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EXTENDED BETA MODELS FOR POVERTY MAPPING. AN APPLICATION
INTEGRATING SURVEY AND REMOTE SENSING DATA IN BANGLADESH

BY SILVIA DE NICOLÒ1,a , ENRICO FABRIZI2,c AND ALDO GARDINI1,b

1Department of Statistical Sciences, Università di Bologna, asilvia.denicolo@unibo.it; baldo.gardini@unibo.it

2DISES, Università Cattolica del S. Cuore , cenrico.fabrizi@unicatt.it

The paper targets the estimation of a poverty rate at the upazila level in
Bangladesh through the use of Demographic and Health Survey (DHS) data.
Upazilas are administrative regions equivalent to counties or boroughs whose
sample sizes are not large enough to provide reliable estimates or are even
absent. We tackle this issue by proposing a small area estimation model com-
plementing survey data with remote sensing information at the area level.
We specify an Extended Beta mixed regression model within the Bayesian
framework, allowing it to accommodate the peculiarities of sample data and
to predict out-of-sample rates. Specifically, it enables to include estimates
equal to either 0 or 1 and to model the strong intra-cluster correlation. We
aim at proposing a method that can be implemented by statistical offices as a
routine. In this spirit, we consider a regularizing prior for coefficients rather
than a model selection approach, to deal with a large number of auxiliary
variables. We compare our methods with existing alternatives using a design-
based simulation exercise and illustrate its potential with the motivating ap-
plication.

1. Introduction. There is a growing interest in the study of geographical distribution
of extreme poverty, with a particular focus on developing countries, due to the relevance
of place-based policies implementation and monitoring (Duranton and Venables, 2021). In
most countries, the parameters usually adopted to describe poverty and social exclusion are
estimated using sample surveys, providing reliable estimates for the country as a whole, for
large regions, or for other large subsets of the population. Nonetheless, the availability of
estimates for small geographical regions or other small subsets of the population, usually
labeled as small areas or domains, is particularly useful. When the domain-specific sample
sizes are too small, the precision of survey estimates is not adequate. Small area estimation
(SAE) methods aim at improving the precision of area-specific survey estimates (known as
direct estimates) by integrating survey samples with different data sources that can provide
indirect useful information. In this article, we aim at mapping poverty in Bangladesh at a great
level of disaggregation using data from the Bangladesh Demographic and Health Surveys
(DHS). Specifically, we consider as target areas the upazilas, i.e. administrative sub-districts
comparable with counties or boroughs.

As poverty measure, we consider the proportion of people in the first quintile of the na-
tional distribution of the Wealth Index (WI), as defined by the DHS program (Corsi et al.,
2012). The WI is a composite measure that summarizes the living conditions of an house-
hold and can be read as a measure of socioeconomic status (Poirier, Grépin and Grignon,
2020). Such indicator is more closely related to permanent than to current income, being
less reactive to changes in income or consumption than other poverty measures, as noted by
Steele et al. (2017) for the Bangladesh case. We remark that surveys implemented by the
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FIG 1. Direct estimates of poverty incidence in Bangladeshi Upazilas from DHS survey: histogram (left) and map
(right).

DHS program constitute a valuable data source, being collected with similar methodologies
in many developing countries.

Due to the lack of reliable and standardized data sources released by national institutions,
the DHS program promotes the incorporation of geo-referenced data (Burgert, Zachary and
Colston, 2013). In this spirit, we integrate auxiliary information taken from remote sens-
ing (RS), such as population structure and density, along with geographical, land use, so-
cial and economic features. Those are largely recognized as poverty predictors and used for
poverty estimation at fine spatial levels (Engstrom, Hersh and Newhouse, 2017; Masaki et al.,
2020). In Bangladesh, some poverty-related measures have been predicted at small scales by
integrating survey and RS data via novel statistical techniques (Steele et al., 2017; Zhao
et al., 2019). The approaches followed by these papers, however, completely overlook the
uncertainty of survey estimates used as input. Such uncertainty might be non-negligible in
small domains and ignoring it may lead to unreliable predictions and misleading associated
variances. For these reasons, we decided to exploit SAE techniques, leveraging sampling
variances of survey estimators to obtain reliable estimates endowed with adequate precision
measures.

To produce a reliable map at the upazila level, we need to face several specific challenges
posed by our data set: (a) samples available for upazilas are often very small and, for more
than 30% of the areas, no observations are recorded (see spatial distribution of direct esti-
mates in Figure 1); (b) the sampling design is clustered and the intra-cluster correlation is
very high (see Section 3, for details), so direct estimators are much less efficient than they
would be under a simple random sampling design with equal sample sizes; (c) Bangladesh
is characterized by large disparities between urban and rural areas and among regions: as a
consequence a large fraction, 18%, of direct estimates are 0, as we can note from the his-
togram in Figure 1; (d) the auxiliary information we have is areal and although in most cases
is available at a very detailed scale, it cannot be linked to individuals as exact geographi-
cal coordinates of sampled households are not released; (e) the potentially large number of
covariates that can be obtained for each area poses a problem of variable selection. These
challenges drive our modeling choices and lead us to develop a methodology that is fairly
different from those already proposed in the literature.

We consider small area methods relying on area-level models (Rao and Molina, 2015,
Chapter 4). The alternative unit-level models (see, e.g., Molina, Nandram and Rao, 2014)
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require auxiliary variables to be known for each unit or household in the sample and also
for all the non-sampled units, in case of prediction. An appealing feature of area-level mod-
els is their ability to link area-level covariates with direct estimates of the target measure,
endowed with an uncertainty measure. They do not require access to individual-level sam-
ple data and detailed design information, often not available because of confidentiality con-
cerns. Among area-level models for proportions, the main proposals are linear mixed models
assuming normality (i.e., the Fay-Herriot model, FH, Fay and Herriot, 1979) either on di-
rect estimates (Xie, Raghunathan and Lepkowski, 2007; Marhuenda, Molina and Morales,
2013) or on their transformations, e.g. the square root arc-sine one (Casas-Cordero Valen-
cia, Encina and Lahiri, 2016; Schmid et al., 2017), and Beta mixed models (Liu, Lahiri and
Kalton, 2007; Fabrizi et al., 2011; Janicki, 2020). Other proposals directly model survey
counts through discrete distributions such as the Binomial (Chen, Wakefield and Lumely,
2014; Franco and Bell, 2015) or the Poisson (Bradley, Wikle and Holan, 2016; Boubeta,
Lombardía and Morales, 2017).

We remark that the assumption of normality for direct estimators works only when the
underlying parameter is far from the boundaries. Likewise, the square root Arc-sine transfor-
mation model (hereafter Arc-sine model, for brevity) implies an approximation of standard
errors that is inadequate for direct estimates equal to 0 or very close to it (see the discussion
in Section 6.1). When estimates are far from 0 or 1, the problem can be overlooked, but this
is not our case. Lastly, Poisson and Binomial models do not present a dispersion parameter,
complicating the incorporation of sampling variances and intra-cluster correlation.

In view of the considerations stated in the previous paragraph, this paper focuses on Beta
mixed models. Indeed, despite Beta models do not allow for direct estimates equal to 0 or 1,
ad-hoc solutions for this issue have been proposed in SAE by Wieczorek and Hawala (2011),
Fabrizi, Ferrante and Trivisano (2016) and Fabrizi, Ferrante and Trivisano (2020). However,
these contributions do not consider the strong intra-cluster correlation characterizing our data
and may lead to poor predictions for these areas. In this paper, we opt for an extended Beta
mixed model that we generalize to make it suitable for the aforementioned features. The
inferential setting we adopt is the Bayesian one, as it offers several benefits in the small area
estimation context (Rao and Molina, 2015, Chapter 10). Among the others, we point out
those of easily managing non-Gaussian distributional assumptions and fully capturing the
uncertainty around target parameters.

Our proposal contributes to the literature in various directions. Firstly, we substantially
extend the model of Fabrizi, Ferrante and Trivisano (2016) by proposing a different treatment
of the direct estimates equal to the boundaries. We assume that either 0 or 1 values are due
to a censoring process as a result of reduced area-specific sample sizes and strong intra-
cluster correlation, while true population values may be very close but not exactly equal to
the boundary values. Differently from Fabrizi, Ferrante and Trivisano (2016), we relax the
independence assumption when modeling the probability of observing 0 and 1 values. We
explicitly include an additional parameter that manages such dependency in an intuitive and
explicable way. Moreover, we propose a new methodology for out-of-sample predictions that
properly represent the associated uncertainty. Specifically, it guarantees that this uncertainty
will be larger than the one associated with areas for which samples are available. This may
not be the case for many small area procedures in use.

Another goal of the proposed method is to provide a small area estimation tool that can
be widely applied by final users and practitioners. We achieve this by implementing a set
of flexible prior choices that do not need fine-tuning interventions. In this spirit, the model
selection step is automatically performed by using regularized horseshoe priors (Piironen
and Vehtari, 2017) for regression coefficients, sidestepping manual variables selection and
dimension reduction techniques. To the best of our knowledge, this constitutes a novelty in
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the small area framework. Moreover, the use of the horseshoe prior for regression coefficients
is complemented by a type of spike-and-slab prior for the random effects (Fabrizi, Ferrante
and Trivisano, 2018; Tang et al., 2018).

