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Abstract In this paper we study a class of variational models for the image restora-
tion inverse problem. Our main assumption is that the additive noise model and the
image gradient magnitudes follow a generalized normal (GN) distribution, whose
very flexible probability density function (pdf) is characterized by two parameters -
typically unknown in real world applications - determining its shape and scale. The
unknown image and parameters, which are both modeled as random variables in light
of the hierarchical Bayesian perspective adopted here, are jointly automatically esti-
mated within a Maximum A Posteriori (MAP) framework. The hypermodels result-
ing from the selected prior, likelihood and hyperprior pdfs are minimized by means
of an alternating scheme which benefits from a robust initialization based on the
noise whiteness property. For the minimization problem with respect to the image, we
employ the Alternating Direction Method of Multipliers (ADMM) algorithm which
takes advantage of efficient procedures for the solution of proximal maps. Computed
examples show that the proposed approach holds the potential to automatically detect
the noise distribution, and it is also well-suited to process a wide range of images.

1 Introduction

In this paper, we are interested in the restoration of images undergoing a degradation
process of the form

b = Ku+ e, e realization of E, (1.1)

where the matrix K ∈ Rn×n, representing the discretized linear blurring operator, is a
large severely ill-conditioned and possibly rank-deficient matrix, and u,b,e ∈ Rn are
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vectorized forms of the discrete sought uncorrupted image, observed degraded image
and additive noise image, respectively; the n-variate random vector E models the
inherently probabilistic nature of noise corruption, and its pdf PrE(e) :Rn→R+, with
R+ denoting the set of non-negative real numbers, represents the largest information
one can hope to possess about the unknown noise realization e in (1.1).

Determining the uncorrupted image u from the observed degraded image b is a
discrete linear inverse problem and the more information is available on the image
degradation process (1.1) and on the characteristics of the sought image u, the higher
the chances for an accurate estimate u∗ will be.

In this paper, we address the restoration of images undergoing (1.1) under the
assumption that the noise corruption is independently and identically distributed (IID)
with zero-mean generalized normal (GN) pdf, in short IIDGN, with unknown pdf
parameters. The class of zero-mean IIDGN noises is larger than it may seem at a first
glance. In fact, as detailed in the paper, the zero-mean GN pdf is a flexible family of
distributions characterized by two parameters, a scale and a shape parameter. It thus
contains some popular noise distributions such as, e.g. the normal, Laplace, hyper-
Laplace (or impulsive) and, as a limiting case, uniform distributions.

In order to tackle the considered ill-posed inverse problem, we adopt a variational
framework where the image restoration task is recast as the problem of seeking an
estimate u∗ of the original u among the minimizers of a suitable cost functional J :
Rn→ R. The typical variational model for image restoration reads

u∗ ∈ arg min
u∈Rn

J(u) , J(u) := R(u) + µ F(u;K,b) , (1.2)

where the functionals R and F and the positive real scalar µ are referred to as regu-
larization term, fidelity term and regularization parameter, respectively. In particular,
R encodes prior information or beliefs available on the sought image u, while F mea-
sures the likelihood of any u given the knowledge of the observed data b and of the
observation (or degradation) process, namely of the blur matrix and the noise distribu-
tion. Finally, the regularization parameter µ allows to balance solution regularity and
trust in the data and is of crucial importance for obtaining good quality restorations.

It is quite well known - and it will be demonstrated in the paper - that whenever,
in accordance with our assumption, the additive noise realization e in (1.1) is drawn
from an IIDGN noise distribution having zero-mean, shape parameter q ∈ R++ and
standard deviation σr ∈R++ - with R++ =R+ \{0} - the most suitable choice for F
from a Bayesian probabilistic perspective is the so-called Lq fidelity term, namely

F(u;K,b) = Lq(u;K,b) := ‖r(u;K,b)‖q
q , r(u;K,b) := Ku−b ∈ Rn, (1.3)

where r(u;K,b) represents the restoration residual image.
For what concerns R, the choice of modeling the sought image u by a Markov ran-

dom field (MRF) but with a special Gibbs prior which, in analogy with the considered
noise distributions, is of zero-mean IIDGN type with shape parameter p ∈ R++ and
standard deviation σg ∈R++, leads to the class of so-called TVp regularizers, namely

R(u) = TVp(u) := ‖g(u)‖p
p , g(u) := (‖(Du)1‖2 , . . . ,‖(Du)n‖2)

T ∈ Rn
+ , (1.4)
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where g(u) represents the vector of image gradient magnitudes, the matrix D∈R2n×n

is defined by D :=
(
DT

h ,D
T
v
)T with Dh,Dv ∈ Rn×n coefficient matrices of finite dif-

ference operators discretizing the first-order horizontal and vertical partial deriva-
tives of image u, respectively, and where, with a little abuse of notation, (Du)i :=(
(Dhu)i,(Dvu)i

)
∈ R2 indicates the discrete gradient of u at pixel i 1.

Despite the fixed choice of the gradient as the ‘inner’ linear operator, the model
proposed in this paper is general and other linear operators might be chosen as well,
such as, e.g., higher-order differential operators or any transform operator. Indeed, the
TVp class of regularizers in (1.4) is large enough to model effectively the features of
a sufficiently wide set of images, ranging from piecewise constant to smooth images.

Replacing (1.3) and (1.4) into (1.2), one obtains the class of TVp-Lq variational
models for image restoration, which read

u∗ ∈ arg min
u∈Rn

Jp,q(u) , Jp,q(u) := TVp(u) + µ Lq(u;K,b), (p,q) ∈ R2
++ . (1.5)

The class of TVp-Lq models contains some very popular members such as, e.g.
the TV-L2 [27], TV-L1 [20,16] and, as a limiting case, TV-L∞ models [17] - where
TV stands for TV1 and represents the standard Total Variation semi-norm - but it is
‘larger’ than its renowned members and the two free shape parameters p,q hold the
potential for changing the functional form of the objective Jp,q so as to deal effectively
with wider sets of target images and of noise corruptions.

However, selecting manually or also by heuristic approaches the triplet (p,q,µ)
of shape and regularization parameters yielding optimal or even only good quality
restorations, so as to fully exploit the TVp-Lq model potentialities, is a very hard task.
In this paper, we propose an effective fully automatic approach for selecting (p,q,µ)
based on a hierarchical Bayesian formulation of the problem and on MAP estimation.

1.1 Related work

Strategies for the automatic selection of only the regularization parameter µ have
been proposed in literature for few fixed values of the shape parameters p,q.

For p=q=2, the TVp-Lq model reduces to a standard Tikhonov-regularized
least-squares problem. For this class of quadratic models, many heuristic approaches
have been proposed for automatically selecting µ , such as, e.g., L-curve [11] and gen-
eralized cross-validation (GCV) [6]; on the other hand, several methods exploiting the
information on the noise corruption have been designed. Within this class, we men-
tion the discrepancy principle (DP) [34,5,26], which can be adopted whenever the
noise level is assumed to be known, and the residual whiteness principle (RWP) [2],
consisting in selecting µ which minimizes the residual normalized auto-correlation.

The automatic DP and GCV strategies have been extended to the TV-L2 model in
[32,33] and the former has been applied in [23] to the larger class of TVp-L2 mod-
els. Recently, a fully automatic selection strategy for µ based on the RWP has been

1 In fact, from definitions in (1.4), we have TVp(u) := ‖g(u)‖p
p =

∥∥(‖(Du)1‖2 , . . . ,‖(Du)n‖2
)T∥∥p

p

= ∑
n
i=1

∣∣∥∥(Du)i
∥∥

2

∣∣p = ∑
n
i=1

∥∥(Du)i
∥∥p

2 , which is the standard TVp regularizer definition (see, e.g., [23]).
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proposed [24] for a wide class of R-L2 models, with R a set of (convex) regularizers
containing the TVp terms with p≥ 1.

The problem of estimating the regularization parameter and, more in general,
the parameters arising in the regularization term R(u), has been extensively dis-
cussed within a Bayesian framework. The probabilistic paradigm relies on the well-
established connection between the classical variational regularizer and the prior
probability density function (pdf), encoding information or beliefs available a pri-
ori on u. The presence of unknown or poorly known parameters in the prior, i.e. in
the regularizer, accounts for the lack of meaningful and/or precise prior information
which prevents from designing a fully determined prior distribution. The original in-
formation can be thus enriched relying on two main strategies, namely empirical and
hierarchical Bayesian techniques. Empirical methods aim to select the unknown pa-
rameters by exploiting the information encoded in the data b, i.e. in the likelihood
pdf - see, e.g., the recent works [29,19] and references therein. On the other hand,
hierarchical approaches overcome the uncertainty in the prior by layering it and in-
troducing additional priors on the parameters, referred to as hyperpriors [35,14]. The
hierarchical formulation has been employed for the automatic selection of the sole µ

in presence of L2 fidelity term and TVp regularizers with p = 2 ([25]), p = 1 ([4])
and p∈ [1,2] ([3]). For sparse recovery problems, more advanced hierarchical models
have been proposed in [10,12,15,13], where the authors introduced locally varying
zero-mean conditionally Gaussian priors with unknown variances for which gamma
and GG hyperpriors have been considered; the space-variant parameters resulting in
the penalty term, which is coupled with the L2 fidelity term, are automatically esti-
mated based on an iterative alternating scheme for the MAP formulation.

Besides the former strategies, that can be classified as heuristic or based on deter-
ministic information, and the latter Bayesian approaches, we also mention a hybrid
line of research aimed at selecting the functional form of the regularizer [23,9,22,7,
8], but only coupled with the L2 data term. More specifically, the variational mod-
els of interest are derived based on a probabilistic MAP formulation. However, the
regularizer parameters are not recast in a Bayesian framework and their estimation is
carried out either once for all in a preliminary phase [23] or as a Maximum Likelihood
step interlaced with the iterations of the minimization algorithm [9,22,7,8].

To the best of authors’ knowledge, the joint automatic selection of the regulariza-
tion parameter µ and the shape parameters p,q of the TVp-Lq class of models has not
been dealt with before either in an empirical or hierarchical Bayesian perspective.
1.2 Contribution

In this paper, we present a fully automatic approach stemming from a Bayesian mod-
eling of the image restoration inverse problem when the acquisition process is as in
(1.1) under the assumption of zero-mean IIDGN noise corruption with unknown scale
and shape parameters. The noise-related likelihood and the assumed Markovian prior
lead to the TVp-Lq class of variational models, whereas the inclusion of informative
hyperpriors on the free parameters of the likelihood and the prior, which represents
the key conceptual contribution of this work, provides a probabilistically grounded
and transparent machinery for automatically selecting all the free parameters µ, p,q
in the TVp-Lq model. This framework gives rise to two different hypermodels, one
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following a fully hierarchical Bayesian paradigm, the other taking advantage of the
interaction between the introduced hyperpriors and the RWP. We also propose an au-
tomatic, efficient strategy for initializing - i.e., setting once for all from the observed
degraded image b before starting the restoration - the hyperpriors based on a recent
approach presented in [24] for different purposes.

