information on misclassification probabilities? How do they compare with the

results of the existing literature? (iii) In case of a discrete instrument, how are the bounds compared to

a naive approach that does not account for treatment misclassification? How do these bounds shrink by

incorporating external information on misclassification probabilities? We provide comprehensive answers

to each of these questions.

To begin with, researchers can employ the available information on treatment misclassification proba-

bilities and utilize our newly established relationship between the true and mismeasured treatment effect,

as represented by Equation (5). By doing so, they can approximate the potential level of biases in the

benefits of the 401(k) plan. In our specific case, assuming wn ≈ 17% and wp ≈ 10%, we conclude

that the estimated (mismeasured) treatment effect reported in the literature is likely biased (upward) by

approximately α
Mis−αIV

αIV = wn+wp

1−wn−wp = 37%.

We then proceed by estimating the program benefits using a binary instrument, the eligibility to the

pension plan. In this case, our target parameter is the unconditional IV estimand αIV := E[Y1 − Y0|C1] =

E{E[Y1 − Y0|X , C1]|C1} =
E[E(Y |X ,Z=1)−E(Y |X ,Z=0)]
E[E(D|X ,Z=1)−E(D|X ,Z=0)] ,

16 where C1 = {D0 = 0, D1 = 1} and covariates in X in-

clude family income, age, age squared, marital status, and family size. Panel A of Table 2 reports the

results. Column (1) reports the conventional 2SLS estimate (assuming homogenous treatment effect) as

shown in Column (3) of Table 2 by Abadie (2003). This represents a biased point estimate because it

ignores the potential treatment misclassification. The effect is statistically significant and says that partic-

ipating in the 401(k) plan increases the total financial assets by roughly $9,400, with a 95% confidence

interval of $5,300–13,500. Column (2) reports the nonparametric estimate of the mismeasured treatment

effect, αMis := E[E(Y |X ,Z=1)−E(Y |X ,Z=0)]
E[E(T |X ,Z=1)−E(T |X ,Z=0)] to incorporate covariates and treatment effect heterogeneity, while

ignoring the potential treatment misclassification.17 Next, Column (3) displays the 95% CI for the bound

of unconditional IV estimand αIV from Ura (2018) which accounts for both treatment effect heterogene-

ity and treatment misclassification error. This is our benchmark result from the literature, to which we

compare the performance of our partial identification strategies.

Columns (4)–(8) report the 95% CI of our partial identification strategies under different assumptions

about the availability of misclassification probabilities. The estimation error of the nuisance parameters

π(X ) =Pr(Z = 1|X ) and αMis are taken into account following the inference process presented in Lin,

Tommasi, and Zhang (2021), where their confidence intervals are obtained by nonparametric bootstrap-

ping. Column (4) assumes no information about the misclassification probabilities is available. Since the

IV is binary, Strategy 1 and 2 coincide and are equivalent to the method developed by Ura (2018).18

Whereas, Columns (5)-(8) display the estimates of the bound for αIV under Strategy 3, α̂Mis ∗ [ξ,ξ]

16The last equality follows from Theorem 1 of Frölich (2007). See more detailed explanations in Appendix E.1.
17In the binary IV case, Abadie (2003) and Frölich (2007) show that, forπ(X ) :=Pr(Z = 1|X ), E

�

Z−π(X )
π(X )(1−π(X ))Q
�

= E [E(Q|X , Z = 1)−E(Q|X , Z = 0)]

holds for any random variable Q. Thus, α̂Mis in Panel A Column (2) is calculated as the sample analogue of E
�

Z−π(X )
π(X )(1−π(X ))Y
�

/E
�

Z−π(X )
π(X )(1−π(X )) T
�

, where

π(X ) is estimated via a linear probability model. The confidence interval of α̂Mis is computed using a nonparametric bootstrap method.
18In the binary IV case with covariates, the computation of our CI using Strategy 1 and 2 is identical to that described in Section 4 of Ura (2018).