We assess the frequentist properties of the proposed predictor using a design-based simu-
lation in comparison with existing models in the literature, namely the Arc-sine model, the
model by Fabrizi, Ferrante and Trivisano (2016) among those relying on the Beta likelihood,
and the Binomial model. We do not consider other modeling proposals such as those based
on a Poisson working likelihoods for several reasons. For example, they do not naturally re-
strict the domain of the target (rate) parameter within the unit interval and, from a technical
point of view, their implementation to fit our data is not straightforward and would require an
out-of-the-scope investigation for this paper. A detailed discussion can be found in Section 7.

We find that the predictors we propose are very effective in improving the precision of
direct estimates, having good coverage properties in terms of posterior probability intervals
for both in-sample and out-of-sample areas.

The paper is organized as follows. In Section 2, the DHS survey and auxiliary variables
are presented. The direct estimation of proportions is set out in Section 3, together with
a particular focus on the methodology of uncertainty estimation that has been adopted. The
small area models are introduced in Section 4, deepening the proposed Extended Beta model.
Section 5 deals with a design-based simulation study, whereas an application on Bangladesh
DHS data is illustrated in Section 6. Section 7 offers some concluding remarks and directions
for future research.

2. The data. We aim at estimating the proportion of people living in households below
the 20th percentile of the WI national distribution at the Administrative Level 3 (upazilas) in
Bangladesh. To obtain these estimates, we combine DHS survey data, described in Section
2.1, with remote sensing and geographical data (Section 2.2) obtained from a variety of open
sources and processed at the upazila level.

2.1. The Bangladesh DHS. The DHS survey targets the entire Bangladeshi population
residing in non-institutional dwelling units. Bangladesh is divided into seven administrative
divisions; each division into zilas and each zila into upazilas. The national territory is also
classified distinguishing among rural areas, city corporations and other urban areas. The sur-
vey is based on a two-stage stratified sample of households and relates to 2014. In the first
stage, 600 Enumeration areas (EAs) are selected with probability proportional to the EA size
within 20 strata, obtained as the combination of administrative divisions and territorial clas-
sification (originally, 21 strata were planned, but the city corporation and other urban areas
of the Rangpur division were merged). Each EA is defined to contain on average 120 house-
holds, and 30 households are drawn from every sampled EA with equal probability. Of the
600 EAs in the sample, 207 are in urban areas or city corporations and the remaining 393
are in rural areas. With this design, the survey selects 18,000 residential households. Survey
weights, accounting also for non-responses, are published with survey data (NIPORT and
Mitra and Associates and ICF International, 2016, for more details). We have 365 upazilas
that include at least one sampled cluster out of a total of 544.

The WI computed using DHS data is constructed from a set of questions on household
durable assets and housing characteristics such as floor type and ceiling material, toilet or
latrine access, phone ownership and others. Given the set of basic indicators, the construction
of the index proceeds by extracting a common factor explaining the largest percentage of the
total variance using principal component analysis and then adjusting for differences in urban
and rural strata. Households with a WI included in the first quintile are labeled as poor,
defining a dichotomous response variable denoted with y. In line with literature on poverty
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measurement, we target our analysis at the individual level: as a consequence, all individuals
belonging to the same household are assumed to share the same WI score. The individual
data is characterized by an overall sample size of 81,624, while the upazila-level sample
sizes span from 16 to 1884 (median: 160).

2.2. Remote sensing covariates. According to World Bank (2008), Khudri et al. (2013)
and Islam, Sayeed and Hossain (2017), the main determinants of poverty relate to socio-
demographic and educational aspects, economic development and the so-called “location
effect”. The latter is associated with connectivity to markets and infrastructures (for rural
communities), area-specific risk of natural disasters and lean seasons related to area-specific
crops. With the exclusion of the education level, not considered due to the non-availability of
data, we incorporate all those aspects through selected covariates, described in the following.
In particular, location-specific issues have been captured with the aid of land-use and bio-
climatic variables.

We have chosen a set of auxiliary variables, aggregated at the area level from raster files
available in different open sources. A total of p = 46 covariates are included in the appli-
cation. All the covariate values at the area level are retrieved by cutting the raster with the
Bangladesh upazila shapefile first, and then simply aggregating the pixels inside each area.
Usually, the arithmetic mean is considered, but different summaries, that are meaningful for
specific indicators, are described later. We remark that this procedure allows producing area
level covariates starting from open resources. To improve the strength of the linear corre-
lation between each covariate and the transformed proportion (i.e. logit or arc-sine), some
data transformations are considered (identity, logarithm, squared root and inverse functions)
choosing the one that maximizes Pearson’s correlation. Lastly, the obtained covariates are
standardized. The raster related to population density has a resolution of approximately one
pixel per km2, while the others have a resolution of approximately one pixel per hectare.

2.2.1. Demographic variables. The demographic structure of the areas is described by
the population density and its composition by age and sex, retrieved from the rasters available
on the WorldPop website (https://www.worldpop.org/, Tatem, 2017). Regarding the density,
the estimate of the count of People-per-km2 is available and it has been summarized in each
area by the average and the standard deviation. On the other hand, the population structure
by age and sex is available as rasters reporting the counts of People-per-hectare, for each of
the following age classes: [0; 1), [1; 5), [5; 10), [10; 15), . . . , [75; 80), [80;+∞), and stratified
by gender (see Pezzulo et al., 2017, for the methodology). Let us define PG,A as the pop-
ulation count pertaining to gender G and age class A. By summing each count within the
target administrative areas, we produce the following demographic ratios: human sex ratio
PM,•/PF,•, human sex ratio in productive age PM,14−64/PF,15−64, total dependency ratio,
i.e., (P•,0−14 + P•,65+)/P•,15−64, child dependency ratio, i.e., P•,0−14/P•,15−64, aged de-
pendency ratio, i.e., P•,65+/P•,15−64 and woman-child ratio PF,15−49/P•,0−4.

2.2.2. Development variables. As an indicator of the area urbanization, the nighttime
light radiance (from WorldPop) is adopted, measured by Visible Infrared Imaging Radiome-
ter Suit (VIIRS, nanoWatts/cm2/sr) and is acknowledged to be a proxy of economic devel-
opment (Zhou et al., 2015; Masaki et al., 2020). Further information on the development of
an area is retrieved from the distances to facilities and main infrastructures. More in detail,
we considered the distance in km to important road intersections, roads, waterways (from
WorldPop) and the time required to access the city and the nearest healthcare site, com-
ing from the Malaria Atlas Project (https://malariaatlas.org/explorer/, Hay and Snow, 2006).
Note that, since these quantities are strictly related to people living in the area, the average

https://www.worldpop.org/
https://malariaatlas.org/explorer/
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was computed by weighting each pixel with the corresponding population density. To do this,
the rasters with a resolution of one hectare need to be up-scaled and aligned to the raster of
the population density.

2.2.3. Land-use variables. Another important aspect to take into account is the kind of
use that a territory has. To this aim, we consider again rasters from WorldPop, including the
average distance of each pixel from areas with a determined classification of use (cultivated,
woody-tree, shrub, herbaceous, sparse vegetation, aquatic vegetation, artificial surface, bare
area, nature reserves, open-water coastline). To complete the physical characterization of the
territory, the elevation above sea level and the topographic slope are averaged within each
area.

2.2.4. Bio-climatic variables. Such covariates are useful to account for the weather con-
ditions that affect the areas. They constitute a set of 19 variables, available in the WorldClim
repository (https://www.worldclim.org/data/bioclim.html, O’Donnell and Ignizio, 2012) that
is built in order to summarise the overall and seasonal behaviors of temperature and rainfall
(e.g., annual mean, standard deviation and temperature diurnal range). The available rasters
contain the averaged values over the period 1970-2000, providing a static characterization of
climatic features. However, given that the agricultural sector employs a large fraction of the
workforce in Bangladesh and constitutes a driving force for its economic growth (Rahman
et al., 2017), such features may be helpful in characterizing the productivity of the area.

3. Poverty estimator. In this section, we introduce the direct estimator ˆ̄Yd of the head-
count poverty rate θd for the upazila d, based on a complex survey sample of nd individuals
clustered in md households. The individual sample size is obtained as nd =

∑md

h=1 kdh where
kdh is the number of components in household h in area d. The estimator also considers
the sample weights wdh and the value of the target variable ydh, i.e. an indicator variable
denoting the poverty status. We employ an Hájek-type estimator (Hájek, 1971) defined as

(1) ˆ̄Yd =

∑md

h=1 kdhwdhydh∑md

h=1 kdhwdh
, d ∈ 1, . . .Ds

with Ds being the number of in-sample upazilas. The proportion estimator ˆ̄Yd is asymptoti-
cally unbiased.

3.1. Uncertainty associated to direct estimators. The small-area models that we are go-
ing to discuss in Section 4 require a dispersion parameter that can be expressed as a function
of the effective individual sample size ñd. Such quantity corresponds to the virtual size of
a simple random sample producing a direct estimate with a standard error equal to the one
obtained under the actual design. It can be characterized as ñd = nd/DEffd where DEffd de-
notes the design effect, i.e. the ratio between the design-based variance of a generic estimator
and the simple random sampling variance. It measures the possible amount of variance infla-
tion induced by clustering caused by the complex selection process and has to be estimated.

