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Abstract A connection is established between transonic
sound waves propagating along a de Laval nozzle and quasi-
normal modes emitted from hairy black holes obtained with
the gravitational decoupling method applied to the Reissner–
Nordström geometry. Aerodynamical features provide an
analogue setup to test experimentally perturbations of fluid
flows in a de Laval nozzle producing quasinormal modes. In
particular, nozzle shape, pressure, Mach number, tempera-
ture, density, and thrust coefficient profiles are determined
as functions of the black hole parameters for several multi-
pole numbers. The black hole quasinormal mode frequencies
are also investigated for different overtones, evaluating the
quality factor of the nozzle.

1 Introduction

The detection of gravitational waves (GW) emitted when
black hole and neutron star binaries merge is a most rele-
vant success of fundamental physics. The temporal evolu-
tion of coalescing binary systems of compact stellar distri-
butions essentially embraces three stages. An initial inspi-
ral process, during which the frequency of GWs essentially
equals the revolution frequency, is followed by the forma-
tion of a remnant as the byproduct of the coalescence of
the two components. Finally, the remnant emits GWs dur-
ing the ringdown phase until it reaches a configuration with
some degree of stability. Coalescing binary systems in the
strong gravity regime, involving black holes with stellar
mass, and also degenerate stellar distributions, represent the
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most favourable candidates for generating GWs that can be
detected by radar interferometry. The evolution of detectors
like LIGO, KAGRA, and Virgo [1], will eventually be able
to probe a large set of theories of gravity beyond general
relativity (GR).

The gravitational decoupling (GD) [2–5] of Einstein’s
field equations has proven an effective theoretical method for
building possible stellar distributions in many circumstances
[6–34]. The GD allows for describing the inner region of
self-gravitational compact structures containing realistic as
well as exotic fluids with anisotropic distributions. Einstein’s
field equations are highly non-linear, implying that available
analytical solutions that are also physically sound is scarce,
except for the case of very specific scenarios. The GD exten-
sion is based on the splitting of the source energy-momentum
into two components. The first one is chosen to generate a
known solution of GR, whereas the second component cor-
responds to an additional source, which can carry any type
of charge, including tidal and gauge ones, or hairy fields
associated with gravity beyond GR. The GD method is par-
ticularly suited for describing anisotropic compact stars [35–
43]. It has also allowed to shed new light on some aspects of
the AdS/CFT correspondence, with the tools of holographic
quantum entanglement entropy [44–47]. Anisotropic degen-
erate quark and neutron stars were reported in Refs. [48–51],
whereas black holes with hairy charges were recently detailed
in Refs. [52–58].

One of the most fundamental features of black holes is
given by their quasinormal (QN) resonant frequencies in
response to perturbations. Crucial aspects of GD-extended
black holes have already been disclosed by investigating their
QN modes [59–62]. QN modes do not depend on the cause
of the perturbation, but solely on the externally observable
parameters of the system. In this work, we show how GD-
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extended black hole solutions can be mapped into analog
models of gravity in order to test some of their possible fea-
tures in a laboratory. Such an approach was introduced in
Ref. [63], where acoustic waves propagating through invis-
cid inhomogeneous fluid flows were shown to emulate wave
equations for scalar fields in black hole curved backgrounds.
In transonic fluid flows, although sound waves are allowed to
propagate from the subsonic to the supersonic region, they
cannot propagate against the direction of flow. Hence, the
critical sonic point where the velocity of sound equals the
fluid velocity acts as an acoustic horizon, very much like an
event horizon for sound waves. For a fluid in a pipe, this hori-
zon can form at the nozzle throat, where the tube is narrowest
[64]. Many analog gravity models have been proposed and
a variety of experiments have been performed or designed
to observe the analog of QN ringing, superradiance, and the
Hawking radiation [65–69]. Besides the importance of exper-
imental evidence, analog models of gravity are relevant in
the theoretical realm to advance our understanding and new
intuition about real black hole physics [70,71]. Reference
[72] showed that the QN ringing in sound waves is emitted
from acoustic black holes, analogously to black holes radi-
ating the QN ringing in GWs. Reference [73] proposed a
de Laval nozzle as the acoustic analog of a massive scalar
field propagating in a Schwarzschild black hole background,
presenting the possibility of observing the QN ringing of a
scalar field with effective mass in the laboratory. Reference
[74] addressed QN modes of a conformally coupled scalar
field on a BTZ black hole background analog to a de Laval
nozzle, whose ending correlates to the spatial infinity of the
BTZ black hole solution.