From a numerical point of view, we address the minimization of a cost function
of both the sought image u and the hyperparameter vector θ := (σg, p,σr,q). The
function is non-convex jointly in (u,θ), hence disjoint sets of global minimizers may
exist and, more importantly, the iterative minimization algorithm might get trapped in
bad local minimizers. We propose an alternating minimization (AM) approach which,
coupled with choosing the output of the hyperpriors initialization as the initial iterate,
converges towards good quality solutions. For the minimization problem with respect
to u, the classical ADMM algorithm is enriched with efficient and robust procedures
for the solution of the proximal maps arising in the resulting sub-problems.

The proposed approach provides valuable benefits from different perspectives:

(i) From an applicative point of view, the automatic selection of the free parameters
p, q, µ in the TVp-Lq models allows to apply the proposed framework to the
restoration of a wide spectrum of images corrupted by different IIDGN noises.

(ii) On the numerical side, the proposed initialization strategy allows for a stable
recovery of u and θ , despite non-convexity of the objective function.

(iii) Finally, from a modeling perspective the proposed hierarchical framework can be
easily extended to other classes of parametrized variational models, also aimed at
solving inverse imaging problems different from restoration (such as, e.g., image
inpainting, super-resolution and computed tomography reconstruction) and char-
acterized by general - i.e. rectangular and/or singular - forward linear operators K.
Moreover, the proposed approach can be generalized by replacing the first order
difference matrix D in the regularizer R with a matrix L representing, e.g., higher
order difference operators or a generic transform operator. In fact, the only con-
dition required by all theoretical derivations in this paper is that the null spaces of
the forward operator K and the regularization operator L have trivial intersection.

The paper is organized as follows. In Sec. 2, we introduce useful definitions and prop-
erties and we detail the hierarchical MAP formulation for the model of interest. Then,
in Sec. 3 we design suitable hyperpriors for the unknown parameters and introduce
the two proposed hypermodels, whose numerical solution is addressed in Sec. 4. In
Sec. 5, our method is extensively tested on different images. Finally, we conclude
with some outlook for future research in Sec. 6.

2 The proposed model by probabilistic Bayesian formulation

In this section, we first motivate and then illustrate in detail the proposed approach. In
particular, after introducing some notations and recalling some useful preliminaries,
we derive the proposed variational model by recasting in fully probabilistic terms the
image restoration inverse problem (1.1) under the assumption of additive zero-mean
IIDGN noise corruption with unknown scale and shape parameters.
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2.1 Notations and preliminaries

In the paper, we indicate random variables and their realizations by capital letters and
their corresponding lower case letters, e.g. X and x, and we denote by PrX , ηX , mX and
σX the pdf, mean, mode and standard deviation of random variable X , respectively;
we will omit the subscript X when not necessary. The characteristic function χS of a
set S is defined by χS(x) = 1 if x ∈ S, 0 otherwise, whereas the indicator function ιS
is defined by ιS(x) = 0 if x ∈ S, +∞ otherwise. We thus have ιS(x) = − ln χS(x). We
denote by 0n the n-d column vector of all zeros.

In what follows, we recall few well-known definitions and in Proposition 2.1 we
also introduce a function φ arising in the paper - for the proof we rely on [1].

Proposition 2.1 The gamma function Γ : R++→ R, the log-gamma function
Λ : R++→ R and the function φ : R++→ R defined by

Γ (x) =
∫ +∞

0
tx−1e−tdt , Λ(x) = lnΓ (x) , φ(x) :=

√
Γ (1/x)/Γ (3/x) , (2.1)

satisfy the following properties:

Γ ,Λ ,φ ∈C∞ (R++) , Γ is strongly convex, Λ is convex,

lim
x↘0

Γ (x) = lim
x↘0

Λ(x) = lim
x↗∞

Γ (x) = lim
x↗∞

Λ(x) = +∞, lim
x↘0

φ(x) = 0, lim
x↗∞

φ(x) =
√

3 .

Definition 2.1 (Generalized Normal distribution) A scalar random variable X is
generalized normal-distributed with mean η ∈ R, standard deviation σ ∈ R++ and
shape parameter s ∈ R++, denoted by X ∼ GN(η ,σ ,s), if its pdf has the form

PrX (x) = PrGN (x|η ,σ ,s) :=
1

2σ

s
Γ (1/s)φ(s)

exp
(
−
∣∣∣∣ x−η

σ φ(s)

∣∣∣∣s), x ∈ R, (2.2)

with Γ and φ functions defined in (2.1). In particular, for any fixed η ∈R, σ ∈R++,
the pdf in (2.2) converges pointwise to a uniform distribution as s→+∞, namely

lim
s→+∞

PrGN(x|η ,σ ,s) =
(
1/(2
√

3σ)
)

χ [0,
√

3σ ] (|x−η |) .

Definition 2.2 (Generalized Gamma distribution) A scalar random variable X is
generalized gamma-distributed with mode m∈R++ and shape parameters d ∈ (1,+∞),
s ∈ R++, denoted by X ∼ GG(m,d,s), if its pdf has the form

PrX (x)=PrGG (x|m,d,s) :=
s

mΓ (d/s)

(
d−1

s

)d/s( x
m

)d−1
exp
(
−d−1

s

( x
m

)s
)
,

(2.3)
with Γ and φ functions defined in (2.1).

In Fig. 2.1 we report the graphs of some of the introduced functions and pdfs.
In particular, the middle panel shows the large flexibility of the GN family, hence
the large potential capability of the considered class of TVp-Lq models in dealing
effectively with images - shape parameter p - and noises - shape parameter q - of very
different type. Finally, in the next subsection we report the analysis of the Maximum
Likelihood Esimation (MLE) strategy for the unknown parameters of a zero-mean
GN distribution, which will be useful for our discussion.
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Fig. 2.1: From left to right, plots of functions Γ ,Λ ,φ defined in (2.1), of the GN pdf
in (2.2) for η = 0, σ = 1 and some different values of the shape parameter s, of the
GG pdf in (2.3) for m = 1, d = 2 and some different values of parameter s.

2.1.1 ML estimation of the unknown parameters of a zero-mean GN distribution

Let X ∼ GN(0,σ ,s) with unknown scale and shape parameters σ ,s ∈ R++, and let
x = (x1, . . . ,xn) ∈ Rn be a vector of n independent realizations of X . According to
the ML estimation approach, σ and s can be selected by maximizing the likelihood
Pr(x | σ ,s) = ∏

n
i=1 PrGN(xi | 0,σ ,s) or, equivalently, minimizing its negative loga-

rithm. Recalling the GN pdf definition in (2.2), after some manipulations we have{
σ

ML,sML}∈ arg min
(σ ,s)∈R2

++

{
G(σ ,s;x):=n ln[Γ (1+1/s)φ(s)σ ]+ (φ(s)σ)−s‖x‖s

s
}
, (2.4)

where Γ (1+1/s) = (1/s)Γ (1/s). It comes from Proposition 2.1 that G ∈C∞(R2
++)

for any x ∈Rn and that, for any fixed s ∈R++, G is strictly convex and coercive in σ .
By imposing ∂G/∂σ = 0 and then replacing back into (2.4), it is a matter of simple
algebra to verify that the ML estimates σML,sML in (2.4) are given by

sML∈arg min
s∈R++

{
f ML(s) := lnΓ (1+1/s) + (1/s)(1+ lns+ ln(‖x‖s

s/n))
}
,(2.5)

σ
ML=(1/φ(sML))

(
(sML/n)‖x‖sML

sML

)1/sML
. (2.6)

Estimates σML,sML exist if (2.5) admits solutions. We note that f ML ∈C∞(R++) and

lim
s→+∞

f (s) = ����lnΓ (1) + lim
s→+∞

((1/s) ln(‖x‖s
s/n)) =

{
ln‖x‖∞ if ‖x‖0 > 0
−∞ otherwise.

lim
s↘0

f (s) = lim
s↘0

(
ln
√

2π/s+(1/s) ln(‖x‖s
s/n)

)
=

{
+∞ if ‖x‖0 = n
−∞ otherwise. , (2.7)

where the Stirling’s series lnΓ (1/s) = (1/s) ln(1/s)− s+ ln
√

2πs+O(s) has been
used in (2.7). Hence, if ‖x‖0 = n, either the global minimizer(s) sML ∈ R++ or a
global infimizer is at sML =+∞. We can accept this latter scenario, as it indicates that
samples are drawn from a uniform pdf, with σML = ‖x‖∞/

√
3. Then, if 0 < ‖x‖0 < n,

function f in (2.5) is unbounded below as lims→0 f ML(s) =−∞. This can be avoided
by constraining s ∈ [s,+∞), s ∈ R++, as we will do in the paper. Finally, if ‖x‖0 = 0
then lims→0 f ML(s) = lims→+∞ f ML(s) = −∞. However, this degenerate configura-
tion, which arises when X follows a delta distribution, can be easily detected.
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2.2 Model derivation by hierarchical Bayesian formulation and MAP estimation

A widely used approach for the derivation of variational models aimed at solving in-
verse problems consists in the fully probabilistic Bayesian formulation of the problem
followed by a MAP estimation of the sought unknowns. The adoption of a Bayesian
perspective requires to interpret all the unknowns involved in the image formation
model (1.1) as random variables and the MAP estimation approach consists in de-
riving and then maximizing the posterior pdf of such unknowns. In order to get an
analytical form for the posterior, we derive the expression of the likelihood from the
probabilistic characteristics of the measurement model (1.1), assume a form for the
prior and, eventually, for the hyperprior, and finally apply the Bayes’ rule [28,14].