The differences between the results in Column (3) and (4) in Panel A arise from different random samples in the two-step multiplier bootstrap method.
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Table 2: Empirical Illustration

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Binary instrument

αMis Target parameter: unconditional LATE αIV

2SLS Abadie nonpara. Ura Strategy 1 ≡ 2 Strategy 3

(2003) (2018) appr. wn appr. wp bounds wn and wp appr. wn and wp

est. 9.4 16.3 (10.8, 13.5) (6.5, 13.0) (11.9, 13.0) 11.9
95% CI (5.3, 13.5) (7.1, 25.5) (4.4, 28.3) (4.3, 27.8) (4.7, 21.2) (2.8, 20.4) (5.2, 20.4) (5.2, 18.6)

Panel B: Discrete instrument

αMis(e ∈ As) Target parameter: conditional WLATE αIV (e ∈ As)

nonpara. Strategy 1 Strategy 2 Strategy 3

appr. wn appr. wp bounds wn and wp appr. wn and wp

Stratum 1 est. 21.8 (14.4, 18.1) (8.7, 17.4) (15.9, 17.4) 15.9
95% CI (16.7, 27.6) (2.5, 42.4) (2.9, 29.4) (11.0, 23.0) (6.7, 22.1) (12.2, 22.1) (12.2, 20.2)

Stratum 2 est. 23.1 (15.2, 19.2) (9.2, 18.5) (16.9, 18.5) 16.9
95% CI (19.2, 27.0) (2.3, 70.1) (4.6, 28.2) (12.7, 22.4) (7.7, 21.6) (14.0, 21.6) (14.0, 19.7)

Stratum 3 est. 54.5 (36.0, 45.2) (21.8, 43.6) (39.8, 43.6) 39.8
95% CI (44.9, 64.0) (19.2, 120.9) (15.5, 68.2) (29.6, 53.2) (17.9, 51.2) (32.8, 51.2) (32.8, 46.7)

Panel C: Discrete instrument

αMis
k,k−1(e ∈ As) Target parameter: conditional LATE αk,k−1(e ∈ As)

nonpara. Ura Lemma 3.2 Strategy 3

(2018) appr. wn appr. wp bounds wn and wp appr. wn and wp

Stratum 1 k = 1 est. 49.4 (32.6, 41.0) (19.7, 39.5) (36.0, 39.5) 36.0
95% CI (33.6, 65.1) (3.9, 44.1) (8.0, 42.4) (22.2, 54.0) (13.4, 52.1) (24.5, 52.1) (24.5, 47.5)

k = 2 est. 11.3 (7.5, 9.4) (4.5, 9.0) (8.2, 9.0) 8.2
95% CI (3.6, 19.1) (1.0, 22.4) (2.5, 19.4) (2.4, 15.8) (1.4, 15.3) (2.6, 15.3) (2.6, 13.9)

Stratum 2 k = 1 est. 63.6 (42.0, 52.8) (25.5, 50.9) (46.5, 50.9) 46.5
95% CI (45.2, 82.1) (7.1, 75.3) (12.5, 70.1) (29.8, 68.1) (18.1, 65.7) (33.0, 65.7) (33.0, 59.9)

k = 2 est. 12.7 (8.4, 10.5) (5.1, 10.2) (9.3, 10.2) 9.3
95% CI (6.4, 19.0) (1.9, 21.7) (2.3, 22.0) (4.2, 15.8) (2.6, 15.2) (4.7, 15.2) (4.7, 13.9)

Stratum 3 k = 1 est. 132.8 (87.7, 110.2) (53.1, 106.3) (97.0, 106.3) 97.0
95% CI (99.6, 166.1) (17.9, 113.8) (40.6, 120.9) (65.7, 137.7) (39.8, 132.9) (72.7, 132.9) (72.7, 121.3)

k = 2 est. 43.0 (28.4, 35.7) (17.2, 34.4) (31.4, 34.4) 31.4
95% CI (30.6, 55.5) (14.1, 61.5) (19.2, 59.7) (20.2, 46.1) (12.2, 44.4) (22.3, 44.4) (22.3, 40.5)