In principle, the sampling variance of (1) under complex two-stage sampling designs is
estimated through the Ultimate Cluster technique (Kalton, 1979), where variability among
clusters plays a central role. In practice, for many areas, such estimates are unstable or even
impossible to be obtained as a low number of clusters (often only one) is available. To cir-
cumvent this problem, we obtain reliable estimates of design effects at a higher level of
aggregation, subsequently assigning them at the upazila level.

Specifically, our proposal is to consider the 21 strata of the sampling design to estimate the
design effect for each stratum s= 1, . . . ,21. At the stratum level, the features to be accounted

https://www.worldclim.org/data/bioclim.html
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Stratum Type Average
√

DEffs Average ρs

Rural 4.75 0.18
Other Urban 6.07 0.28

City Corp. 2.93 0.02
TABLE 1

Arithmetic mean of DEffs and harmonic mean of ρs within strata types.

for in the computation of the design effects are the unequal sampling weights and clustering
(Chen and Rust, 2017). For this reason, we decide to adopt the formula by Kish (1987) within
each stratum, blending weights and clustering components. The formula has been adapted by
Gabler, Häder and Lahiri (1999) and adjusted by Lynn, Häder and Gabler (2006). It is defined
as

(2) DEffs =
[
1 + cv2(ws)

]
[1 + (n∗s − 1)ρs] ,

where cv(ws) is the coefficient of variation of the vector ws of weights associated with
individuals in stratum s, inheriting the weight from the household they belong to; ρs is the
intra-cluster correlation coefficient and

n∗s =

∑cs
i=1

(∑ni

j=1wij

)2∑cs
i=1

∑ni

j=1w
2
ij

,

with cs being the number of clusters in s, ni the units within cluster i, and wij the individual
weight.

The intra-cluster correlation coefficient is estimated through an ANOVA-based estimator
among those proposed by Ridout, Demetrio and Firth (1999), suitable for the analysis of
binary data. Table 1 summarizes the main results of the estimation of DEffs in different types
of strata according to the habitation type (see Section 2.1). Rural and Other Urban strata show
particularly high ICCs and, consequently, high estimates of DEffs. On the other hand, City
Corp. strata have lower design effects in view of their lower ICCs. In three City Corp. strata,
ρs cannot be computed due to the absence of poor households in the observed sample: in
these cases, we impute the harmonic mean of ICCs pertaining to City Corp. strata (see Table
1). Once the DEffs are available, standard errors are computed starting from the definition of
variance of proportions under simple random sampling:

(3) ŜEcs

[
ˆ̄Yd

]
=

√
ˆ̄Yd(1− ˆ̄Yd)

nd
DEffs.

To validate the procedure, we remark that the linear correlation between standard errors
as in (3) and the Ultimate Cluster estimates at the strata level is 0.93. At this level, the Ulti-
mate Cluster technique is reliable due to the large number of clusters in each stratum. This
comparison shows that both strategies provide similar results, leading us to consider DEff
estimates as reliable.

4. The models. The model strategy we propose, which constitutes an extension of the
one proposed by Fabrizi, Ferrante and Trivisano (2016), is fully described in Section 4.1.
An alternative approach relying on the Arc-sine model (Schmid et al., 2017) is presented in
Section 4.2, whereas Section 4.3 the approach introduced by Chen, Wakefield and Lumely
(2014) that assumes a Binomial working likelihood.
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4.1. The Extended Beta Model. Let us consider the mean-precision parametrization of
the Beta random variable (Ferrari and Cribari-Neto, 2004): if Y ∼ Beta(µϕ, (1− µ)ϕ), then

fB(y;µ,ϕ) =
Γ(ϕ)

Γ (µϕ)Γ ((1− µ)ϕ)
yµϕ−1(1− y)(1−µ)ϕ−1, y ∈ (0,1),

where µ ∈ (0,1) is the expectation and ϕ ∈ (0,+∞) is a dispersion parameter as V[y] =
µ(1−µ)(ϕ+1)−1. Note that the expression of V[y] is consistent with equation (3), leading to
an intuitive interpretation of the Beta distribution in modeling proportions. As a consequence,
ϕ+ 1 can be interpreted as the equivalent sample size. In SAE context, the Beta regression
area level model (Janicki, 2020) is usually specified as

ˆ̄Yd|µd, ϕd
ind∼ Beta (µdϕd, (1− µd)ϕd) ,

logit (µd) = xT
d β+ vd, d= 1, . . . ,D,

with xd being a set of p covariates, β the vector of regression coefficients, vd a random effect
and ϕd the area-specific dispersion parameter.

In order to allow direct estimates to be equal to 0 and 1, the standard Beta model has to
be extended. We start by considering the following three-components mixture model, consis-
tently with Wieczorek and Hawala (2011):

(4)

ˆ̄Yd|µd, π0d, π1d
ind∼ π0d × 1{ ˆ̄Yd = 0}+

+ (1− π0d − π1d)× Beta (µdϕd, (1− µd)ϕd)1{ ˆ̄Yd ∈ (0,1)}+

+ π1d × 1{ ˆ̄Yd = 1}, d= 1, . . . ,D

logit (µd) = xT
d β+ vd.

with π0d and π1d denoting the probabilities of observing 0 and 1 values in area d. The way we
model such probabilities is the main point of divergence with Wieczorek and Hawala (2011):
while they define π0d and π1d as the result of two logistic regressions, requiring a reasonable
amount of information, we decide to adopt a more parsimonious approach. In this way, our
model can be estimated even when boundary values are sparse.

The basic idea is to assume that possible direct estimates equal to 0 or 1 are the output
of a censoring process, i.e. the actual population value θd cannot be exactly 0 or 1. This
assumption leads to the following definition of the parameters π0d and π1d:

π0d = P[ ˆ̄Yd = 0|θd ∈ (0,1)], π1d = P[ ˆ̄Yd = 1|θd ∈ (0,1)].

To express them in a parsimonious way, we decided to define them as a combination of
sample characteristics and probabilistic assumptions.

Let us recall that estimator (1) is based on the sequence of observation yd1, . . . , ydmd
de-

noting the household poverty status. This can be seen as a sequence of Bernoulli trials with a
probability of success P[ydh = 1|θd ∈ (0,1)] = µd, ∀h, since µd may be seen as the poverty
rate of non-censored observations. Such an approach for modeling π0d and π1d resembles
the one of Fabrizi, Ferrante and Trivisano (2016), but it extends it in different ways. First,
we introduce the possibility of observing also direct estimates equal to 1. Secondly, we relax
their assumptions of independence across household observations, which is inconsistent with
the evidence of a strong clustering effect.

The sequence of observations incorporates a complex dependency structure which results
to be challenging to model. For this reason, we opt for a simple and general assumption:
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the dependency across observations boils down to a pairwise dependency, which is constant
across pairs and areas, not depending on their order, namely

P[ydi = 1|yd1 = 1, . . . , yd(i−1) = 1, yd(i+1) = 1, . . . , ydmd
= 1] = P[ydi = 1|ydh = 1] = λ,

where h ̸= i picks a generic observation. This assumption can be seen as a generalization of
Markov dependence in which the ordering does not play a role and allows for exchangeability
of the conditional probabilities. In this context, following Klotz (1973), we can formalize π1d
as

(5) π1d = P[yd1 = 1, . . . , ydmd
= 1|θd ∈ (0,1)] = µdλ

md−1,

i.e. the probability of jointly observing a sequence of md ones. Furthermore, in view of

P[ydi = 0|ydh = 0, θd ∈ (0,1)] =
1+ µd(λ− 2)

1− µd
,

we can also define

(6) π0d = P[yd1 = 0, . . . , ydmd
= 0|θd ∈ (0,1)] =

[1 + µd(λ− 2)]md−1

(1− µd)md−2
.

Note that the additional parameter λ can be interpreted as a proxy of the correlation be-
tween household observations and has a bounded support:

λL =max

{
0,max

d

2µd − 1

µd

}
≤ λ≤ 1.

For a specific area d, if µd < λ≤ 1 holds, a positive correlation across observations is present
since observing a success makes more likely the occurrence of another success. On the other
hand, λL ≤ λ < µd implies a negative correlation, while λ = µd implies no correlation. In
the latter case, note that π0d = (1− µd)

md and π1d = µmd

d as in Fabrizi, Ferrante and Triv-
isano (2016). Generally speaking, λ has an interpretation also when the pairwise dependency
assumptions are relaxed. In this case, π1d can be written as:

µdλ
md−1 = P[yd1 = 1, . . . , ydmd

= 1|θd ∈ (0,1)]

= P[yd1 = 1|θd ∈ (0,1)]

md∏
i=2

P[ydi = 1|yd(i−1) = 1, . . . , yd1 = 1, θd ∈ (0,1)],

leading to

λ=

( md∏
i=2

P[ydi = 1|yd(i−1) = 1, . . . , yd1 = 1, θd ∈ (0,1)]

) 1

md−1

.

As a consequence, the additional parameter λ is nothing more than the geometric mean of
the md − 1 conditional probabilities of success, assumed to be constant across areas. Indeed,
we explicitly incorporate dependency in a simple and easy-to-interpret way.

Under model (4) and relations (5) and (6), it is possible to express the population propor-
tion θd in terms of λ as

(7) θd =

[
1− µdλ

md−1 − [1 + µd(λ− 2)]md−1

(1− µd)md−2

]
µd + µdλ

md−1.