Under our assumption that the additive noise in (1.1) is zero-mean IIDGN with
the pair of scale-shape parameters given by θL := (σr,q) ∈ R2

++, and recalling the
definition of the residual image r(u;K,b) in (1.3), the likelihood pdf takes the form

Pr(b|u,θL) =

(
1

2σr

q
Γ (1/q)φ(q)

)n

exp

(
−
∥∥∥∥ 1

σrφ(q)
r(u;K,b)

∥∥∥∥q

q

)
. (2.8)

Modeling the unknown image u as a MRF with a Gibbs prior of IIDGN type with
the pair of scale-shape parameters given by θP := (σg, p) ∈ R2

++, and recalling the
definition of the gradient norms vector g(u) in (1.4), the prior pdf takes the form

Pr(u|θP) =

(
1

2σg

p
Γ (1/p)φ(p)

)n

exp

(
−
∥∥∥∥ 1

σgφ(p)
g(u)

∥∥∥∥p

p

)
. (2.9)

Here, the so-called hyperparameter vector θ = (θP,θL) ∈ R4
++ containing the free

parameters of the likelihood and prior pdfs is unknown and has to be estimated jointly
with the uncorrupted image u. The posterior pdf of (u,θ) given the data b reads

Pr(u,θ |b)=Pr(u,θP,θL|b)=Pr(b|u,θP,θL)Pr(u,θP,θL) / Pr(b) (2.10)
=Pr(b|u,θP,θL)Pr(u|θP,θL)Pr(θP,θL) / Pr(b)
=Pr(b|u,θL)Pr(u|θP)Pr(θP,θL) / Pr(b) , (2.11)

where (2.10) comes from applying the Bayes’ rule and (2.11) from considering that b
and θP are conditionally independent given u - hence P(b|u,θP,θL) = P(b|u,θL) - and
that u and θL are conditionally independent given θP - hence P(u|θP,θL) = P(u|θP).
Among the viable strategies explored in the literature and that could be applied here
to extract meaningful information from the posterior - such as, e.g., the conditional
mean or the minimum mean square error - we select as representative of Pr(u,θ |b),
according to the MAP approach, its mode, so that the joint estimates (u∗,θ ∗) of the
target image and the (prior and likelihood) hyperparameters are obtained by maximiz-
ing the posterior or, equivalently, minimizing its negative logarithm − lnPr(u,θ |b):

{u∗,θ ∗} ∈ arg min
u∈Rn, θ∈R4

++

{− lnPr(b|u,θL)− lnPr(u|θP)− lnPr(θP,θL)} , (2.12)
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where (2.12) comes from (2.11) and from dropping the constant evidence term Pr(b).
The MAP approach presents significative advantages in terms of computational effi-
ciency. However, we point out that when the cost function in (2.12) is non-convex,
the minimization algorithm may get trapped in bad local minima. Here, the typical
downsides of MAP are held back by the design of a suitable initial guess - see Section
4.1 - which increases the algorithmic robustness.

Replacing (2.8) for the likelihood and (2.9) for the prior into the MAP inference
formula (2.12), dropping the constants, rearranging and, then, recalling definitions
(1.3) and (1.4) of the Lq fidelity and the TVp regularizer, respectively, we obtain:

{u∗,θ ∗} ∈ arg min
u∈Rn, θ∈R4

++

{J0(u,θ) − lnPr(θ)} , (2.13)

where the hyperprior term − lnPr(θ) will be made explicit in the next section, while
the prior+likelihood function J0 : Rn×R4

++→ R reads

J0 (u,θ) = n ln [Γ (1+1/p)φ(p)σg ] + (φ(p)σg)
−p TVp(u)

+ n ln [Γ (1+1/q)φ(q)σr ] + (φ(q)σr)
−q Lq(u;K,b)

= G(σg, p,g(u)) + G(σr,q,r(u)) . (2.14)

In (2.14) we wrote the prior and likelihood terms in the same compact way based on
function G defined in (2.4), with x = g(u) or x = r(u) - see definitions in (1.3)-(1.4) -
regarded here as a third independent variable instead of a fixed parameter.

If no hyperpriors are considered or, equivalently, a flat (uniform) prior for the
hyperparameter vector θ is used so that the term − lnPr(θ) in (2.13) is constant, then
the proposed model (2.13)-(2.14) reduces to minimizing the function J0 only, jointly
with respect to u and θ . However, it is easy to prove that J0 is unbounded below,
hence it does not admit global minimizers. In fact, for u a constant image, such that
TV(u) = 0, J0 tends to −∞ as σg tends to 0. This represents a fatal weakness of the
no-hyperprior model and indicates the necessity to introduce some hyperprior on θ .

3 Design of suitable hyperpriors

In this section, we define suitable hyperpriors Pr(θ) for the proposed Bayesian MAP
variational model (2.13)-(2.14). In particular, we design the hyperpriors with the
threefold aim of (i) adjusting the fatal intrinsic weakness of the no-hyperprior model,
(ii) allowing for an efficient solution and (iii) maximizing the beneficial effect of the
hyperprior on the variational model solutions, i.e. on the quality of the attained re-
stored images. The latter aim will be pursued by exploiting the peculiarities of the
preliminary estimates provided by the initialization approach described in Sec. 4.1.

First, we rewrite the hyperprior Pr(θ) in the following equivalent form

Pr(θ) = Pr(σg, p,σr,q) = Pr(σg,σr|p,q)Pr(p,q) . (3.1)

In order to let the shape parameters to be selected in a fully free and automatic man-
ner, we adopt a flat (uniform) hyperprior on the joint variable (p,q) over the set
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B = Bp×Bq ⊂ R2
++, with Bp = [ p,+∞], Bq = [q,+∞] and R++ = R++∪{+∞}:

Pr(p,q) = ρ χB(p,q) = ρ χBp(p)χBq(q) , ∀(p,q) ∈ R2
++ , ρ ∈ R++ . (3.2)

Notice that we admit q = +∞ - corresponding to a uniform noise - and p = +∞ -
which describes very peculiar configurations of the gradient magnitudes. In addition,
as a general rule, p, q are set in order to allow non-convex TVp-Lq models, i.e. p,q <
1, which are known to be preferable in terms of sparsity promotion, and at the same
time to avoid strongly non-convex configurations, i.e. p,q ≥ 0.5, thus lowering the
risk of getting stuck in local minima. Finally, notice that − lnPr(p,q) = ιB(p,q).

For what concerns the GN standard deviations σg, σr, two different approaches
are discussed here. The first strategy is based on a fully hierarchical paradigm accord-
ing to which σg and σr are modeled as independent random variables conditioned on
p and q, respectively. In other words, the joint hyperprior in (3.1) takes the form

Pr(σg,σr | p,q) = Pr(σg | p)Pr(σr | q) . (3.3)

For both σg | p and σr | q we adopt GG hyperpriors - see definition (2.3) - with modes
mg and mr and shape parameters dg, p and dr,q, respectively:

Pr(σg | p) = PrGG(σg | mg,dg, p) , Pr(σr | q) = PrGG(σr | mr,dr,q) . (3.4)

The family of GG distributions contains many notable distributions, such as, e.g., the
gamma distribution for p,q = 1. In a number of recent works, the gamma and, more
in general, the GG pdfs have been adopted as hyperpriors for the unknown variances
of zero-mean Gaussian distributions used to model the entries of an assumed sparse
signal [10,12,15,13]. More specifically, the authors there exploit the heavy tail struc-
ture of the GG pdfs as it guarantees the realizations of outliers corresponding to the
few non-zero entries of the signal. Here, our perspective is slightly different; in fact,
we rely on a robust initialization for the parameters σg,σr that will be used to set the
modes mg,mr. As a result, the parameters dg,dr will be fixed in order to tighten the
GG pdfs around their modes, thus limiting the outcome of outliers. Hence, the choice
of GG hyperpriors has to be interpreted here as a natural and - as explained next -
advantageous way to constrain the unknown parameters within a small interval of the
positive real line on which we rely with high confidence. More specifically, the ad-
vantage of a GG hyperprior is related to computational efficiency. In fact, as it will be
illustrated in Sec. 4.2.2, this choice allows for independently updating the four hyper-
parameters p,σg,q,σr along the iterations of the proposed alternating minimization
scheme, with explicit closed-form expressions for the scale parameters σg,σr.

By plugging (3.4) into (3.3), then (3.3) and (3.2) into (3.1), and finally taking the
negative logarithm, the negative log-hyperprior takes the following compact form

− lnPr(θ) = H(σg, p ; mg,dg) + H(σr,q ; mr,dr) − lnρ , (3.5)

with the (parametric) function H(σ ,s;m,d) : R2
++→ R defined by

H (σ ,s ; m,d) = ln
(

σ

s
Γ

(
d
s

))
+

d
s

ln
s

d−1
−d ln

σ

m
+

d−1
s

(
σ

m

)s
+ιB(s) , (3.6)
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where the last term ιB(s), B being either Bp or Bq, accounts for the assumed con-
straints on the shape parameters p,q. Finally, replacing into (2.13) the expressions of
J0 in (2.14) and of − lnPr(θ) in (3.5), our (first) complete hypermodel reads

{u∗,θ ∗} ∈ arg min
u∈Rn,θ∈R4

++

{
J(u,θ) :=T (σg, p,g(u);mg,dg)+T (σr,q,r(u);mr,dr)

}
, (3.7)

where we dropped the constant − lnρ , we omitted the dependence of J on the con-
stant parameters mg,dg,mr,dr, and function T (σ ,s,x;m,d) : R2

++×Rn→ R reads

T (σ ,s,x;m,d) := G(σ ,s,x) + H(σ ,s ; m,d) ,

with functions G and H defined in (2.4) and (3.6), respectively.
As detailed in Sec. 4, problem (3.7), to which we refer as the H1-TVp-Lq hyper-

model, can be solved by means of a very efficient strategy, which relies also on the
existence of closed-form expressions for the unknowns σg, σr. However, as reported
in Sec. 5, H1-TVp-Lq does not perform well on natural images characterized by tex-
tures and details at different scales. More specifically, the estimates of the GN shape
parameters p,q are of good quality, while the scale parameters σg,σr are more likely
to be misestimated, thus yielding a significant over-smoothing in the restorations.

To overcome this weakness, we introduce a second hypermodel H2-TVp-Lq which
follows the outlined hierarchical Bayesian paradigm for obtaining the estimates u∗,
p∗, q∗, σ∗r , whereas σ∗g is computed according to a bilevel optimization framework
based on the RWP, so as to hold back the downsides of H1-TVp-Lq. In formulas:

{u∗, p∗,q∗,σ∗r } =
{

ũ(σ∗g ), p̃(σ∗g ), q̃(σ
∗
g ), σ̃r(σ

∗
g )
}
, with (3.8){

ũ(σg), p̃(σg), q̃(σg), σ̃r(σg)
}
∈ arg min

u∈Rn,(p,q,σr)∈B×R++

J(u, p,q,σr;σg), (3.9)

and with σ
∗
g ∈ arg min

σg∈R++

{
W (σg) := W (r̃(σg))

}
, r̃(σg) = Kũ(σg)−b. (3.10)

In particular, in (3.9) the cost function J is the same defined in (3.7) for the first
hypermodel H1-TVp-Lq but with σg regarded here as a free parameter. The residual
whiteness function W : Rn → R in (3.10) is the one introduced in [24] and leads
to the function W (σ) = (W ◦ r̃)(σ) : R++ → R whose explicit expression will be
given in Sec. 4.1. The numerical examples in Sec. 5 will confirm the gain in terms of
robustness attained with the introduction of this second hypermodel H2-TVp-Lq.