Notes: Results in this Table are in 1,000$ units. Point or bound estimate is in the first row and 95% CI is in the second row. Panel A reports
the results using a binary IV. Panel B and C report illustrative results using a discrete IV. In Panel A, Column (1) reports the conventional 2SLS
estimate as shown in Column (3) of Table 2 by Abadie (2003). Column (2) reports the nonparametric estimate of αMis taking unobserved
heterogeneity into account. Column (3) reports the 95% CI of the LATE as shown in Table 2 by Ura (2018). Columns (4)-(7) report the
results of our partial identification strategies under different assumptions regarding the misclassification probabilities. Finally, Column (8)
delivers a point estimate of the effect and its 95% CI. In Panel B, our target parameter is the conditional IV estimand αIV (e ∈ As) for each
stratum As and s = 1, 2,3. We stratify the samples into three strata based on their estimated e = e(X ) =Pr(T = 1|X ). Column (2) reports
the nonparametric estimates of αMis(e ∈ As). Columns (3)-(7) report the results using our partial identification strategies under different
assumptions regarding the misclassification probabilities. Finally, Column (8) delivers a point estimate of the effect and its 95% CI. In
Panel C, our target parameter is the conditional LATE estimand αk,k−1(e ∈ As) with k = 1,2 for each stratum As and s = 1,2, 3. Column
(2) reports the estimates of αMis

k,k−1(e ∈ As) which is the mismeasured LATE ignoring the treatment misclassification. Column (3) reports
the 95% CI of αk,k−1(e ∈ As) obtained by applying the method of Ura (2018) to the subsample with IV taking two values, k−1, k. Column
(4) reports the results obtained by applying our Lemma 3.2 to the whole sample with IV taking all three values. Columns (5)-(7) deliver
partial identification results of αk,k−1(e ∈ As) using our Strategy 3 under different assumptions regarding the misclassification probabilities.
Finally, Column (8) presents a point estimate of the LATE and its 95% CI.

with α̂Mis from Column (2), and its 95% CIs, using external information about the misclassification prob-

abilities. In particular, we take into account the fact that α̂Mis is likely upward biased by approximately

37% (see Column (8)). We impose two common restrictions: (i) the probability of false positive wp and
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false negative wn are both less than 50%,19 and (ii) people are more prone to under-report rather than

over-report due to the incomplete awareness so that wp ≤ wn. We consider four cases:

• Case 1. Column (5) assumes that we know only an approximation of the probability of false negative

(wn = 17%). Then, ξ ≤ 1− wn because wp is nonnegative, and ξ ≥ 1− 2wn because wp ≤ wn. In

this case, we can set ξ ∈ [1− 2wn, 1−wn] = [66%,83%].

• Case 2. Column (6) assumes that we know only an approximation of the probability of false positive

(wp = 10%). Then, ξ≤ 1−2wp because wp ≤ wn and ξ≥ 0.5−wp because wn ≤ 50%. In this case,

we can set ξ ∈ [0.5−wp, 1− 2wp] = [40%, 80%].

• Case 3. Column (7) assumes that we know the bound of wn, where wp ≤ wn ≤ wn with wn = 17%

and wp = 10%. In this case, ξ ∈ [1−wn −wp, 1− 2 ∗wp] = [73%, 80%].

• Case 4. Column (8) assumes that both wn and wp are approximately known, as in this application

wn ≈ 17% and wp ≈ 10% thus ξ = 1− wn − wp ≈ 73%. Then, the upward bias is α
Mis−αIV

αIV = 1−ξ
ξ ≈

37% and our approach can deliver a point estimate of the effect α̂IV = α̂Mis ∗ ξ≈ α̂Mis ∗ 73%.

As one can see, using our partial identification strategy in the presence of external information, as de-

scribed in Columns (5) to (7), we obtain bounds of the true benefits of the program that can be between

25% and 36% narrower compared to those depicted in Column (3).20 Notice that, the point estimate in

Column (8) is likely to be biased since we only have approximations of the misclassification probabilities.