Since some of the gravitational excitations in black hole
backgrounds can be described in analogy to QN modes of
sound waves in a nozzle, one can indirectly explore GD-
hairy black hole solutions in the context of aerodynamics. In
this work, we will precisely study QN modes of GD-extended
hairy Reissner–Nordström solutions using transonic waves in
a de Laval nozzle. Given the lack of observational evidence
for black hole hair, such experiments in aerodynamics could
help to understand the physical features of GD-black hole
solutions. Section 2 is devoted to reviewing the GD method
to obtain GD-extended hairy Reissner–Nordström solutions.
In Sect. 3, the connection between perturbations on black
hole geometries and sound waves inside a de Laval nozzle
is explored, describing the conditions and constraint equa-
tions in which the analogy is valid. Section 4 is dedicated to
showing how GD-extended black hole parameters map into
the nozzle shape, the profiles of the pressure, Mach number,
temperature, density, and the thrust coefficient. The QN mode
frequencies are computed with the Mashhoon method and,
subsequently, the quality factor of the analogue de Laval noz-
zle is calculated. Finally, Sect. 5 discusses the main results
and contains the concluding remarks.

2 GD-extended black hole solutions

The GD method allows to extend known solutions of GR in
order to accommodate for more complex sources, splitting it
into terms that can be more easily worked out [2,3], including
the case of GD-hairy black holes [52]. The Einstein field
equations are expressed as usual as

Rμν − 1

2
Rgμν = κ2 T̆μν. (1)

The energy-momentum source in Eq. (1) must satisfy the
conservation law ∇μ T̆μν = 0, because the Bianchi identity
holds for the Einstein tensor, and can be split into

T̆μν = Tμν + α ϑμν, (2)

where Tμ
ν = diag[ρ,−p,−p,−p] represents a perfect fluid

with energy density ρ and isotropic pressure p. The tensor
ϑμν can describe any exotic source, like dark matter, dark
energy, towers of Kaluza–Klein bosons or fermions, as well
as gravitational contributions beyond GR, like the embedding
in extra-dimensions, stringy or effective quantum gravity cor-
rections [75–81].

Static and spherically symmetric stellar distributions can
be described by a metric in Schwarzschild-like coordinates

ds2 = eσ(r)dt2 − eβ(r)dr2 − r2dθ2 − r2 sin2 θdφ2. (3)

The Einstein field equations (1) then explicitly read

κ2
(
T 0

0 + ϑ 0
0

)
= 1

r2 − e−β(r)
(

1

r2 − β′(r)
r

)
, (4a)

κ2
(
T 1

1 + ϑ 1
1

)
= 1

r2 − e−β(r)
(

1

r2 + σ′(r)
r

)
, (4b)

κ2
(
T 2

2 +ϑ 2
2

)
=−1

4
e−β(r)

[
2σ′′(r)+σ′2(r)−β′(r)σ′(r)

+2

r

(
σ′(r)−β′(r)

)]
, (4c)

with primes denoting derivatives with respect to r . Equa-
tions (4a)–(4c) define the effective energy density, radial and
tangential pressures, respectively given by [3]

ρ̆ = ρ + αϑ 0
0 , (5a)

p̆rad = p − αϑ 1
1 , (5b)

p̆tan = p − αϑ 2
2 , (5c)

with anisotropy factor

Δ = p̆tan − p̆rad = α
(
ϑ 1

1 − ϑ 2
2

)
. (6)