4 The Numerical Solution Algorithm

We now present an effective iterative method for the numerical solution of the pro-
posed variational hypermodels in (3.7) and in (3.8)-(3.10), whose main steps are sum-
marized in Alg. 1. The initialization strategy, which is common to the two approaches,
is detailed in Sec. 4.1, while the u- and θ -update steps are discussed in Secs. 4.2 and
4.3, respectively. The algorithm relies on an alternating minimization (AM) scheme
for which we do not provide a theoretical proof of convergence. However, in the nu-
merical section we show clear empirical evidence of the good convergence behaviour
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Algorithm 1 AM numerical algorithm for the solution of H-TVp-Lq hypermodels

inputs: observed image b ∈ Rn, blurring operator K ∈ Rn×n

outputs: estimated restored image u∗ ∈ Rn and hyperparameters vector θ ∗ = (σ∗g , p∗,σ∗r ,q
∗) ∈ R4

++

• Initialization (Sec. 4.1) :
· compute u(0) ∈ Rn, then θ (0) ∈ R4

++, then set hyperprior parameters mg,mr ∈ R++, dg,dr ∈ (1,+∞)
• AM for H1-TVp-Lq:

for k = 0, 1, 2, . . . until convergence do:

· update u(k+1) (Sec. 4.2.1)
· update θ

(k+1)
P =(σ

(k+1)
g , p(k+1)) (Sec. 4.2.2)

· update θ
(k+1)
L =(σ

(k+1)
r ,q(k+1)) (Sec. 4.2.2)

end for

• AM for H2-TVp-Lq:

for k = 0, 1, 2, . . . until convergence do:

· update u(k+1),σ
(k+1)
g (Sec. 4.3)

· update p(k+1) (Sec. 2.1.1)

· update θ
(k+1)
L =(q(k+1),σ

(k+1)
r ) (Sec. 4.2.2)

end for

u∗ = u(k+1), θ ∗ = θ (k+1)

of the scheme. For the algorithm to be determined, we make the standard (and rea-
sonable) assumption that the null spaces of matrices K and D have trivial intersection.

4.1 Robust initialization

Computing in a fully automatic and efficient manner an acceptable-quality initial
estimate u(0) of u under the general assumption of IIDGN noise corruption with un-
known scale and shape parameters is a hard task. However, it is of vital importance
not only for setting suitable hyperprior parameters but also for the success of the
alternating minimization scheme outlined in Alg. 1, which can get trapped in bad lo-
cal minimizers as the joint optimization problem in (u,θ) is non-convex. Recently, a
strategy for automatically selecting the regularization parameter of regularized least-
square models for restoring images corrupted by additive white Gaussian noise has
been proposed [24]. It is based on the RWP, i.e. on maximizing the whiteness of
the restoration residual. The core block of this approach is applying the strategy to
Tikhonov-regularized least-square (in short TIK-L2) quadratic models.

The TVp-Lq model with p = q = 2 is a particular TIK-L2 model, hence, also mo-
tivated by the fact that the noise whiteness property exploited by the RWP holds for
any considered IIDGN noise corruption (note that IID property implies whiteness),
we use the strategy in [24] for computing our initial estimate u(0). In formulas:

u(0) = uTik(µW ), uTik(µ) = arg min
u∈Rn

{
‖Du‖2

2 + µ ‖Ku−b‖2
2
}
, (4.1)

with value µW automatically selected by minimizing the whiteness measure function
W : R++→ R+ defined in [24]. Formally, µW is obtained by solving the 1-d problem

µW ∈ arg min
µ∈R++

{
W (µ) =

(
∑iw4

i (µ)
)
/
(
∑iw2

i (µ)
)2
}
, wi(µ) = εi/(ηi+ζiµ), (4.2)
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with εi,ηi,ζi ∈ R+, i = 1, . . . ,n, defined in terms of the known quantities b, K, D
[24]. Tests in Sec. 5.1 will confirm robustness of the RWP-based strategy in (4.1)-
(4.2) when applied to images of different type corrupted by different IIDGN noises.

Given u(0), an initial estimate θ (0) = (θ
(0)
P ,θ

(0)
L ) is obtained by applying the MLE

procedure in Sec. 2.1.1 to the data sets g(u(0)) ∈ Rn
++ for θ

(0)
P and r(u(0)) ∈ Rn for

θ
(0)
L , respectively, with functions g,r defined in (1.3)-(1.4). More precisely, first we

compute p(0) and q(0) by solving (2.5) with x = g(u(0)) and x = r(u(0)), respectively.
The existence of solutions is guaranteed as we search for p(0),q(0) within the domains
Bp = [ p,+∞], Bq = [q,+∞], p,q∈R++, introduced in Section 3. Then, σ

(0)
g ,σ

(0)
r are

obtained via (2.6) with s∗ = p(0), x = g(u(0)) and s∗ = q(0), x = r(u(0)), respectively.
Finally, σ

(0)
g , σ

(0)
r are used to set the modes of the GG hyperpriors on σg, σr for the

first hypermodel and on the sole σr for the second one, whereas the two parameters
dr,dg, accounting for the standard deviations of the GG hyperpriors, are set manually.

4.2 Alternating scheme for H1-TVp-Lq

Here, we discuss the u- and θ -updates for H1-TVp-Lq in the left side of Alg. 1.

4.2.1 Minimization with respect to u

Recalling the definition of J(u,θ) in (3.7), the u-update step for H1-TVp-Lq reads

u(k+1) ∈ arg min
u∈Rn

J
(
u,θ (k))

= arg min
u∈Rn

 TVp(k)(u)(
σ
(k)
g φ

(
p(k)
))p(k)

+
Lq(k)(u;b,K)(

σ
(k)
r φ

(
q(k)
))q(k)

 (4.3)

= arg min
u∈Rn

{
J(k)p,q(u) :=

n

∑
i=1
‖(Du)i‖p(k)

2 + µ
(k) ‖Ku−b‖q(k)

q(k)

}
, (4.4)

where (4.4) comes from (4.3) by simple manipulations, by recalling definitions (1.3),
(1.4) and by introducing the (current) regularization parameter µ(k)∈R++ with

µ
(k) :=

(
σ
(k)
g φ

(
p(k)
))p(k)(

σ
(k)
r φ

(
q(k)
))−q(k)

. (4.5)

In order to lighten the notation, in the rest of this section we drop the (outer)
iteration index superscripts (k) and indicate by û - in place of u(k+1) - the sought so-
lution. However, to avoid confusion, the (inner) iterations of the numerical algorithm
proposed in the following for solving (4.4) are denoted by a different index j.

In Proposition 4.1, whose proof comes easily from Lemma 5.1 and Proposition 5.2
in [7] and from well-known arguments of convex analysis, we study Jp,q in (4.4).
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Proposition 4.1 If the null spaces of matrices K and D have trivial intersection, then
for any (µ, p,q) ∈ R3

++ the function Jp,q in (4.4) is continuous, bounded below by
zero and coercive, hence it admits global minimizers. If p,q ≥ 1, then Jp,q is also
convex, hence it admits a compact set of global minimizers. Finally, if p,q ≥ 1 and
pq > 1, then Jp,q is strictly convex, hence it admits a unique global minimizer.

We solve (4.4) by means of an ADMM-based approach. First, we resort to the
variable splitting strategy and rewrite (4.4) in the equivalent linearly constrained form

{û, t̂, r̂} ∈ arg min
u,r∈Rn, t∈R2n

{
n

∑
i=1
‖ti‖p

2 + µ ‖r‖q
q

}
s.t. : t = Du, r = Ku−b, (4.6)

where t ∈ R2n and r ∈ Rn are the newly introduced variables and where we define
ti := ((Dhu)i,(Dvu)i)

T ∈ R2. The augmented Lagrangian function for (4.6) reads

L (u, t,r,λt ,λr)=
n

∑
i=1
‖ti‖p

2 +µ ‖r‖q
q −〈λt , t−Du〉+(βt/2) ‖ t−Du‖2

2

−〈λr , r− (Ku−b)〉+(βr/2)‖r− (Ku−b) ‖2
2, (4.7)

where βt ,βr ∈ R++ are penalty parameters and λt ∈ R2n, λr ∈ Rn are the vectors of
Lagrange multipliers associated with the set of 2n+n linear constraints in (4.6).

Upon suitable initialization, and for any j ≥ 0, the j-th iteration of the standard
ADMM applied to computing a saddle-point of L defined in (4.7) reads as follows:

u( j+1) =
(
βtD

TD+βrK
TK
)−1
(

βtD
T w( j)+βrK

T v( j)
)
, (4.8)

with : w( j)= t( j)− 1
βt

λ
( j)
t , v( j)= r( j)− 1

βr
λ
( j)
r +b,

t( j+1) ∈ arg min
t∈R2n

{
n

∑
i=1
‖ti‖p

2 +
γp

2

∥∥∥t− y( j)
p

∥∥∥2

2

}
, (4.9)

with : γp = βt , y( j)
p =Du( j+1)+

1
βt

λ
( j)
t ,

r( j+1) ∈ arg min
r∈Rn

{
‖r‖q

q +
γq

2

∥∥∥r− y( j)
q

∥∥∥2

2

}
, (4.10)

with : γq =
βr

µ
, y( j)

q =Ku( j+1)−b+
1
βr

λ
( j)
r ,

λ
( j+1)
t = λ

( j)
t − βt

(
t( j+1) − Du( j+1) ) .

λ
( j+1)
r = λ

( j)
r − βr

(
r( j+1) −

(
Ku( j+1)−b

))
.

The sub-problem for u in (4.8) is a linear system which - under the assumption
that the null spaces of K and D have trivial intersection - is solvable as the coefficient
matrix is symmetric positive definite. Adopting periodic boundary conditions for u,
DTD and KTK are block-circulant with circulant blocks matrices that can be diago-
nalized by the 2D discrete Fourier transform. The solution is thus obtained at the cost
of O(n lnn) operations by using the 2D fast Fourier transform implementation.
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The two remaining sub-problems for variables t and r in (4.9)-(4.10) can both be
split into n independent (2-dimensional and 1-dimensional, respectively) minimiza-
tion problems taking the form of proximity operators, in formula:

t( j+1)
i ∈ arg min

x∈R2

{
‖x‖p

2 +
γp
2

∥∥x− y( j)
p,i

∥∥2
2

}
= proxγp

||x||p2

(
y( j)

p,i

)
r( j+1)

i ∈ arg min
x∈R

{
|x|q +

γq
2

(
x− y( j)

q,i

)2
}

= proxγq
|x|q
(

y( j)
q,i

) , i = 1, . . . ,n. (4.11)

Hence, solving both sub-problems for t and r reduces to computing the proximal
operator of the parametric function fs(x) := ||x||s2, s ∈ R++, with x ∈ Rz, z ∈ {1,2}.
We remark that in the proposed AM approach - see Alg. 1 - the parameters p and q
are automatically estimated at each outer iteration k, hence both p and q can assume
whichever real positive value. We thus need a reliable and efficient strategy for com-
puting the proximal map of fs for any s∈R++. For the sake of better readability, here
we only summarize the content of the derived results, which are rather technical and,
for this reason, are reported in the Appendix. In particular, in Proposition A.1, we ex-
tend to the case s > 2 the results in Proposition 1 of [23], which in their turn extended
to the z-d case the 1-d results presented in [36] for s < 1. We can conclude that, for
any s,γ ∈ R++, proxγ

fs takes the form of a shrinkage operator, such that (4.11) reads

t( j+1)
i = ξ

∗
p,i y( j)

p,i , r( j+1)
i = ξ

∗
q,i y( j)

q,i , i = 1, . . . ,n , (4.12)

where, depending on p, q, the shrinkage factors ξ ∗p,i, ξ ∗q,i in (4.12) can either be ex-
pressed in closed-form or be the unique solution of a non-linear equation - see Propo-
sition A.1. For this latter case, in Corollary A.1 we prove that the Newton-Raphson
scheme with suitable initialization can be applied with guarantee of convergence.