This implies that θd depends on the (inverse logit-transformed) linear predictor itself, which
is updated with sample features and λ, a parameter describing the censoring process. Lastly,
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the conditional variance is defined as

(8)
V
[
ˆ̄Yd|µd, π0d, π1d

]
=(1− π0d − π1d)

µd(1− µd)

ϕd + 1
+ π1d(1− π1d)+

+ (1− π0d − π1d)µ
2
d

[
π0d + π1d − 2

π1d
µd

]
.

Before we turn to prior specification, we note that the parameter ϕd is assumed known,
in line with many small area estimation applications, to guarantee identifiability. For this
reason, in what follows, it will be replaced by Fd = ñd − 1 that is intuitively grounded in
the interpretation of the re-parametrized Beta. The effective sample size ñd is estimated as in
Subsection 3.1. Note from (8) that Fd appears in V

[
ˆ̄Yd|µd, π0d, π1d

]
only in the first addend,

that is related to the occurrence of ˆ̄Yd ∈ (0,1).

4.1.1. Prior specification. The following prior distributions complete the model. Let us
start from λ, for which we opt for a non-informative approach by adopting a Uniform distri-
bution on its support:

λ|µ1, . . . , µD ∼ Unif
[
max

{
0,max

d

2µd − 1

µd

}
; 1

]
.

As regards the regression slopes, since we are dealing with a very large number of covari-
ates, a shrinking prior on regression coefficients may be appealing to regularize the problem
and avoid a formal step of variable selection or reduction of the predictors space. Specifi-
cally, the regularized horseshoe prior proposed by Piironen and Vehtari (2017) is considered,
whose basic rationale is that of coercing to 0 the coefficients related to negligible covariates.
It is defined by the following mixture:

(9)

βj |ζj , τ, ι∼N
(
0, τ2ζ̃2j

)
, ζ̃j

2
=

ι2ζ2j
ι2 + τ2ζ2j

, j = 1, . . . , p;

ζj ∼ Half-Cauchy(0,1), j = 1, . . . , p;

ι2 ∼ Inverse-Gamma
(νslab

2
,
νslab
2
s2slab

)
;

τ ∼ Half-Cauchy(0, τ0).

In order to complete the prior specification, some hyperparameters need to be set: νslab and
sslab can be interpreted, respectively, as the degrees of freedom and scale of a Student’s t
prior assumed on coefficients far from zero. We decided to set sslab = 1, νslab = 5, in order
to facilitate the convergence of the MCMC algorithm. Eventually, τ0 represents an important
parameter to set; Piironen and Vehtari (2017) proposed the following expression:

τ0 =
p0σ̃

(p− p0)
√
D
,

where p0 is an initial guess of the number of non-zero coefficients (i.e. specific of the appli-
cation) and σ̃2 is the pseudo-variance of a generic observation under the assumed model. To
elicit a value for σ̃2 under the Beta model, we exploit a result by Ferrari and Cribari-Neto
(2004). They define the logit transformations of the responses: z= {logit( ˆ̄Yd)}, d ∈Ds and
note that, under the logit link, the unconditional variance of the data can be approximated by:

σ̃2 =

∑
d∈Ds

(zd − z̄)2

Ds − 1

1

µ̄2(1− µ̄)2
,(10)
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where

µ̄=
ez̄

1 + ez̄
.

When direct estimates are very imprecise and/or the predictive power of predictors is rel-
evant, most of the random effects can be very small with possibly few exceptions (Datta,
Hall and Mandal, 2011). In this line, we propose the variance gamma shrinkage prior intro-
duced by Brown and Griffin (2010) and implemented in a small area application by Fabrizi,
Ferrante and Trivisano (2018) as a prior choice for vd. It is a global-local shrinkage prior
also mentioned among those explored by Tang et al. (2018), enabling for shrinking to 0 the
random effects related to a subset of the areas by mimicking the behavior of a spike-and-slab
prior. More in detail, we specify:

(11)

vd|ψd, ξ
ind∼ N

(
0,ψdξ

2
)
, d= 1, . . . ,D;

ψd
ind∼ Gamma(0.5,1), d= 1, . . . ,D;

ξ ∼ Half-N (0,1).

It can be noted that ξ is a global scale hyperparameter, whereas the independent ψd are local
scales. The latter ones have Gamma priors with shape parameter 0.5, such value is associated
with a more peaked distribution with respect to the Bayesian lasso, encouraging a stronger
shrinkage towards 0.

4.1.2. Posterior inference. Markov Chain Monte Carlo (MCMC) techniques are particu-
larly suitable for posterior exploration. Specifically, we carry out the fitting by implementing
the no-U-turn sampler, an adaptive variant of Hamiltonian Monte Carlo (HMC) algorithm via
Stan language (Carpenter et al., 2017). We performed estimation by using 4 chains, each
with 2,000 iterations, discarding the first 1,000 as warm-up.

Within the Hierarchical Bayes (HB) framework, we assume a quadratic loss and define its
posterior expectation as point predictor of θd, namely

θ̂HB
d = E[θd|data] ∀d,(12)

hereafter named model-based estimator. The posterior standard deviation of the target param-
eter is used to describe its uncertainty.

Users require small area estimates to be robust with respect to model failures. The predic-
tor associated with the popular Fay-Herriot model enjoys an important property in this sense,
known as design consistency. Intuitively, it is about the convergence of the model-based pre-
dictor to the direct estimator when the area-specific sample size grows large (for a formal
definition see Fuller, 2011, p. 41). It can be shown that, when adopting our extended Beta
model, θ̂HB

d is also design-consistent; specifically, conditioning on higher level parameters,
we have that θ̂HB

d

p→ ˆ̄Yd. A proof of this statement can be found in the supplementary material
(De Nicolò, Fabrizi and Gardini, 2024a). In practice, this implies that the difference between
the (reliable) direct estimate and the model-based one is negligible in areas with large sample
sizes.

4.1.3. Prediction of out-of-sample areas. Under the Extended Beta model, we propose
in Section 4.1, for the areas that are not included in the sample, the prediction is carried out
considering the functional:

θOOS
d = µd = logit−1

(
xT
d β+ vd

)
.
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To obtain a draw from the posterior θOOS
d , we need one from the distribution β|data along

with one from vd|data. As vd constitutes a random effect from an unobserved area. Having
the b-th Monte Carlo replicate from the posterior distribution ξ|data, i.e. ξ̃(b) we obtain a
draw ṽ

(b)
d exploiting its hierarchical definition (11):

1. Generate ψ̃d
(b)

from the prior: ψd ∼ Gamma(0.5,1);

2. Generate ṽ(b)d from vd|ψ̃d
(b)
, ξ̃(b) ∼N

(
0, ψ̃d

(b)
/ξ̃(b)

)
.

4.2. The Arc-sine model. For comparison purposes, we consider the Fay-Herriot model
with arc-sine square root transformation as an alternative model, commonly used for small
area estimation of ratios and proportions. This model is adopted in the context of poverty
mapping by Casas-Cordero Valencia, Encina and Lahiri (2016) and Schmid et al. (2017)
among others. Frequentist prediction can be implemented in the emdi R package (Kreutz-
mann et al., 2019). Bayesian inference for this model is discussed by Raghunathan et al.
(2007). By using the previous notation, the model can be outlined as follows:

sin−1
(
ˆ̄Y

1

2

d

)
|β, vd

ind∼ N (ηd, S
2
d),

ηd = xT
d β+ vd, d= 1, . . . ,D;

with S2
d being a variance parameter generally assumed to be known. This transformation has

a twofold motivation: in the first place, it guarantees that the back-transformed predictor lies
in the appropriate proportion range 0 ≤ E[sin2(ηd|data)] ≤ 1, once the domain of the lin-
ear predictor is truncated to the interval ηd ∈ [0;π/2]. Moreover, it has also the advantage of
variance stabilization: the sampling variances for the inverse sine transformed can be approx-
imated by a parameter-free function of the (equivalent) sample size retrieved using the Delta
method (Efron and Morris, 1975):

(13) S2
d
∼=

ˆ̄Yd(1− ˆ̄Yd)

4ñd
ˆ̄Yd(1− ˆ̄Yd)

=
1

4ñd
;

where the last equality holds only when ˆ̄Yd ∈ (0; 1). We propose an HB approach for estimat-
ing the Arc-sine model as in Raghunathan et al. (2007), but with a different prior specifica-
tion for the unknown parameters to parallel that defined in Subsection 4.1.1. The regularized
horseshoe prior for β in (9) has been considered with the sole difference of replacing the
pseudo variance in (10) with

σ̃2 =

∑
d∈Ds

(zd − z̄)2

Ds − 1
,

where zd = sin−1
(
ˆ̄Y

1

2

d

)
. While the global-local shrinkage prior for vd has been defined ex-

actly in the same way as in (11). Posterior inference on the target parameter is based on
back-transformation. Therefore the HB estimator on the original scale is a result of a proper
back-transformation as θ̂HB

d = E[sin2(ηd|data)]. The transformation, applied directly on pos-
terior draws, avoids bias issues related to the back-transformation that are common in the fre-
quentist framework (Sugasawa and Kubokawa, 2017). The model estimation has been carried
out in line with Section 4.1.2, while estimates for out-of-sample areas consider the functional:

θOOS
d = sin2

(
xT
d β+ vd

)
,

with draws from the posterior obtained following the steps defined in Section 4.1.3.
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4.3. The Binomial model. We introduce a Binomial model as another benchmark. This
implies a slight change of perspective since it does not model the survey proportion ˆ̄Yd, but
rather the sample count of poor people in an area. This strategy is discussed by Chen, Wake-
field and Lumely (2014) and Benedetti, Berrocal and Little (2022) is adopted in a poverty
mapping framework by Franco and Bell (2015). To take into account the complexity of the
sampling design, such models use as response the effective number of cases (i.e. poor peo-
ple) defined as Td = [ñd · ˆ̄Yd], where square brackets denote rounding to the nearest integer.
The rounded effective sample size [ñd] is adopted as number of trials. This results in the
hierarchical model:

Td|θd
ind∼ Binom (θd, [ñd]) ,(14)

logit (θd) = xT
d β+ vd, d= 1, . . . ,D.(15)

It follows that the target parameter is θd = E[Td|θd]/[ñd], provided that the whole procedure
overlooks the impact of rounding ñd · ˆ̄Yd and ñd. Similarly, V[Td|θd]/[ñd] = θd(1−θd)[ñd]−1

mimics the variance of the frequency under a Binomial random variable, that assumes inde-
pendence among trials. Such expression is also coherent with the sampling variance under
the Beta model. The Binomial working likelihood naturally accommodates ˆ̄Yd equal to either
0 or 1, implying Td = 0 or Td = [ñd]. Due to the rounding process, we point out that it is pos-
sible to observe Td = 0 when ˆ̄Yd ≈ 0 and/or ñd ≈ 0, whereas Td = [ñd] when ˆ̄Yd ≈ 1. Under
the model, it is straightforward to get P[Td = 0] = (1− θd)

[ñd] and P[Td = [ñd]] = θ
[ñd]
d .

The model is fitted under an HB approach with prior specification coherent with the one
exposed in Subsection 4.1.1. To calibrate the horseshoe prior (9) on the coefficients, we
replace the expression (10) for the pseudo-variance with

σ̃2 =
1

µ̄(1− µ̄)
,(16)

in line with Piironen and Vehtari (2017). Lastly, inference for out-of-sample areas follows
Subsection 4.1.3 with θOOS

d = logit−1
(
xT
d β+ vd

)
.

5. Design-based simulation. In this section, we introduce a design-based simulation
to assess the frequentist properties of model-based estimates obtained under Extended Beta
(EB), Arc-sine (AS) and Binomial models. We also introduce in the comparison the model
by Fabrizi, Ferrante and Trivisano (2016) (FFT model), in order to measure the impact of
relaxing the independence assumption. The simulation study is design-based to avoid data
generation under specific model assumptions; we rather try to reproduce a framework that is
as close as possible to real poverty data.

We assume the DHS sample as a synthetic population and the 64 zilas as domains. Then
B = 1000 samples are drawn from the synthetic population by mimicking the DHS design,
including stratification and multi-stage selection. We draw samples made of 114 clusters
stratifying by zilas in order to control for the domain-specific sample sizes; 10 zilas with 3
or fewer clusters in the synthetic population are considered out-of-sample areas. From each
cluster, 25% of households are randomly selected. This implies samples of different sizes at
each iteration: on average, 5.84% of the population is sampled at each iteration, with domain
sample sizes ranging from 27.94 to 260.09, with a mean of 73.22. For each sample, direct
estimates are computed and used as input for the four small area models involved in the
simulation study. They provide the following model-based estimators:

1. The empirical best linear predictor (EBLUP) under the Arc-sine model (EBLUP-AS) pro-
vided by the package emdi;
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In-Sample areas

Direct Est. EBLUP-AS HB-AS HB-Bin HB-EB HB-FFT
RMSE 0.142 0.086 0.078 0.075 0.071 0.076
BIAS 0.000 -0.010 -0.021 0.001 -0.009 0.004
90% Cov. - - 0.893 0.920 0.933 0.911

Out-of-Sample areas

Direct Est. EBLUP-AS HB-AS HB-Bin HB-EB HB-FFT
RMSE - 0.154 0.110 0.123 0.118 0.123
BIAS - 0.058 -0.043 -0.006 0.030 0.028
90% Cov. - - 0.978 0.937 0.930 0.933

TABLE 2
Median Bias, RMSE and frequentist coverage for the different estimation methods considered, distinguishing

between sampled areas and out-of-sample.

2. The HB estimator under the Arc-sine model (HB-AS);
3. The HB estimator under the Binomial model (HB-Bin);
4. The HB estimator under the Extended Beta model (HB-EB);
5. The HB estimator under the FFT model (HB-FFT).

We exploit the Monte Carlo variances of estimators to compute the area-specific effective
sample sizes and the spatial covariates at zila level are obtained following the same method-
ology of Section 2.2. The whole set of available covariates is provided as input to models
HB-AS, HB-Bin, HB-EB and HB-FFT, whereas a preliminary model selection step is re-
quired for EBLUP-AS, in order to obtain an optimal subset. The frequentist procedure would
not simply work with the large number of covariates we computed. Specifically, we carry out
the selection by fitting the model with the synthetic population data and using AIC as the
selection criterion. Clearly, in this way, the EBLUP-AS strategy relies on different modeling
conditions and it is not directly comparable to the Bayesian procedures, automatically incor-
porating the model selection step. The uncertainty involved in the regressors selection step is
overlooked.

Let us denote with θ̂db the model-based estimate for domain d at iteration bwith population
value θd; we consider bias, root mean squared error (RMSE) and frequentist coverage of the
90% credible intervals to compare estimators performances. Such quantities are defined as:

Bias
(
θ̂d

)
=

1

B

B∑
b=1

(
θ̂db − θd

)
, MSE

(
θ̂d

)
=

1

B

B∑
b=1

(
θ̂db − θd

)2
,

Coverage90(θ̂d) =
1

B

B∑
b=1

1{θd ∈ [Q0.05(θdb|data),Q0.95(θdb|data)]} ,

where Qα(θdb|data) denotes the posterior quantile of order α of θdb.
In Table 2, the medians of area-specific biases and RMSEs are reported, including also

the performances of the direct estimator as a benchmark. By focusing on in-sample areas, we
remark that the considered small-area models behave rather similarly. As expected, the direct
estimator is unbiased and, among model-based estimators, a slight negative median bias is
registered for the HB-AS model. Focusing on the RMSE, we can first note the remarkable
decrease yielded by the use of small area models with respect to direct estimation. In terms of
median, the HB-EB model shows a lower RMSE compared to other models; specifically, the
HB-EB model has a smaller RMSE with respect to other proposals in approximately 7 out of
10 areas (i.e. 74.1% versus HB-FFT, 68.5% versus HB-AS, and 66.7% versus HB-Binom).
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FIG 2. Behaviour of RMSE and frequentist coverage with respect to the area sample size nd.

The left plot of Figure 2 shows the behavior of RMSEs with respect to the log of the average
area sample size: the LOESS smoothing line related to the HB-EB model is systematically
below the ones related to the HB-Bin, HB-AS and HB-FFT models. Table 2 also reports the
results concerning out-of-sample areas. Comparable results are obtained, we note that the
EBLUP-AS model shows a higher RMSE and positive bias, making it less reliable in case of
out-of-sample prediction.

Focusing on the frequentist coverage for the 90% credible interval, we note how the me-
dian coverage, reported in Table 2, is satisfactory for all the Bayesian methods as they reach
the nominal level, with a slight tendency to over-coverage of HB-EB. For details about the
area-specific coverages with respect to the sample size, see the right plot of Figure 2. We
note that the coverage is occasionally very low, especially for areas with tiny samples; this is
due to the strong synthetic component of the predictors and the somewhat deviant behavior
of these areas. Similar coverage values are obtained for the out-of-sample areas which rep-
resent a valuable result, confirming that the procedure described in Section 4.1.3 propagates
uncertainty successfully. Lastly, the HB-AS method shows a marked tendency to overshoot
the nominal coverage level.

A possible limitation of our simulation is that being fully based on DHS data as those
of our application, comparisons should not be as general or conclusive. Nonetheless, the
HB-EB model seems to work slightly better in this context. The first motivation is that the
Beta likelihood accommodates the potential skewness of sampling distribution better than a
Gaussian approximation of the transformation. A second possible motivation is that the Arc-
sine models use a variance approximation on the transformed scale which is known to fail
when true probabilities are very close to 0 (Efron and Morris, 1975), as it is often the case in
our setting.

6. Application on Bangladesh DHS data. In this section, we map poverty in the
Bangladeshi upazilas by integrating the DHS data and remote sensing covariates described
in Section 2. We remark that the DHS dataset is composed of 365 in-sample areas with di-
rect estimates ranging from 0 to 0.96 (median: 0.16, 66 zero values), while 179 areas are
out-of-sample. The section is divided into two parts: in Subsection 6.1, we assess why the
assumptions and approximations at the base of the Arc-sine model are not suitable for the
analyzed data. For this reason, we do not present the results pertaining to the Arc-sine model
in Subsection 6.2, where we illustrate estimates and diagnostics for models based on the Beta
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FIG 3. Design standard error of ˆ̄Yd versus standard errors implicitly assumed by the AS model (left panel). Their
percentage differences are compared to direct estimates (center) and log ñd (right panel).

distribution (EB and FFT) and the Binomial model. Lastly, the Subsection 6.3 contains some
comments and remarks on poverty mapping in Bangladesh.