We can now consider a solution to the field equations (1)
generated by a given fluid with energy-momentum tensor Tμν

[52]

ds2 = eξ(r)dt2 − eζ(r)dr2 − r2dθ2 − r2 sin2 θdφ2, (7)
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where the radial metric component

e−ζ(r) = 1 − κ2

r

∫ r

0
r2 ρ(r) dr = 1 − 2m(r)

r
(8)

defines the Misner–Sharp mass function m(r). We can next
deform the metric as

ξ(r) �→ σ(r) = ξ(r) + αh(r), (9a)

e−ζ(r) �→ e−β(r) = e−ζ(r) + αg(r), (9b)

where h(r) and g(r) are the geometric deformations for
the time and radial metric components, respectively. Equa-
tions (9a, 9b) split the system (4a)–(4c) into two sets: the
Einstein field equations for Tμν , which are solved by the ker-
nel metric (7), and the coupled system

κ2 ϑ 0
0 = −α

(
g(r)

r2 + g′(r)
r

)
, (10a)

κ2 ϑ 1
1 + α

r
e−ζ(r)h′(r) = −αg(r)

(
1

r2 + σ′(r)
r

)
, (10b)

κ2ϑ 2
2 +αg

(
2σ′′(r)+σ′2(r)+ 2σ′(r)

r

)

= −α

4
g′(r)

(
σ′(r)+ 2

r

)
+W (r), (10c)

where [2]

W (r) = αe−ζ(r)
(

2h(r)′′ + h′2(r) + 2h′(r)
r

+ 2ξ′(r)h′(r)

−ζ′(r)h′(r)
)

. (11)

The so-called tensor-vacuum is a region in which Tμν = 0
but ϑμν �= 0, corresponding to the vacuum concerning ordi-
nary matter in GR, and provides the fundamental setup for
describing (the exterior of) hairy black holes. Equations (4a)–
(4b) correspond to a negative value for the radial pressure,
as

p̆rad = −ρ̆. (12)

It yields the expression

α g(r) =
(

1 − 2M

r

)(
eα h(r) − 1

)
, (13)

and the metric (3) describes a deformation of the
Schwarzschild metric:

ds2 = eαh(r)
(

1 − 2M

r

)
dt2−e−αh(r)

(
1 − 2M

r

)−1

dr2 − r2dθ2 − r2 sin2 θdφ2. (14)

Outside the Schwarzschild event horizon r � 2M , the
tensor-vacuum can be realized, for example, by assuming
ϑ 0

0 = c ϑ 1
1 + d ϑ 2

2 , with c, d ∈ R. Equations (10a)–(10c)
then yield

b r (r − 2M) k′′(r) + 2 [(c + d − 1) r − 2 (c − 1) M]

k′(r) + 2 (c − 1) (k(r) − 1) = 0, (15)

for k(r) = eα h(r). Equation (15) has solutions of the follow-
ing type [52]:

eα h(r) = 1 + 1

r − 2M

[
�0 + r

(
�

r

)N
]

, (16)

where �0 = α� is a primary hair charge, whereas N =
2 (c − 1) /d > 1 ensures asymptotic flatness, correspond-
ing to

ρ̆ = ϑ 0
0 = α

κ2(N − 1)

�N

r N+2 , (17a)

p̆rad = −ϑ 1
1 = −ρ̆, (17b)

p̆tan = −ϑ 2
2 = N

2
ρ̆. (17c)

The dominant energy conditions,

ρ̆ ≥ | p̆rad|, ρ̆ ≥ | p̆tan|, (18)

using Eqs. (5a, 5c) are respectively equivalent to

−r(r − 2M)k′′(r) − 4(r − M)k′(r) − 2k(r) + 2 ≥ 0,

(19a)

r (r − 2M) k′′(r) + 4 M k′(r) − 2 k(r) + 2 ≥ 0.