4.2.2 Minimization with respect to θ

Based on the definition of our cost function J(u,θ) in (3.7), the θ -update reads

θ
(k+1)∈ arg min

θ∈R4
++

J
(
u(k+1),θ

)
⇐⇒

{
θ
(k+1)
P = {σ (k+1)

g , p(k+1)} = {σMAP
g , pMAP}

θ
(k+1)
L = {σ (k+1)

r ,q(k+1)} = {σMAP
r ,qMAP}

,

where {σMAP,sMAP}, either coinciding with θ
(k+1)
P or with θ

(k+1)
L , is obtained as{

σ
MAP,sMAP} ∈ arg min

(σ ,s)∈R2
++

{T (σ ,s;x,m,d)=G(σ ,s;x)+H(σ ,s;m,d)} , (4.13)

with x = g(u(k+1)) for θ
(k+1)
P and x = r(u(k+1)) for θ

(k+1)
L , and where functions G and

H are defined in (2.4) and in (3.6), respectively. The MAP superscript indicates that
(4.13) can be regarded as a MAP estimation problem for (σ ,s), which reduces to the
MLE problem (2.4) when the selected hyperprior is a uniform pdf. In analogy with
the results reported for the MLE problem in Section 2.1.1, we can prove the following
proposition on the existence of solutions for problem (4.13).
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Proposition 4.2 Let T (·;x,m,d) : R2
++→ R be the cost function of problem (4.13),

x∈Rn and m∈R++,d ∈ (1,+∞). Then, T ∈C∞(R2
++). Furthermore, the minimizers

of T can be obtained as

sMAP∈arg min
s∈B

f MAP(s) , σ
MAP =m

−α+
√

α2+4βm−sMAP
(σML)sMAP

2β

1/sMAP

,

with B=[s,+∞], s ∈ R++, α:=(n−d +1)/n, β :=(d−1)/n, σML given in (2.7) and

f MAP(s)=n ln[Γ (1+1/s)φ(s)]+ ln[(1/d)Γ (1+d/s)]+(d/s) ln(s/nβ )

+(n/s)
(√

α2+4βm−sσML(s)s+α ln((−α+
√

α2+4βm−sσML(s)s)/(2β ))
)
.

4.3 Alternating scheme for H2-TVp-Lq

We now discuss the numerical solution of H2-TVp-Lq defined in (3.8)-(3.10), whose
main steps are outlined in the right side of Alg. 1. The bilevel structure of the model
is simply dealt with by jointly updating the unknowns u and σg. More precisely, after
the initialization step, at each outer AM iteration we first update for (u,σg) and then
for (p,q,σr). The former update is carried out by solving problem (4.3)-(4.4) for
different values of σg. For each considered σg, we compute the whiteness measure W
as in (4.2), and select as updated u(k+1), σ

(k+1)
g the ones for which W is the smallest.

The latter update is performed by means of the procedure outlined in Sec. 4.2.2 for
q and σr, while p(k+1) is sought as a solution of problem (2.4) constrained to the
domain Bp with σg = σ

(k+1)
g and x = g(u(k+1)).

5 Computed examples

In this section, we assess the performance of the proposed fully automatic variational
hypermodel in its two versions H1-TVp-Lq in (3.7) and H2-TVp-Lq in (3.8)-(3.10),
solved by the iterative approaches outlined in Alg. 1. After defining the experimental
setting, in Sec. 5.1 we evaluate the robustness of the initialization approach described
in Sec. 4.1, then the two hypermodels are extensively tested and compared in Sec. 5.2.
Finally, the performance of the H2-TVp-Lq hypermodel is evaluated in absolute terms
in Sec. 5.3, also by comparing it with some popular (not fully automatic) competitors.

In order to highlight the great flexibility of the proposed fully automatic image
restoration approach, we consider four test images characterized by very different
properties; see Fig. 5.1. In particular, qrcode is a purely geometric, piecewise con-
stant image, sinusoid a prototypical smooth image, peppers a piecewise smooth
image and skyscrapers, the most difficult to be dealt with, is made by a mixture
of piecewise constant, smooth and textured components. For each (uncorrupted) test
image ū, we also report the quantities p̄, σ̄g, representing the “target” values of the
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qrcode sinusoid peppers skyscrapers

Fig. 5.1: Original test images ū: qrcode (256× 256, p̄ = 0.7, σ̄g = 0.2408),
sinusoid (200× 200, p̄ = 98, σ̄g = 0.0348), peppers (256× 256, p̄ = 0.72,
σ̄g = 0.1008), skyscraper (256×256, p̄ = 0.7, σ̄g = 0.1572).

shape and scale parameters of the underlying GN prior pdf. These values are ob-
tained by applying the MLE procedure for GN pdf parameters outlined in Sec. 2.1.1
to the data set x = (‖(Dū)1‖2, . . . ,‖(Dū)n‖2), namely the gradient norms of the target
uncorrupted image ū, where, here and in the following experiments, the s estimation
problem - with s = p,q - is addressed via gridsearch; p̄, σ̄g will serve as reference val-
ues with which to compare the obtained estimates p∗,σ∗g . The p̄ value ranges from 0.7
for the piecewise constant image qrcode to 98 for the smooth image sinusoid.
The overbar notation is also used to indicate the true values q̄, σ̄r of the shape and
scale parameters of the GN likelihood pdf (i.e., of the IIDGN noise pdf).

In the experiments, all test images have been corrupted by space-invariant Gaus-
sian blur defined by a 2D discrete convolution kernel generated using the Matlab com-
mand fspecial(’gaussian’,band,sigma) with parameters band = 5 and
sigma = 1. In particular, band represents the side length (in pixels) of the square
support of the kernel, whereas sigma is the standard deviation of the circular, zero-
mean, bivariate Gaussian pdf representing the kernel in the continuous setting. We
assume periodic boundary conditions for image ū, hence the blur matrix K ∈ Rn×n is
block-circulant with circulant blocks and can be diagonalized in C by the 2D discrete
Fourier transform, thus allowing fast multiplication and storage saving. In accordance
with the considered degradation model (1.1), after applying K to ū, the blurred im-
age Kū is additively corrupted by IIDGN noise realizations e ∈ Rn from GN pdfs
with standard deviation σ̄r =0.1 and different shape parameters q̄, ranging from 0.5,
which is the case of a strongly impulsive GN noise, to +∞, namely uniform noise,
passing through the two notable intermediate values q̄ = 1 and q̄ = 2 associated with
Laplacian and Gaussian noises, respectively. The blur- and noise-corrupted images
b = Kū+ e are shown in the first column of Fig. 5.3 for qrcode and sinusoid
corrupted by uniform noise and in the first rows of Figs. 5.4-5.5 for peppers and
skyscraper degraded by impulsive, Laplacian, Gaussian and uniform noises.

The quality of the obtained restored images u∗ versus the associated true im-
ages ū has been assessed by means of two scalar measures, the Improved Signal-to-
Noise Ratio (ISNR), ISNR(b, ū,u∗) := 10log10

(
‖b− ū‖2

2/‖u∗− ū‖2
2
)
, and the Struc-

tural Similarity Index (SSIM) [31]. The larger the ISNR and SSIM values, the higher
the restoration quality. For all tests, both the outer AM scheme iterations and the inner
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ADMM iterations are stopped as soon as δ
(k)
u :=

∥∥u(k)−u(k−1)
∥∥

2/
∥∥u(k−1)

∥∥
2 < 10−5,

k ∈ N\{0}, and the ADMM penalty parameters βt , βr have been set manually.

5.1 Robustness evaluation of the RWP-based Tikhonov initialization

We analyze experimentally the automatic Tikhonov initialization approach outlined
in Sec. 4.1 and based on the RWP. In particular, it is of crucial importance to show
that the approach is effective for the wide range of images and noises considered.
To this aim, in Fig. 5.2 we graphic, for all test images and some different q̄ values,
the whiteness measure function W (µ) in (4.2), but reparameterized as a function of
the scalar quantity τ(µ) := σ̂r(µ)/σ̄r, where σ̄r is the true noise standard deviation
and σ̂r(µ) := ‖KuTik(µ)− b‖2 /

√
n represents its µ-dependent estimate based on

the solution uTik(µ) of the TIK-L2 model in (4.1). Plotting W as a function of τ(µ)
(instead of µ) helps in detecting immediately the quality of the estimate u(0) in terms
of associated discrepancy. In each plot of Fig. 5.2, the dashed colored vertical lines
represent the optimal τW := τ(µW ) = σ̂r(µW )/σ̄r values selected according to the
RWP (global minimizers of W (τ)), while the black vertical line at τ = 1 corresponds
to a perfect estimate σ̂r of σ̄r.

In analogy to what observed in [24], where the same study has been done only for
q = 2, first we notice that the RWP tends to slightly under-estimate the true standard
deviation σ̄r. In general, this circumstance has already been proved to be preferable
since it leads to restorations with higher ISNR and SSIM values [9,24]. More im-
portant - if not crucial - to the purpose of this work, one can notice from Fig. 5.2
that, for each test image, the function W presents approximately the same behavior
and, hence, optimal τW value, for any different q̄ value. This reflects the expected
power of the RWP which, relying on the residual whiteness property, allows to deal
equally well with IID noises having very different distributions, like, e.g., the hyper-
Laplacian, Laplacian, Gaussian and uniform distributions considered here.

In Tab. 5.1 we report the ISNR and SSIM values associated with the initialized
image u(0) = uTik(µW ) as well as the hyperparameter estimates p(0), q(0), σ

(0)
r , σ

(0)
g

for all test images and noise shape parameters q̄ ∈ {0.5,1,2,+∞}. We note that q(0)

is a good approximation of the shape parameter q̄ of the true underlying noise distri-
bution, while p(0) is a less accurate estimate of the target value p̄.