6.1. Why we need to go beyond the Arc-sine model. Our data are characterized by the
presence of many zeros among direct estimates. While the extended Beta model is built with
the aim of separately modeling such values, the Arc-sine model is usually employed treating
them as any value in the domain [0; 1]. This could introduce some counter-intuitive conse-
quences, in particular when determining the variances of transformed direct estimates.

Being the response a proportion, associating a non-null variance to 0 values is not in ac-
cordance with the theory of binomial processes. Nonetheless, this is what is done when the
approximation to the variance (13), i.e. (4ñd)−1, is applied to compute the standard error
of transformed direct estimates, including those equal to 0. Actually, the approximation can
be applied only when ˆ̄Yd ∈ (0; 1). In addition, its accuracy decays near 0 and 1 values and
especially so when effective sample sizes are small.

To check the implication of the variance approximation (13) in our analysis, we com-
pute by simulation the standard errors associated with the (untransformed) ˆ̄Yd induced
by the Arc-sine model. We proceed as follows: we draw Monte Carlo samples from a

N
(
sin−1

(
ˆ̄Y

1

2

d

)
, (4ñd)

−1
)

, then we apply the back-transformation and compute standard

errors for ˆ̄Yd from the back-transformed samples.
In Figure 3, such quantities are compared with ŜEcs[

ˆ̄Yd], computed as in (3). The approx-
imation leads to a huge overestimation of standard error (up to 170%) for estimates close to
the boundaries and an underestimation (up to -20%) otherwise. The amount of such discrep-
ancies increases with a low effective sample size, as clear from the right-hand side plot in
Figure 3.

As many zeros or close-to-zero values are present, the approximation seems not adequate
for our data, with a relevant impact on the model-based estimates with respect to those relying
on more accurate design standard errors. The Extended Beta model avoids this problem since
it operates in the original scale without any approximation, dealing with 0 values separately.
Eventually, we also note that the Beta-based models offer the additional pro of favoring the
interpretability of regression coefficients: as a logit link is used, the exponentiated regression
slopes can be read in terms of probability odds (Warton and Hui, 2011). For these reasons,
we decide to rule out the Arc-sine model from the following analysis.

6.2. Comparing Beta-based and Binomial models. In this subsection, we discuss the es-
timation and results interpretation of Binomial, EB and FFT models. As for specification, the
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EB Model FFT Model

Post. Mean Post. SD Q0.025 Q0.975 Post. Mean Post. SD Q0.025 Q0.975

ξ 0.13 0.10 0.01 0.36 0.99 0.13 0.74 1.27
λ 0.80 0.02 0.75 0.84 - - - -

LOOIC (SE) -118.9 (34.1) -14.7 (44.2)
TABLE 3

Posterior summaries of parameters ξ and λ and LOOIC.
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FIG 4. ECDF of the posterior predictive distributions under models EB, FFT and Binomial (in gray) compared
to the ECDF of the set of direct estimates (in black).

horseshoe priors described in Section 4.1.1 need to be completed with additional hyperpa-
rameters settings. Specifically, the expected number of relevant coefficients has been set to
p0 = 10, according to the results of a preliminary regressors selection exercise. Moreover, the
data pseudo-variances obtained by applying (10) and (16) result to be σ̃ = 1.23 for the Beta
model and σ̃ = 2.49 for the Binomial one.

Regarding model comparison, our attention is on posterior predictive checks, as discussed
in Gabry et al. (2019). In Figure 4, we conduct a comparative analysis of empirical cumula-
tive distribution functions (ECDFs). Specifically, we contrast the ECDF of direct estimates
(depicted in black) with those derived from samples generated from the posterior predictive
distribution of various models (depicted in grey). This examination exposes deficiencies in
the FFT and Binomial models when handling the probabilities of observing zero values. Is-
sues with the FFT model stem from its independence assumption, which results in a slight
underestimation of the probability of observing direct estimates equal to zero. Conversely, the
Binomial model exhibits evident miscalibration near the zero value, consistently overshoot-
ing the probability of observing proportions equal to zero. This behavior can be attributed
to two potential factors. Firstly, it may arise from the rounding step in the construction of
the response variable, wherein { ˆ̄Yd = 0} ⊂ {Td = 0} inflates the probability of zero counts.
Secondly, the rigidity in modeling P[Td = 0] as (1− θd)

[ñd]: since it relies solely on [ñd], it
does not distinguish between intra-cluster correlation and sample sizes. Turning our atten-
tion to small area diagnostics, we observe that model-based estimators exhibit significantly
lower standard deviations compared to direct estimators (Figure 5). Specifically, the estima-
tions provided by the EB model demonstrate greater reliability in contrast to the FFT and
Binomial models.

A further tool of model comparison is the leave-one-out information criterion (LOOIC,
Vehtari, Gelman and Gabry, 2017). We remark that this diagnostic can be only exploited to



18

0.0

0.1

0.2

0.3

Direct FFT Binomial EB

S
D

FIG 5. Distributions of the posterior standard deviations of HB estimates under models EB, FFT and Binomial
compared to the standard errors of Direct estimates.

Covariate Transformation E
[
βj |data

]
Odds Ratio Importance

VIIRS Square root -1.23 0.29 1.00
Woman/Child Identity -0.32 0.73 0.98

Distance from woody areas Log 0.05 1.05 0.80
Time to access the nearest city Square root 0.80 2.22 0.80

Slope Inverse 0.05 1.05 0.80
Distance from Coastline Identity 0.04 1.04 0.71

Distance from vegetation areas Square root -0.02 0.98 0.71
Male/Female Identity 0.06 1.06 0.71

TABLE 4
Posterior summaries of the regression coefficients βj

compare the Beta-based models, being the response used in the Binomial model substan-
tially different. In detail, Table 3 shows lower values of LOOIC for the EB model, being
preferable as compared to FFT model. This points out that the introduction of the correlation
parameter λ allows us to better model the poverty rates near zero, as can be seen from the
other posterior summaries in Table 3. We observe that such a parameter is well identified by
the data, with a posterior mean equal to 0.80. Note that the biggest E[µd|data] reaches 0.58,
being E[µd|data]< E[λ|data]< 1, ∀d. This confirms the presence of a strong positive corre-
lation among sampled households as already observed by intra-cluster correlation estimates
of Section 3.1. Lastly, we highlight that the misspecification in the modeling of censored
values probabilities induces an increase in random effect variability. Indeed, the global scale
parameter ξ of the variance gamma prior is estimated ten times larger in the FFT model.

6.3. Poverty mapping in Bangladesh. After showing that the proposed EB model is suit-
able to fit the analysed data, we present the obtained results of the poverty mapping analysis
carried out on Bangladeshi data. Table 4 reports the posterior summaries of regression co-
efficients for the most important covariates, i.e. those with high Importance, that we define
as

max(P[βj < 0|data],P[βj > 0|data]).

The VIIRS covariate has the greatest importance with an expected negative sign, as the most
enlightened areas during nighttime are characterized by smaller poverty rates. Among the
demographic covariates, the most relevant one is the woman/child dependency ratios, being
inversely proportional to the probability of being poor, as expected. Among other covariates
in the top list of importance, we note Time to access the nearest city. As already discussed in
the literature (Iimi et al., 2016; Islam, Sayeed and Hossain, 2017), remoteness and exclusion
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FIG 6. Left panel: EB model estimates versus direct estimates (bisector as dash-dotted line, linear regression line
as solid line). Right panel: model-based estimates versus effective sample sizes for areas with 0-valued direct
estimates.

Barisal
Chittagong

Dhaka

Khulna

Mymensingh
Rajshahi

Rangpur

Sylhet

Model est.
0.0
0.1
0.2
0.3
0.4
0.5
0.6

FIG 7. Map with model-based estimates of poverty rates in Bangladeshi upazilas.

from the national labor and goods market represent one of the main drivers of poverty at the
community level in Bangladesh.

The amount of shrinkage induced by the model is described in the left panel of Figure 6,
i.e. direct estimates versus EB-based ones; it is strong as expected, given the low precision of
direct estimates. Zero estimates (highlighted in golden) are clearly shrunk towards the center
of the distribution. The right panel of Figure 6 displays how zero-valued direct estimates are
spread by the model with respect to the effective sample sizes. Note that the impact model has
on zero estimates is mainly restricted to extremely small sizes. We remark on the presence
of a subset of upazilas with very small poverty rates, which are mostly located in urban
districts. The urban-rural divide is still an important catalyst for poverty differences (Khudri
et al., 2013; Islam, Sayeed and Hossain, 2017) as far as wealth indicators are concerned.
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A map of model-based poverty estimates at the upazila level can be found in Figure 7.
As compared to the direct estimates mapped in Figure 1, we see how model predictions
fill the many grey areas (out-of-sample), especially in peripheral regions. Large disparities
among regions are clearly noticeable: for instance, the metropolitan regions of Dhaka and
Chattogram retain the lowest poverty levels, while those far from cities, coastlines and roads
have the highest. The poverty patterns in Figure 7 are coherent with the ones highlighted by
Kam et al. (2005) and Imam et al. (2019). The domains with high poverty incidence over-
lap with areas ecologically poor for food production: the depression area in the north-east,
called Haor (Sylhet basin lowlands) and some areas at the edge of major rivers, such as the
Jamuna river, both particularly exposed to climate change effects and floodings (Haque and
Jahan, 2015); the drought-prone area of Rangpur division in the north-west and the remote
area on the Chittagong Hill Tract (south-east). The western part, around southern Rajshahi
and Khulna division, has lower poverty levels since, even if drought-prone, it presents good
irrigation coverage (Kam et al., 2005). We have no clear evidence of the East-West divide
(World Bank, 2008), in line with recent literature highlighting its decreasing relevance (Rah-
man et al., 2017).