However, if the true false positive and the true false negative rates are close to 17% and 10%, our estimate

is closer to the true (unknown) effect than the value reported in Column (2), which ignores treatment

misclassification.21

Next, we illustrate the performance of our method when the instrument is discrete by interacting the

eligibility for the 401(k) plan and the duration of exposure to the plan. The duration of exposure is

defined as how many years one has been exposed to the 401(k) program, which became active in 1981.

Those with less than 10 years of exposure were 15 to 24 years old in 1981. Those with at least 10 years

of exposure were 25 or older in 1981. The discrete instrument takes the value Z = 0 if an individual is

not eligible and has been exposed for less than 10 years, Z = 1 they are eligible and have less than 10

years of exposure or are ineligible and have at least 10 years of exposure, and Z = 2 if they are eligible

and have at least 10 years of exposure. Naturally, with this instrument the ascending order requirement

is satisfied. Also in this case, the instrumental variable plausibly satisfies the exclusion restriction after

conditioning on covariates X .

When the instrument is discrete (or multiple-discrete), we follow the method of stratification matching

adopted by Dehejia and Wahba (1999) and Battistin and Sianesi (2011) to incorporate covariates. Denote

19This is the sufficient condition for Assumption 2.3. Otherwise the misclassification is too problematic and this dataset should probably be aban-
doned.

20In Panel A, the width of the 95% confidence interval (CI) in Column (3) is 23.9. However, the 95% CI in Column (5) is narrower, with a width of
16.5, representing a 31% reduction. Similarly, the 95% CI in Column (6) has a width of 17.6, which is 25% narrower, while in Column (7), the width
is 15.2, reflecting a 36% reduction. In Column (8), where both approximations of wn and wp are available, we obtain a point estimate and achieve the
most significant reduction in the width of the bounds. These findings suggest that having more accurate external information regarding the probabilities
of misclassification leads to more informative bounds on the true benefits.

21The reliability of the external information used to approximate the misclassification probabilities is crucial in determining the accuracy of our
proposed estimators obtained using Strategy 3. Strategy 3 is advantageous as long as the source of the external information is deemed informative. We
thank an anonymous referee for pointing this out.
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e = e(X ) =Pr(T = 1|X ) as the probability of self-reported participation. We stratify the sample into three

strata A1, A2, A3 based on their estimated e(X ). Each stratum consists of one-third of the samples, where

samples in stratum 1 have the smallest e(X ), and samples in stratum 3 have the largest e(X ). We proceed

with the estimation within each stratum. Our target parameter in Panel B is the conditional IV estimand

αIV (e ∈ As) =
Cov(Y,Z |e∈As)
Cov(D,Z |e∈As)

, where As represents one of the S user-specified strata.22 Column (2) of Panel B

reports the estimates for αMis(e ∈ As) =
Cov(Y,Z |e∈As)
Cov(T,Z |e∈As)

, which indicate that, without accounting for treatment

misclassification, αMis(e ∈ As) overestimates the true effect of the program. Indeed, as one can notice,

the left-end points of each confidence interval for αIV (e ∈ As) in Columns (3)-(8) are much smaller than

the left-end point of the confidence interval of αMis(e ∈ As) in Column (2). More importantly, in Columns

(5)-(8), the right-end points of the confidence interval are also much smaller than the right-end point

of the confidence interval and even the point estimate (in most of the cases) of αMis(e ∈ As) in Column

(2). The same results hold for the binary IV case in Panel A. Similar to the binary instrument case, in the

discrete instrument case, and for each stratum, the more informative external information is incorporated

in estimation, the better is the performance of Strategy 3 in terms of tightest of the bounds.23

Our target parameter in Panel C is the conditional LATE estimand in each stratum, defined as: αk,k−1(e ∈
As) =