5.2 Comparative performance evaluation of the two variational hypermodels

We now evaluate the accuracy of the results obtainable by the two proposed hyper-
models in (3.7) and (3.8)-(3.10), solved via the iterative schemes in Alg. 1. We re-
mark that, once for all after the initialization phase, for the H1-TVp-Lq hypermodel
the modes mg,mr of the two GG hyperpriors are set equal to the estimates σ

(0)
g , σ

(0)
r ,

respectively, while the shape parameters dg, dr are set manually in order to fix the
standard deviation of the two GG hyperpriors to 10−3. For H2-TVp-Lq hypermodel,
only σr and dr are set in this way, as σg is automatically selected based on the RWP.

In Tab. 5.2 we report the obtained quantitative results, i.e. the ISNR and SSIM
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Fig. 5.2: Tikhonov initialization. Whiteness measure function W in (4.2) - as function
of τ(µ) - for the four test images corrupted by blur and additive IIDGN noises of
standard deviation σ̄r = 0.1 for some different values of the noise shape parameter q̄.

q̄ 0.5 1 2 +∞ 0.5 1 2 +∞

qrcode sinusoid
ISNR 4.2194 2.1826 2.1643 2.1572 11.0900 10.9092 10.9621 10.8743
SSIM 0.5703 0.5624 0.5604 0.5571 0.9048 0.9033 0.9025 0.9004
p(0) 1.2507 1.3102 1.3499 1.4094 3.7667 5.6396 6.0459 5.9667
q(0) 0.8352 1.2478 2.0955 4.1485 0.6602 1.0853 1.9730 7.7994
σ
(0)
g 0.1864 0.1846 0.1846 0.1844 0.0417 0.0416 0.0416 0.0395

σ
(0)
r 0.0898 0.0894 0.0896 0.0889 0.0966 0.0943 0.0945 0.0936

peppers skyscraper
ISNR 5.0205 4.9249 4.9513 4.9207 2.6645 2.6528 2.6538 2.6828
SSIM 0.6995 0.7036 0.6953 0.6963 0.5072 0.4944 0.4867 0.4854
p(0) 1.3486 1.3685 1.3586 1.4279 2.2009 2.3495 2.5775 2.5676
q(0) 0.7477 1.1728 1.9980 4.5986 0.8102 1.2103 2.0105 4.3486
σ
(0)
g 0.0425 0.0423 0.0425 0.0419 0.0755 0.0818 0.0818 0.0832

σ
(0)
r 0.1007 0.1001 0.0997 0.0999 0.0935 0.0929 0.0928 0.0921

Table 5.1: Tikhonov initialization. Quantitative results for the four test images cor-
rupted by blur and different IIDGN noises with standard deviation σ̄r = 0.1.

values of the restored images u∗ and the estimated hyperparameters p∗, q∗, σ∗g , σ∗r
where, for each test, the highest ISNR and SSIM values are in boldface. We also show
the (percentage) variations ∆ ISNR and ∆SSIM with respect to the ISNR and SSIM
values achieved after the initialization phase (see Tab. 5.1).

On the piecewise constant qrcode and the smooth sinusoid test images, the
two hypermodels perform similarly well, as evidenced by the reported ISNR and
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H1-TVp-Lq H2-TVp-Lq

q̄ 0.5 1 2 +∞ 0.5 1 2 +∞

q
r
c
o
d
e

ISNR 8.3696 9.6049 9.1617 11.2711 9.2474 9.5596 9.2441 11.0704
SSIM 0.9568 0.9361 0.9126 0.9694 0.9308 0.9379 0.9275 0.9716

∆ ISNR +98% +340% +323% +422% +119% +338% +327% +413%
∆SSIM +67% +66% +63% +74% +63% +66% +65% +74%

p∗ 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000
q∗ 0.7000 0.9638 2.0188 14.4154 0.7000 0.9765 1.9719 24.0312
σ∗g 0.1752 0.1724 0.1711 0.1726 0.4664 0.1921 0.2500 0.1851
σ∗r 0.1015 0.0996 0.0995 0.0996 0.1004 0.0996 0.0990 0.1000

s
i
n
u
s
o
i
d
s

ISNR 14.0339 13.7271 13.8246 13.6854 15.1811 14.3889 13.8540 14.4425
SSIM 0.9774 0.9776 0.9775 0.9770 0.9768 0.9782 0.9774 0.9807

∆ ISNR +26.5% +25.8% +26.1% +25.8% +36.9% +31.9% +26.4% +32.8%
∆SSIM +8% +8.2% +8.3% +8.5% +7.9% 8.3% +8.3% +8.9%

p∗ 31.5928 15.7289 35.7675 56.6410 8.8413 8.2456 8.2456 9.2384
q∗ 0.7000 0.9783 2.0916 7.6578 0.7000 0.9987 2.0090 11.2241
σ∗g 0.0329 0.0300 0.0323 0.0329 0.0380 0.0368 0.0579 0.0350
σ∗r 0.1002 0.0980 0.0985 0.0984 0.0995 0.1010 0.0985 0.0985

p
e
p
p
e
r
s

ISNR 4.0386 2.3401 2.3229 3.2742 6.7796 5.8839 5.5538 6.1540
SSIM 0.6891 0.6104 0.6058 0.6351 0.7775 0.7334 0.7113 0.7369

∆ ISNR -19.5% -52.5% -53.1% -33.4% +35% +19.4% +12.1% +25.1%
∆SSIM -1.5% -13.2% -12.8% -8.8% +11.1% +4.2% +2.3% +5.8%

p∗ 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000
q∗ 0.8879 1.2275 1.7550 3.0738 0.7000 0.9212 1.9719 10.8754
σ∗g 0.0403 0.0391 0.0393 0.0393 0.2319 0.2682 0.4899 0.2188
σ∗r 0.1104 0.1159 0.1162 0.1108 0.1018 0.1004 0.0997 0.1004

s
k
y
s
c
r
a
p
e
r

ISNR 1.5536 0.9225 0.9585 1.2245 4.0255 2.9595 2.8088 3.1076
SSIM 0.5787 0.5219 0.5220 0.5450 0.6876 0.6285 0.6363 0.7094

∆ ISNR -41.7% -65% -63.8% -54.3% +51.1% +11.5% +5.8% +15.6%
∆SSIM +14.1% +5.5% +7.2% +12.3% +35.6% +27.1% +30.7% +46.1%

p∗ 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000
q∗ 0.7000 1.2181 1.7362 2.9020 0.7000 0.9765 2.0593 162.3645
σ∗g 0.0688 0.0757 0.0759 0.0774 0.5727 0.6366 1.2570 1.6093
σ∗r 0.1102 0.1132 0.1134 0.1104 0.1002 0.1023 0.0966 0.1014

Table 5.2: The two variational hypermodels. Quantitative results for the four test
images corrupted by different IIDGN noises with standard deviation σ̄r = 0.1.

Fig. 5.3: From left to right: data corrupted by IIDGN with q̄ =+∞, output of TIK-L2,
restoration by H1-TVp-Lq and absolute errors (x10) for qrcode and sinusoid.
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SSIM values. The improvements ∆ ISNR and ∆SSIM are remarkable on both images
and for all noise corruptions, with those on qrcode being an order of magnitude
larger. This difference is explained by considering that the initial image u(0) is at-
tained by means of a quadratically-regularized model - which is particularly suitable
for smooth images like sinusoid - hence u(0) for sinusoid is already of good
quality. Since the two hypermodels perform similarly on qrcode and sinusoid
for all noise types, in Fig. 5.3 we only show some visual results in the case of IIDGN
uniform noise (q̄ = +∞). More specifically, we report the image u(0) computed by
the Tikhonov initialization (second column), the output u∗ of the H1-TVp-Lq model
(third column), and the absolute error images for u(0) and u∗ (fourth and fifth columns,
respectively), scaled by a factor of 10 to facilitate the visualization. As already indi-
cated by the values reported in Table 5.2, the improvement of u∗ with respect to u(0)

is particularly significant for the qrcode test image.

The similarity in the performance of the two hypermodels does not hold anymore
when natural images such as peppers and skyscraper are processed. In fact, as
reported in Tab. 5.2, the ISNR and SSIM for H1-TVp-Lq are significantly lower than
for H2-TVp-Lq, with ISNR values also lower than those achieved after the initializa-
tion phase (see the negative ∆ ISNR values). The estimated noise standard deviations
σ∗r for H1-TVp-Lq are in fact significantly larger than the true value σ̄r and thus corre-
spond to over-smoothed restored images u∗ - see second rows of Figs. 5.4-5.5, where
we show the visual results for peppers and skyscraper. The estimation errors
are also reflected in the histograms of the residual images shown in the third rows
of Figs. 5.4-5.5, where the pdfs corresponding to the Tikhonov initialization (dashed
magenta lines) are closer to the true ones (solid green lines) when compared to the
pdfs resulting from the overall H1-TVp-Lq approach (dashed red lines). On the other
hand, one can notice from Tab. 5.2 and from the forth and fifth rows of Figs. 5.4-5.5
that the estimated noise standard deviations for H2-TVp-Lq result to be closer to the
true value σ̄r = 0.1 and high-quality restorations are attained.

The observed behavior is motivated by the fact that adopting the H2-TVp-Lq hy-
permodel can be equivalently interpreted as a way to set a hyperprior on the regular-
ization parameter µ in the TVp-Lq model (1.3)-(1.5), with µ expressed as in (4.5).
This guarantees a more direct monitoring of the balancing between the regularization
and fidelity terms. We also remark that the mentioned balancing is particularly deli-
cate when the selected regularizer is not expected to be flexible enough to model the
actual image properties, as in the case of peppers and skyscrapers test image
that would certainly benefit from using a more sophisticated regularizer.

As a result of this comparison, we can conclude that the H2-TVp-Lq hypermodel
is the best performing one and, hence, hereinafter we focus on it.

In Fig. 5.6 we provide some evidences for the good convergence behaviour of
the overall alternating minimization approach outlined in Alg. 1 for the H2-TVp-Lq
hypermodel. In particular, for qrcode image corrupted by blur and additive IIDGN
noise with q̄= 2, σ̄r = 0.1, we monitor the hyperparameter vector θ (k) and the restora-
tion quality measures ISNR

(
u(k)
)
, SSIM

(
u(k)
)

along the outer iterations of Alg. 1.
The reported values for iteration index k = 0 correspond to the outputs u(0), θ (0) of the
Tikhonov initialization. We note that all the monitored quantities stabilize after very
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q̄ = 0.5 q̄ = 1 q̄ = 2 q̄ =+∞

Fig. 5.4: Hypermodels on peppers. From top to bottom: corrupted images, restored
images by H1-TVp-Lq and H2-TVp-Lq, and their residual histograms.

few iterations, even in this experiment where not only the cost function J is jointly
non-convex in u and the hyperparameters but also its restriction to u (minimized by
ADMM) becomes non-convex after the first outer iteration - in fact, p(k) < 1 for k≥ 1.