The model-based estimates in Figure 7 appear to be spatially smooth and clustered. To
investigate a possible residual spatial trend, we perform the Moran’s and Geary’s tests for
spatial autocorrelation on the residuals of the EB model. Both tests do not reject the null
hypothesis of zero autocorrelation (p-value equal to 0.41 and 0.33, respectively). In addition,
we extend the EB model with a spatially structured random effect in the linear predictor,
having an Intrinsic Conditional Autoregressive prior in line with Porter et al. (2014). Results
highlight the non-relevance of the spatial term in the analysis: the LOOIC is -119.0, i.e.
almost equal to the one related to the EB model in Table 3; without systematic differences in
area estimates. A reason may be that the spatial correlation of direct estimators conditionally
on covariates is negligible as the set of remote sensing covariates is able to largely explain
it. For further details, see Section S3 of the Supplementary Material (De Nicolò, Fabrizi
and Gardini, 2024a). Figure 8 displays the map of the posterior standard deviation on the
right panel compared with the standard error of direct estimates on the left one. Note that
the posterior standard error is not only lighter but also more homogeneous since small area
predictors are dominated by the synthetic part. Being reliable, model-based estimates can be
released and employed for further analysis.

7. Conclusions and directions for further research. The applied problem of mapping
poverty in Bangladesh by integrating a survey sample and remote sensing data drove us to
set up a novel hierarchical Bayesian model based on the Beta likelihood. We did this in the
line of small area literature relying on area-level models. Our purpose was to provide a more
general tool for poverty mapping in developing countries with respect to existing alternatives,
ensuring a convenient implementation that requires no auxiliary variable selection and min-
imal intervention in the prior specification. Indeed, the latter aspect has often represented a
limit to the widespread use of Bayesian methods among practitioners. As far as computation
is concerned, the code implementing the whole procedure is available in the supplementary
material (De Nicolò, Fabrizi and Gardini, 2024b), together with a toy dataset to test imple-
mentation. Furthermore, our methodology is going to be released in the R tipsae package
(De Nicolò and Gardini, 2024), complementing the set of tools for Bayesian small area esti-
mation of proportions and indicators in the unit interval.

From a methodological point of view, we specified an Extended Beta mixed regression
model. We extended the proposal of Fabrizi, Ferrante and Trivisano (2016) to more effec-
tively handle data features as the presence of estimates equal to either 0 or 1 and a strong
intra-cluster correlation of observations. The simulation and application results underline the
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FIG 8. Standard error of direct estimates and posterior standard deviation of model-based estimates.

importance of the additional correlation parameter, sensibly improving goodness-of-fit and
leading to more precise estimates. Moreover, the explicit probabilistic formulation placed on
the occurrence of observing zero/one values makes the EB model more interpretable with
respect to other proposals (Warton and Hui, 2011).

An important point that emerges from the results reported in the paper is that some chal-
lenges that characterize the analyzed data require ad hoc modeling solutions. In particular, the
proposed model outperforms other ready-to-use methodologies discussed in the small area
literature (i.e., the Arc-sine FH model, the FFT model, and the Binomial model) in taking
into account the strong intra-cluster correlation and the high incidence of direct estimates
equal to zero. We do not consider other alternative models, e.g. the Poisson model, for which
available proposals from the literature require a tricky extension for our application. For ex-
ample, Boubeta, Lombardía and Morales (2017) do not consider the complex survey design.
Indeed, including the sampling variances under a Poisson model is not trivial and it requires
radically different assumptions on the uncertainty evaluation of estimates which are beyond
the scope of this paper (e.g. Bradley, Wikle and Holan, 2016), being an interesting topic for
future research.

Our research concerning this applied problem is not over. If we consider administrative
units larger than upazilas, we expect direct estimates to gain precision and remote sensing
predictors to lose predictive power, being averaged on a wider area. This may impact small
area results raising up the need to combine different information layers at once.
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the small area model, are supplied such as the raw features and data sources. Moreover, the
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is provided and the formalization and estimation of the spatial model are discussed.
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Code to run the Stan model with pseudo-data.

REFERENCES

BENEDETTI, M. H., BERROCAL, V. J. and LITTLE, R. J. (2022). Accounting for survey design in Bayesian
disaggregation of survey-based areal estimates of proportions: an application to the American Community
Survey. The Annals of Applied Statistics 16 2201–2230.

BOUBETA, M., LOMBARDÍA, M. J. and MORALES, D. (2017). Poisson mixed models for studying the poverty
in small areas. Computational Statistics & Data Analysis 107 32–47.

BRADLEY, J. R., WIKLE, C. K. and HOLAN, S. H. (2016). Bayesian spatial change of support for count-
valued survey data with application to the American Community Survey. Journal of the American Statistical
Association 111 472–487.

BROWN, P. J. and GRIFFIN, J. E. (2010). Inference with Normal-Gamma prior distributions in regression prob-
lems. Bayesian Analysis 5 171–188.

BURGERT, C. R., ZACHARY, B. and COLSTON, J. (2013). Incorporating geographic information into demo-
graphic and health surveys: a field guide to GPs data collection. Calverton, Maryland, USA: ICF International.

CARPENTER, B., GELMAN, A., HOFFMAN, M. D., LEE, D., GOODRICH, B., BETANCOURT, M.,
BRUBAKER, M., GUO, J., LI, P. and RIDDELL, A. (2017). Stan: A probabilistic programming language.
Journal of statistical software 76.

CASAS-CORDERO VALENCIA, C., ENCINA, J. and LAHIRI, P. (2016). Poverty mapping for the Chilean comu-
nas. Analysis of Poverty Data by Small Area Estimation 379–404.

CHEN, S. and RUST, K. (2017). An extension of Kish’s formula for design effects to two-and three-stage designs
with stratification. Journal of Survey Statistics and Methodology 5 111–130.

CHEN, C., WAKEFIELD, J. and LUMELY, T. (2014). The use of sampling weights in Bayesian hierarchical models
for small area estimation. Spatial and spatio-temporal epidemiology 11 33–43.

CORSI, D. J., NEUMAN, M., FINLAY, J. E. and SUBRAMANIAN, S. (2012). Demographic and health surveys: a
profile. International journal of epidemiology 41 1602–1613.

DATTA, G. S., HALL, P. and MANDAL, A. (2011). Model selection by testing for the presence of small-area
effects, and application to area-level data. Journal of the American Statistical Association 106 362–374.

DE NICOLÒ, S. and GARDINI, A. (2024). The R package tipsae: Tools for mapping proportions and indicators
on the unit interval. Journal of Statistical Software 108 1–36.

DE NICOLÒ, S., FABRIZI, E. and GARDINI, A. (2024a). Supplementary material for "Extended Beta models for
poverty mapping. An application integrating survey and remote sensing data in Bangladesh".

DE NICOLÒ, S., FABRIZI, E. and GARDINI, A. (2024b). Supplementary R code for "Extended Beta models for
poverty mapping. An application integrating survey and remote sensing data in Bangladesh".

DURANTON, G. and VENABLES, A. J. (2021). Place-based policies: principles and developing country applica-
tions. In Handbook of regional science 1009–1030. Springer.

EFRON, B. and MORRIS, C. (1975). Data analysis using Stein’s estimator and its generalizations. Journal of the
American Statistical Association 70 311–319.

ENGSTROM, R., HERSH, J. S. and NEWHOUSE, D. L. (2017). Poverty from space: using high-resolution satellite
imagery for estimating economic well-being. World Bank Policy Research Working Paper 8284.

FABRIZI, E., FERRANTE, M. and TRIVISANO, C. (2016). Hierarchical Beta regression models for the estimation
of poverty and inequality parameters in small areas. Analysis of Poverty Data by Small Area Methods. John
Wiley and Sons 299–314.



EXTENDED BETA MODELS FOR POVERTY MAPPING 23

FABRIZI, E., FERRANTE, M. R. and TRIVISANO, C. (2018). Bayesian small area estimation for skewed business
survey variables. Journal of the Royal Statistical Society: Series C (Applied Statistics) 67 861–879.

FABRIZI, E., FERRANTE, M. R. and TRIVISANO, C. (2020). A functional approach to small area estimation of
the Relative Median Poverty Gap. Journal of the Royal Statistical Society: Series A (Statistics in Society) 183
1273–1291.

FABRIZI, E., FERRANTE, M. R., PACEI, S. and TRIVISANO, C. (2011). Hierarchical Bayes multivariate esti-
mation of poverty rates based on increasing thresholds for small domains. Computational Statistics & Data
Analysis 55 1736–1747.

FAY, R. E. and HERRIOT, R. A. (1979). Estimates of income for small places: an application of James-Stein
procedures to census data. Journal of the American Statistical Association 74 269–277.

FERRARI, S. and CRIBARI-NETO, F. (2004). Beta regression for modelling rates and proportions. Journal of
Applied Statistics 31 799–815.

FRANCO, C. and BELL, W. R. (2015). Borrowing information over time in binomial/logit normal models for
small area estimation. Statistics in Transition new series 4 563–584.