E[Y |Z=zk,e∈As]−E[Y |Z=zk−1,e∈As]
E[D|Z=zk,e∈As]−E[D|Z=zk−1,e∈As]

for k = 1, 2 and s = 1,2, 3. Column (2) reports the estimates for

αMis
k,k−1(e ∈ As), which use the mismeasured treatment T and ignore the treatment misclassification. Col-

umn (3) reports the 95% CI of αk,k−1(e ∈ As) obtained by applying the method of Ura (2018) to the

subsample with IV taking two values, k − 1 and k. Column (4) reports the results obtained by ap-

plying our Lemma 3.2 to the entire sample. Columns (5)-(8) present the bound or point estimates,

α̂Mis
k,k−1(e ∈ As) × [ξ,ξ], with α̂Mis

k,k−1(e ∈ As) from Column (2) and the values of ξ and ξ computed us-

ing external information about wn and wp as described in Cases 1 to 4 in the binary IV example. When

comparing the bounds in Columns (3) and (4), we can see that, first, the lower bounds obtained using

our method are much larger than those obtained using the method of Ura (2018), and second, the upper

bounds produced by these two methods are comparable. These two findings align with the theoretical

results in Lemma 3.2 and provide confirmation of the identification gains achieved by incorporating a

discrete IV in bounding individual LATEs.

Finally, two remarks are in order for Panel A and Panel B. First, the intersection bounds from all three

strategies give the bounds using Strategy 3 and the approximations of both wp and wn in Column (8).

This is because it dominates other bounds and thus is the preferred one. Second, we conduct a sensitivity

analysis to evaluate the effects of treatment misclassification probabilities across a wide range of values

for wn and wp, in order to provide more comprehensive illustration of the bounding analysis using our

Strategy 3. Due to space limitation, the results are presented in Appendix G.1. In summary, the accuracy

of the prior information about wn and wp generally results in narrower confidence intervals.

22Detailed discussions and results regarding our partial identification strategies with covariates are given in Appendix E. In Appendix E.1, we discuss
the reasons for choosing the conditional IV estimand as the target parameter in the case of discrete or multiple-discrete IV(s) with covariates.

23Notice that the results in Panel A and B are not directly comparable for two reasons. First, in Panel A we use the full information of covariates,
whereas in Panel B we use only discretized information about the covariates via dummies indicating e(X ) ∈ As. Second, since the instruments in Panel
A and B generate different complier groups, the effects for one complier group need not be comparable to effects for others.
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5 Conclusion

This paper provides useful tools for applied researchers to study the local average treatment effect (LATE)

and the weighted average of LATEs (WLATE) using binary, discrete, or multiple-discrete IVs, when the

binary treatment is mismeasured. We demonstrate the limitations of the standard LATE approach and

introduce a parameter based on misclassification rates to approximate the potential bias in the estimable

program benefits. We find that the mismeasured effect is a weighted average of LATEs with potentially

negative weights, resulting in overestimation of the true effect even with non-negative weights. Partial

identification results are established for both LATE and WLATE. Moreover, we provide a way to tighten the

bounds using external information on misclassification probabilities. Finally, we illustrate the potentials

of our approach in the context of the 401(k) pension plan in the US. We conclude that (i) the naive

estimates of program benefits (ignoring measurement error) are overestimated approximately by 37%,

and (ii) our estimated bounds of the true program benefits can be up to 36% narrower in width than

comparable results in the literature.

Our work is positioned between the literature which examines the consequences of using an error-

laden proxy on the causal interpretation of commonly used IV estimands (e.g. Chalak, 2017), and the

literature which offers a means to learn the possible values of target parameters under treatment mis-

classification using partial identification strategies (e.g. Ura, 2018). Our method offers at least three

applications for practitioners. First, it can be used as the leading identification strategy in any setting

where the practitioner knows that the endogenous binary treatment is not well measured. Second, it can

be used as the leading robustness check if misreporting is only suspected. Third, it can assess the sensi-

tivity of program benefits under different assumptions of the misclassification probabilities. Although our

method is primarily motivated by (and directed to practitioners in) the program evaluation literature, it

is not limited to applications within this context. It can be applied to any setting where the endogenous

binary treatment is contaminated by endogenous measurement error, and the researcher considers LATE

or WLATE the relevant parameter(s) for evaluating the policy change.
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