5.3 Performance evaluation of the H2-TVp-Lq hypermodel
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q̄ = 0.5 q̄ = 1 q̄ = 2 q̄ =+∞

Fig. 5.5: Hypermodels on skyscraper. From top to bottom: corrupted images,
restored images by H1-TVp-Lq and H2-TVp-Lq, and their residual histograms.

The key novelty of the proposed method relies on the illustrated hierarchical Bayesian
framework which allows to automatically pick up and use for restoration one varia-
tional model among the infinity contained in the considered TVp-Lq class, parametrized
by the two shape parameters p,q and the regularization parameter µ . This leads to
a completely unsupervised restoration approach which, as evidenced by the results
reported in previous section for the H2-TVp-Lq hypermodel, is capable of achieving
good-quality restorations for a large class of images and of noise corruptions
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Fig. 5.6: From left to right: trajectories of p(k), q(k), of σ
(k)
g , σ

(k)
r , accuracy measures

ISNR
(
u(k)
)

and SSIM
(
u(k)
)
, along the outer iterations of the AM scheme in Alg. 1.

To the best of author’s knowledge, there not exist in literature other approaches of
this type for the automatic selection of the three hyperparameters of the TVp-Lq class
of models. Furthermore, the proposed hierarchical framework could be used for other
classes of parametrized variational models as well, also larger than TVp-Lq or even
containing TVp-Lq as a subset. Hence, we think it is not meaningful here to compare
the results reported in previous section with those obtainable by using regularizers
not belonging to the TVp class or, even more, fidelity terms suitable for noises other
than the considered additive IIDGN class. Instead, we believe it is of crucial impor-
tance in order to validate the proposed automatic framework and evaluate its potential
practical appeal, to compare its accuracy with the best results achievable by the whole
class of TVp-Lq models and, in particular, by the most popular members of the TVp-
Lq class, such as the TV-L2, TV-L1,TIK-L2 and TIK-L1 models.

To this aim, we carry out the following experiment, whose quantitative results
are reported in Tab. 5.3. We consider the most severe test skyscraper corrupted
by the same blur as in previous sections and by additive IIDGN noise with standard
deviation σ̄r = 0.1 and shape parameter q̄ = 3. We run our fully automatic restoration
H2-TVp-Lq hypermodel and report the obtained ISNR and SSIM accuracy results in
the first row of Tab. 5.3. Then, we compare these results with those achievable by a
set of non-automatic meaningful TVp-Lq models, with a priori fixed p and q values
reported in the second and third column of Tab. 5.3. In particular, for each of these
tests, the regularization parameter µ of the TVp-Lq model has been set manually so
as to achieve the highest ISNR value (shown in the fourth column of Tab. 5.3, with
the associated SSIM in the fifth column) and the highest SSIM value (in the sixth
column, with the associated ISNR in the last column). For a fair comparison, the con-
sidered non-automatic TVp-Lq models have been solved via the ADMM algorithm
outlined in Sec. 4.2.1, using the same initial iterate (image u(0) output of the proposed
Tikhonov initialization) and stopping criterion (δ (k)

u < 10−5) as our hypermodel.
In the second row of Tab. 5.3 we report the results of using the final shape param-

eter estimates p∗ = 0.7 and q∗ = 3.08 provided by our hypermodel. The ISNRmax and
SSIMmax values are slightly higher than the hypermodel but the associated SSIM and
ISNR values are slightly lower. In the third row we consider the target shape parame-
ter values p̄ = 0.7 and q̄ = 3 and the obtained results are very little worse than using
p∗ and q∗. In the last six rows we show the results for six very popular members of the
TVp-Lq class corresponding to p= 1,2, q= 1,2,+∞. All the six non-automatic mod-
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skyscraper: p̄ = 0.7, q̄ = 3
model p q ISNRmax SSIM ISNR SSIMmax

H2-TVp-Lq // // 2.9321 // // 0.6386
TVp∗ -Lq∗ 0.7 3.08 2.9821 0.6287 2.7952 0.6538
TVp̄ -Lq̄ 0.7 3 2.9777 0.6151 2.7917 0.6537
TVp̂ -Lq̂ 0.7 3 2.9777 0.6151 2.7917 0.6537
TV-L1 1 1 1.9887 0.5262 1.8163 0.5785
TV-L2 1 2 2.8355 0.5778 2.3678 0.6279
TV-L∞ 1 ∞ 1.9851 0.5501 1.7835 0.5675
TIK-L1 2 1 1.9088 0.4584 1.3592 0.4997
TIK-L2 2 2 2.6508 0.4884 1.7267 0.5415
TIK-L∞ 2 ∞ 1.8932 0.5256 1.64334 0.5504

Table 5.3: Quantitative performance evaluation of the H2-TVp-Lq hypermodel.

ISNR SSIM

Fig. 5.7: ISNR and SSIM values achieved by TVp-Lq model for different (p,q) val-
ues. The largest ISNR and SSIM in the red box are attained at p = 0.7 and q = 3.

els perform worse than our automatic hypermodel. Finally, the results reported in the
fourth row of Tab. 5.3 are the most meaningful as they clearly validate the proposed
hierarchical Bayesian approach. The p̂ and q̂ values are in fact those providing the
best results among the TVp-Lq class. To obtain p̂ and q̂, we ran the TVp-Lq model for
a grid of different (p,q) values and then selected the pair (p̂, q̂) yielding the highest
ISNR and the highest SSIM. The results of this experiment are shown in Fig. 5.7.

6 Conclusions

The present article discusses the introduction of a probabilistic hierarchical approach
for the fully automatic solution of the image restoration inverse problem when both
the noise and the image gradient magnitudes are assumed to follow a GN distri-
bution. The joint estimation of the original image and of the unknown parameters
determining the prior and the likelihood pdfs relies on the introduction of two classes
of hyperpriors. The resulting hypermodels are addressed by means of an alternating
minimization scheme, for which a robust initialization based on the noise whiteness
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property is provided. The proposed machinery leads to a completely unsupervised
restoration approach which is capable of achieving good-quality restorations for a
large class of images and of noise corruptions. As future work, more sophisticated
regularizers enforcing the robustness of the algorithm in presence of high level of
corruptions can be explored. In addition, the capability of the proposed framework to
effectively address the case of mixed noise can be also investigated.
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A Proofs of the results

Proposition A.1 Let s,γ ∈ R++, z ∈ N be given constants, let fs : Rz → R be the (parametric, not nec-
essarily convex) function defined by fs(x) := ‖x‖s

2 and let proxγ

fs : Rz ⇒ Rz be the proximal operator of
function fs with proximity parameter γ , defined as the z-dimensional minimization problem

x∗ ∈ proxγ

fs (y) := arg min
x∈Rz

{
‖x‖s

2 +
γ

2
‖x− y‖2

2

}
, y ∈ Rz .

Then, for any z ∈ N, s,γ ∈ R++, y ∈ Rz, proxγ

fs takes the form of a shrinkage operator:

proxγ

fs (y) = ξ
∗(s,ρ (s,γ,‖y‖2)

)
y , with ξ

∗ : R++× R+ ⇒ [0,1) ,

and with function

ρ : R2
++×R+→ R+ de f ined by ρ(s,γ,‖y‖2) =

{
(γ/s)‖y‖2−s

2 if ‖y‖2 > 0 ,
0 if ‖y‖2 = 0 ,

In particular, for any z ∈ N, the shrinkage coefficient function ξ ∗(s,ρ) satisfies:

s > 0,ρ = 0 =⇒ ξ ∗(s,ρ) = 0 ,
s≤ 1,ρ < ρ̄(s)=⇒ ξ ∗(s,ρ) = 0 ,
s≤ 1,ρ = ρ̄(s)=⇒ ξ ∗(s,ρ) ∈ {0, ξ̄ (s)} ,
s≤ 1,ρ > ρ̄(s)=⇒ ξ ∗(s,ρ) = unique sol. in (ξ̄ (s),1) of h(ξ ;s,ρ) = 0 ,
s > 1,ρ > 0 =⇒ ξ ∗(s,ρ) = unique sol. in (0,1) of h(ξ ;s,ρ) = 0 ,

(A.1)
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with functions ρ̄ : (0,1]→ [1,∞), ξ̄ : (0,1]→ [0,1), and h : (0,1]→ R defined by

ρ̄(s) =
(2− s)2−s

s(2−2s)1−s , ξ̄ (s) = 2
1− s
2− s

, h(ξ ;s,ρ) = ξ
s−1 + ρ (ξ −1) . (A.2)

Finally, the function ξ ∗ exhibits the following regularity and monotonicity properties:

ξ ∗ ∈C∞(S), S = S0 ∪S1, S0 = (0,1]×(ρ̄(s),∞), S1 = (1,∞)×R++,

∂ξ ∗

∂ s
(s,ρ)> 0 ,

∂ξ ∗

∂ρ
(s,ρ)> 0 , ∀(s,ρ) ∈ S .

(A.3)

Proof The proof of statement (A.1)-(A.2) comes straightforwardly from Proposition 1 in [23]. In fact,
(A.1)-(A.2) is there demonstrated for s < 2, but the proof of case c) in that proposition can be seamlessly
extended to cover the case s≥ 2.

To prove (A.3), first we notice from (A.1)-(A.2) that ξ ∗(s,ρ)∈ (0,1) ∀(s,ρ)∈ S and introduce the
function f : S f → R, S f = (0,1)× S ⊂ R3

++, defined by f (ξ ,s,ρ) := h(ξ ;s,ρ) = ξ s−1 + ρ (ξ − 1),
∀(ξ ,s,ρ)∈S f . The function f clearly satisfies

f ∈C∞(S f ) ,
∂ f
∂ξ

(ξ ,s,ρ) = (s−1)ξ
s−2 +ρ = 0 for s<1 ∧ ξ

s−2 =ρ/(1− s).

We now demonstrate by contradiction that that if s < 1 then ξ s−2 6= ρ/(1− s) for any (ξ ,s,ρ) ∈ S f . In
fact, according to the definition of set S f given above, we have that ξ > ξ̄ (s) and ρ > ρ̄(s) for s < 1, with
functions ξ̄ , ρ̄ defined in (A.2). But we have

ξ > ξ̄ (s) ⇐⇒ ξ
s−2 <

(
ξ̄ (s)

)s−2 ⇐⇒ ρ

1− s
<

(
2

1− s
2− s

)s−2

⇐⇒ ρ <
s
2

ρ̄(s) .