FULLER, W. A. (2011). Sampling Statistics. John Wiley & Sons.
GABLER, S., HÄDER, S. and LAHIRI, P. (1999). A model based justification of Kish’s formula for design effects

for weighting and clustering. Survey Methodology 25 105–106.
GABRY, J., SIMPSON, D., VEHTARI, A., BETANCOURT, M., GELMAN, A. et al. (2019). Visualization in

Bayesian workflow. Journal of the Royal Statistical Society Series A 182 389–402.
HÁJEK, J. (1971). Discussion of ‘An essay on the logical foundations of survey sampling, Part I’, by D. Basu.

Foundations of Statistical Inference 326.
HAQUE, A. and JAHAN, S. (2015). Impact of flood disasters in Bangladesh: A multi-sector regional analysis.

International Journal of Disaster Risk Reduction 13 266–275.
HAY, S. I. and SNOW, R. W. (2006). The Malaria Atlas Project: developing global maps of malaria risk. PLoS

medicine 3 e473.
IIMI, A., AHMED, F., ANDERSON, E. C., DIEHL, A. S., MAIYO, L., PERALTA-QUIRÓS, T. and RAO, K.

(2016). New rural access index: main determinants and correlation to poverty. World Bank Policy Research
Working Paper 7876.

IMAM, M. F., ISLAM, M. A., ALAM, M. A., HOSSAIN, M. J. and DAS, S. (2019). Small Area Estimation of
Poverty in Rural Bangladesh. The Bangladesh Journal of Agricultural Economics 40 1–16.

ISLAM, D., SAYEED, J. and HOSSAIN, N. (2017). On determinants of poverty and inequality in Bangladesh.
Journal of Poverty 21 352–371.

JANICKI, R. (2020). Properties of the Beta regression model for small area estimation of proportions and appli-
cation to estimation of poverty rates. Communications in Statistics-Theory and Methods 49 2264–2284.

KALTON, G. (1979). Ultimate cluster sampling. Journal of the Royal Statistical Society: Series A (General) 142
210–222.

KAM, S.-P., HOSSAIN, M., BOSE, M. L. and VILLANO, L. S. (2005). Spatial patterns of rural poverty and their
relationship with welfare-influencing factors in Bangladesh. Food Policy 30 551–567.

KHUDRI, M. M., CHOWDHURY, F. et al. (2013). Evaluation of socio-economic status of households and identi-
fying key determinants of poverty in Bangladesh. European Journal of Social Sciences 37 377–387.

KISH, L. (1987). Weighting in Deft2. The Survey Statistician 17 26–30.
KLOTZ, J. (1973). Statistical inference in Bernoulli trials with dependence. The Annals of statistics 373–379.
KREUTZMANN, A.-K., PANNIER, S., ROJAS-PERILLA, N., SCHMID, T., TEMPL, M. and TZAVIDIS, N. (2019).

The R Package emdi for Estimating and Mapping Regionally Disaggregated Indicators. Journal of Statistical
Software 91 1–33. https://doi.org/10.18637/jss.v091.i07

LIU, B., LAHIRI, P. and KALTON, G. (2007). Hierarchical Bayes modeling of survey-weighted small area pro-
portions. In Proceedings of the American Statistical Association, Survey Research Section 3181–3186.

LYNN, P., HÄDER, S. and GABLER, S. (2006). Design effects for multiple design samples. Survey Methodology
32 115–120.

MARHUENDA, Y., MOLINA, I. and MORALES, D. (2013). Small area estimation with spatio-temporal Fay-
Herriot models. Computational Statistics & Data Analysis 58 308–325.

MASAKI, T., NEWHOUSE, D., SILWAL, A. R., BEDADA, A. and ENGSTROM, R. (2020). Small area estimation
of non-monetary poverty with geospatial data.

MOLINA, I., NANDRAM, B. and RAO, J. (2014). Small area estimation of general parameters with application
to poverty indicators: A hierarchical Bayes approach. The Annals of Applied Statistics 8 852–885.

NIPORT AND MITRA AND ASSOCIATES AND ICF INTERNATIONAL (2016). Bangladesh Demographic and
Health Survey 2014 Technical Report, National Institute of Population Research and Training (NIPORT),
Mitra and Associates, and ICF International, Dhaka, Bangladesh, and Rockville, Maryland, USA.

O’DONNELL, M. S. and IGNIZIO, D. A. (2012). Bioclimatic predictors for supporting ecological applications
in the conterminous United States. US geological survey data series 691 4–9.

https://doi.org/10.18637/jss.v091.i07


24

PEZZULO, C., HORNBY, G. M., SORICHETTA, A., GAUGHAN, A. E., LINARD, C., BIRD, T. J., KERR, D.,
LLOYD, C. T. and TATEM, A. J. (2017). Sub-national mapping of population pyramids and dependency ratios
in Africa and Asia. Scientific Data 4 1–15.

PIIRONEN, J. and VEHTARI, A. (2017). Sparsity information and regularization in the horseshoe and other shrink-
age priors. Electronic Journal of Statistics 11 5018 – 5051. https://doi.org/10.1214/17-EJS1337SI

POIRIER, M. J., GRÉPIN, K. A. and GRIGNON, M. (2020). Approaches and alternatives to the wealth index to
measure socioeconomic status using survey data: a critical interpretive synthesis. Social Indicators Research
148 1–46.

PORTER, A. T., HOLAN, S. H., WIKLE, C. K. and CRESSIE, N. (2014). Spatial Fay–Herriot models for small
area estimation with functional covariates. Spatial Statistics 10 27–42.

RAGHUNATHAN, T. E., XIE, D., SCHENKER, N., PARSONS, V. L., DAVIS, W. W., DODD, K. W. and
FEUER, E. J. (2007). Combining information from two surveys to estimate county-level prevalence rates of
cancer risk factors and screening. Journal of the American Statistical Association 102 474–486.

RAHMAN, M. et al. (2017). Role of agriculture in Bangladesh economy: uncovering the problems and challenges.
International Journal of Business and Management Invention 6.

RAO, J. N. and MOLINA, I. (2015). Small area estimation. John Wiley & Sons.
RIDOUT, M. S., DEMETRIO, C. G. and FIRTH, D. (1999). Estimating intraclass correlation for binary data.

Biometrics 55 137–148.
SCHMID, T., BRUCKSCHEN, F., SALVATI, N. and ZBIRANSKI, T. (2017). Constructing sociodemographic indi-

cators for national statistical institutes by using mobile phone data: estimating literacy rates in Senegal. Journal
of the Royal Statistical Society: Series A (Statistics in Society) 180 1163–1190.

STEELE, J. E., SUNDSØY, P. R., PEZZULO, C., ALEGANA, V. A., BIRD, T. J., BLUMENSTOCK, J., BJEL-
LAND, J., ENGØ-MONSEN, K., DE MONTJOYE, Y.-A., IQBAL, A. M. et al. (2017). Mapping poverty using
mobile phone and satellite data. Journal of The Royal Society Interface 14 20160690.

SUGASAWA, S. and KUBOKAWA, T. (2017). Transforming response values in small area prediction. Computa-
tional Statistics & Data Analysis 114 47–60.

TANG, X., GHOSH, M., HA, N. S. and SEDRANSK, J. (2018). Modeling random effects using global–local
shrinkage priors in small area estimation. Journal of the American Statistical Association 113 1476–1489.

TATEM, A. J. (2017). WorldPop, open data for spatial demography. Scientific Data 4 1–4.
VEHTARI, A., GELMAN, A. and GABRY, J. (2017). Practical Bayesian model evaluation using leave-one-out

cross-validation and WAIC. Statistics and Computing 27 1413–1432.
WARTON, D. I. and HUI, F. K. (2011). The arcsine is asinine: the analysis of proportions in ecology. Ecology 92

3–10.
WIECZOREK, J. and HAWALA, S. (2011). A Bayesian zero-one inflated beta model for estimating poverty in

US counties. In Proceedings of the American Statistical Association, Section on Survey Research Methods,
Alexandria, VA: American Statistical Association.

WORLD BANK (2008). Poverty Assessment for Bangladesh: Creating Opportunities and Bridging the East-West
Divide. World Bank.

XIE, D., RAGHUNATHAN, T. E. and LEPKOWSKI, J. M. (2007). Estimation of the proportion of overweight
individuals in small areas—a robust extension of the Fay–Herriot model. Statistics in Medicine 26 2699–2715.

ZHAO, X., YU, B., LIU, Y., CHEN, Z., LI, Q., WANG, C. and WU, J. (2019). Estimation of poverty using
random forest regression with multi-source data: A case study in Bangladesh. Remote Sensing 11 375.

ZHOU, Y., MA, T., ZHOU, C. and XU, T. (2015). Nighttime light derived assessment of regional inequality of
socioeconomic development in China. Remote Sensing 7 1242–1262.

https://doi.org/10.1214/17-EJS1337SI

	Introduction
	The data
	The Bangladesh DHS
	Remote sensing covariates
	Demographic variables
	Development variables
	Land-use variables
	Bio-climatic variables


	Poverty estimator
	Uncertainty associated to direct estimators

	The models
	The Extended Beta Model
	Prior specification
	Posterior inference
	Prediction of out-of-sample areas

	The Arc-sine model
	The Binomial model

	Design-based simulation
	Application on Bangladesh DHS data
	Why we need to go beyond the Arc-sine model
	Comparing Beta-based and Binomial models
	Poverty mapping in Bangladesh

	Conclusions and directions for further research
	Acknowledgments
	Supplementary Material
	References