Hence, ∂ f/∂ξ 6= 0 ∀(ξ ,s,ρ)∈ S f and it follows form the implicit function theorem that, for any (s,ρ)∈ S,
the shrinkage coefficient ξ ∗ ∈ (0,1) is given by the infinitely many times differentiable function of (s,ρ),
denoted ξ ∗(s,ρ), solution of equation

f (ξ ∗(s,ρ),s,ρ) = 0 ⇐⇒ (ξ ∗(s,ρ))s−1 +ρ (ξ ∗(s,ρ)−1) = 0 . (A.4)

Taking the partial derivatives of both sides of (A.4) with respect to s and ρ , and recalling that for any
function c(x) = w(x)a(x) with w(x)> 0 ∀x ∈ R, it holds that

c′(x)= c(x)
[

a′(x) lnw(x)+a(x)w′(x)/w(x)
]
,

after simple manipulations we have

∂

∂ s
f (ξ ∗(s,ρ),s,ρ) = 0 ⇐⇒ ∂ξ ∗

∂ s
(s,ρ) =

−(ξ ∗(s,ρ))s−1 ln ξ ∗(s,ρ)

(s−1)(ξ ∗(s,ρ))s−2 +ρ
, (A.5)

∂

∂ρ
f (ξ ∗(s,ρ),s,ρ) = 0 ⇐⇒ ∂ξ ∗

∂ρ
(s,ρ) =

1−ξ ∗(s,ρ)

(s−1)(ξ ∗(s,ρ))s−2 +ρ
. (A.6)

Since (s,ρ) ∈ S =⇒ ρ > 0, ξ ∗(s,ρ) ∈ (0,1), then both the numerators in the definitions of ∂ξ ∗/∂ s and
∂ξ ∗/∂ρ in (A.5)-(A.6) are positive quantities. The denominator in (A.5)-(A.6) is also clearly positive for
s≥ 1; for s < 1 it is positive for

(ξ ∗(s,ρ))2−s > (1− s)/ρ ⇐= (ξ ∗(s,ρ))2−s > (1− s)/ρ̄(s) = (s/2)
(
ξ̄ (s)

)2−s
,

which is always verified since ξ ∗(s,ρ)> ξ̄ (s) for s < 1. This proves (A.3).�
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Corollary A.1 Under the setting of Proposition A.1, let (s,ρ) ∈ S. Then, the Newton-Raphson iterative
scheme applied to the solution of h(ξ ;s,ρ) = 0, namely

ξk+1 = ξk−
h(ξk;s,ρ)
h′ (ξk;s,ρ)

=
ρ + (s−2)ξ

s−1
k

ρ + (s−1)ξ
s−2
k

, k = 1,2, . . . , (A.7)

converges to ξ ∗(s,ρ) if the initial iterate ξ0 is chosen, dependently on s,ρ , as follows:

s≤ 1, ρ > ρ̄(s) =⇒ ξ0 ∈
[
ξ̄ (s),1

]
,

s ∈ (1,2), ρ > 2− s =⇒ ξ0 ∈ (0,1] ,
s ∈ (1,2), ρ ≤ 2− s =⇒ ξ0 ∈

(
0,ξ ∗(s,ρ)

]
,

s≥ 2 ρ > 0 =⇒ ξ0 ∈ [0,1] .

(A.8)

Hence, based on (A.3), ξ0 for computing ξ ∗(s,ρ) by (A.7) can be chosen among the solutions ξ ∗(s̃,ρ) for
different s values according to the following strategy:

s≤ 1, ρ > ρ̄(s) =⇒ ξ0 = ξ ∗(s̃,ρ), s̃≥ s ,
s ∈ (1,2), ρ > 2− s =⇒ ξ0 = ξ ∗(s̃,ρ), s̃ > 1 ,
s ∈ (1,2), ρ ≤ 2− s =⇒ ξ0 = ξ ∗(s̃,ρ), s̃ ∈ (1,s] ,
s≥ 2 ρ > 0 =⇒ ξ0 = ξ ∗(s̃,ρ), s̃ > 0 .

(A.9)

Proof According to Proposition A.1, for any given pair (s,ρ) ∈ S, the shrinkage coefficient ξ ∗(s,ρ) is
given by the unique root of nonlinear equation h(ξ ;s,ρ) = 0 in the open interval (ξ̄ (s),1) for s≤ 1, (0,1)
for s > 1. Convergence of the Newton-Raphson method applied to finding such roots depends on the initial
guess as well as on the first- and second-order derivatives of the function h, which read

h′(ξ ;s,ρ) = (s−1)ξ
s−2 +ρ , h′′(ξ ;s,ρ) = (s−1)(s−2)ξ

s−3 .

In particular, it is immediate to verify that h ∈C∞ ((0,1]) for any (s,ρ) ∈ S and that, depending on s, the
function h and its derivatives h′,h′′ satisfy{

s < 1
ρ > ρ̄(s)⇒

{
h∈C∞

([
ξ̄ (s),1

])
, h
(
ξ̄ (s)

)
= s

2−s (ρ̄(s)−ρ) <0, h(1)=1,
h′
(
ξ̄ (s)

)
=ρ + s

2 ρ̄(s), h′(1)=ρ +s−1, h′(ξ ),h′′(ξ )>0 ∀ξ ∈ [ξ̄ (s),1],{
s ∈ (1,2)
ρ > 0 ⇒

{
h∈C0([0,1])∩C∞

(
(0,1]

)
, h(0)=−ρ <0, h(1)=1, h′(0+)=+∞,

h′(1)=ρ +s−1, h′(ξ )>0 ∀ξ ∈(0,1], h′′(ξ )<0 ∀ξ ∈(0,1],{
s >2
ρ > 0 ⇒

{
h∈C1([0,1])∩C∞

(
(0,1]

)
, h(0)=−ρ <0, h(1)=1, h′(0)=ρ,

h′(1)=ρ +s−1, h′(ξ )>0 ∀ξ ∈ [0,1], h′′(ξ )>0 ∀ξ ∈(0,1],

Properties of h,h′,h′′ for s<1∧ρ > ρ̄(s) indicate that in this case the iterative scheme (A.7) is guaranteed
to converge to the unique root ξ ∗(s,ρ) of h(ξ ;s,ρ) = 0 in the open interval (ξ̄ (s),1) if ξ0 ∈

[
ξ ∗(s,ρ),1].

But, since it can be proved (we omit the proof for shortness) that setting ξ0 = ξ̄ (s) the first iteration of
(A.7) yields ξ1 ∈

[
ξ ∗(s,ρ),1

)
, then (A.7) converges under the milder condition ξ0 ∈ [ξ̄ (s),1].

Properties of h,h′,h′′ for s∈ (1,2)∧ ρ > 0 lead to the convergence condition ξ0 ∈
(
0,ξ ∗(s,ρ)

]
for

(A.7), with ξ0 = 0 excluded since h′(0+)= +∞ =⇒ ξk = 0 ∀k. It can be proved that setting ξ0 = 1, then
(A.7) yields ξ1 ∈

(
0,ξ ∗(s,ρ)

]
if and only if ρ >2−s. Hence, for ρ >2−s we have the milder convergence

condition ξ0 ∈ (0,1].
Properties of h,h′,h′′ for s> 2 ∧ ρ > 0 indicate that (A.7) is guaranteed to converge to the desired

ξ ∗(s,ρ) if ξ0 ∈
[
ξ ∗(s,ρ),1]. However, as it is easy to prove that ξ0 =0 in (A.7) yields ξ1 =1, then (A.7)

converges for any ξ0 ∈ [0,1] in this case.
This completes the proof of (A.8), whereas (A.9) comes easily from (A.8) and from the monotonicity

properties of function h given in (A.3). �

Proof of Proposition 4.2 Based on Proposition 2.1, the function T is infinitely differentiable. Hence, we
impose a first order optimality condition on T with respect to σ :

∂T
∂σ

= (n−d +1)/σ − s(φ(s))−s‖x‖s
s(1/σ)s+1 +(d−1)m−s

σ
s−1 = 0 . (A.10)
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Equation (A.10) admits the following closed-form solution:

σ
MAP(s) = m

[(
−α +

√
α2 +4βm−s(σML)s

)
/(2β )

]1/s

, (A.11)

where the expression of σML(s), for a generic s ∈ R++, is given in (2.7). Note that (A.11) can be further
manipulated so as to give

σ
MAP(s) = mα

1/s[(−1+
√

1+ c(s))/(2β )]1/s , with c(s) := 4(β/α
2)(mφ(s))−s(s/n)‖x‖s

s . (A.12)

It is easy to verify that the second derivative of T with respect to σ computed at σMAP(s) is strictly positive,
hence the stationary point in (A.10) is a minimum. Finally, plugging (A.12) into the expression of function
T in (4.13), after a few simple manipulations, the s estimation problem takes the form:

sMAP∈arg min
s∈B

{
f MAP(s):=n ln[Γ (1+1/s)φ(s)]+ ln[(1/d)Γ (1+d/s)]+(d/s) ln(s/(nβ ))︸ ︷︷ ︸

:= f1(s)

+(nα/s)
(√

1+ c(s)+ ln(α(−1+
√

1+c(s))/(2β ))︸ ︷︷ ︸
:= f2(s)

}

Based on Proposition 2.1, it is easy to verify that f MAP ∈C∞(B) and that the following limits hold:

lim
s→+∞

f1(s) = n ln
√

3− lnd ∈ R , lim
s→+∞

‖x‖s/(mφ(s)) = ‖x‖∞/(m
√

3) =: ν .

Depending on ν , the three following scenarios arise:

(a) ν = 1. Based on the properties of function φ and ‖ · ‖∞, ν tends to 1 from the right. If ν → 1+ slower
than s→+∞, case (a) leads to case (c), otherwise, c(s)∼O(s) and f2(s) vanish so that f MAP(s) tends
to a finite value when s goes to +∞.

(b) ν < 1. For large s, the first term in f2(s) vanishes, while for the logarithmic term we consider the
Maclaurin series expansion of

√
1+ c(s), so that:

lim
s→+∞

f2(s) = lim
s→+∞

(nα/s)[ln(α/(2β ))+ ln(−1+1+(1/2)c(s)+o(c(s)))]

= lim
s→+∞

(nα/s) ln((1/2)c(s)) = lim
s→+∞

(nα/s) ln(2(β/α
2)(s/n))+(nα) lnν = nα lnν ∈ R .

Therefore, function f MAP(s) tends to a finite value when s→+∞.
(c) ν > 1. For large s, we have (nα/s) ln(−1+

√
1+ c(s)) ∼ (nα/s) ln

√
c(s)→ k ∈ R+ as s→ +∞.

Hence:
lim

s→+∞
f2(s) = lim

s→+∞
(nα/s)

√
1+ c(s)+ k =+∞−→ lim

s→+∞
f MAP(s) = +∞ .

We conclude that f MAP admits either a finite minimizer, that can be plugged into (A.11) thus returning
σMAP, or sMAP =+∞, i.e. the samples in x are drawn from a uniform distribution with σMAP = mν . �
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