(19b)

One can therefore solve the equality part of Eq. (19a), obtain-
ing

k(r) = 1 − 1

r − 2M

(
α � + α M e−r/M − Q2

r

)
, (20)

where Q is an integration constant that could represent tidal
or gauge charges. The saturated case in condition (19b) with
Eq. (20) reads

4 Q2

r2 ≥ α

M
(r + 2M) e−r/M . (21)

The GD-extended hairy Reissner–Nordström metric of Ref.
[52] is then obtained for the value of Q that saturates the
inequality (21) by replacing Eq. (20) into (14) and is given
by

eσ(r) = e−β(r) = 1 − 2M
r

+ Q2

r2

−α

r

(
M − α�

2

)
e−2r/(2M−α�) (22)

where M = M + α�/2. The parameter � measures the
increase of the entropy with respect to the Schwarzschild area
law, S = 4πM2, due to hairy effects [52,82]. The inequal-
ity � ≤ 2M/α is also consistent with asymptotic flatness.
Finally, we recall that the largest zero of Eq. (22) defines the
event horizon [55].
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3 Black holes and the de Laval nozzle

This section addresses the conditions for which sound waves
in a fluid flowing within a de Laval nozzle can mimic scalar
perturbations of the GD-extended Reissner–Nordström black
hole. We are particularly interested in the QN ringing modes.
Perturbing a real black hole can induce the emission of GWs,
with a possible initial burst of strong-field radiation, followed
by a typically longer period of damping oscillations domi-
nated by the QN modes.

For simplicity, we shall just consider a massless scalar field

(xμ) obeying the Klein–Gordon equation in a background
described by the metric gμν , that is

1√−g
∂μ(

√−ggμν∂ν)
(xμ) = 0. (23)

With the solution (22), the Klein–Gordon equation reduces
to

− 1

B

∂2


∂t2 + 1

A

(
2

r
+ 1

2B

dB

dr
− 1

2A

dA

dr

)
∂


∂r
+ 1

A

∂2


∂r2

+ 1

r2

[
1

sin θ

∂

∂θ
(sin θ

∂


∂θ
) + 1

sin2 θ

∂2


∂φ2

]
= 0, (24)

where we defined B(r) = eσ(r) and A(r) = eβ(r). The field

(xμ) in Eq. (24) can be separated into the modes


lm(t, r, θ, φ) = Zl(t, r)Y
m
l (θ, φ), (25)

where

Ym
l = (−1)m

√
(2 l + 1)

4π

(l − m)!
(l + m)! P

m
l (cos θ) eimφ (26)

are spherical harmonics of degree l and order m, with Pm
l

the associated Legendre polynomials. The Zl(t, r) part in
Eq. (25) can be expressed as Zl(t, r) = 1

r N (t, r), yielding
the classical wave equation

− ∂2

∂t2 N (t, r�) + ∂2

∂r2
�

N (t, r�) = Veff(r�)N (t, r�), (27)

with the effective potential

Veff(r) = B(r)
l(l + 1)

r2 + 1

2r

d

dr

(
B(r)

A(r)

)
, (28)

where the variable r�(r) represents the tortoise coordinate in
a general background

dr�
dr

=
(
B

A

)−1/2

, (29)

which will be particularly regarded as the GD-extended hairy
Reissner–Nordström metric. The effective potential (28) has
the dimension of the inverse of the square length, designating
the curvature scattering of sound wave perturbations along
the de Laval nozzle analog to the acoustic black hole [83].

For periodic oscillations of frequency ω, a transforma-
tion in the temporal variable can be performed as N (r, t) =
exp (−iωt) R(r), yielding
[

d2

dr2
�

+ ω2 − Veff(r�)

]
R(r�) = 0, (30)

describing a periodic mode with frequency ω.
On the other hand, the Navier–Stokes equations

∂v
∂t

+ (v · ∇)v = −∇ p

ρ
− ∇φ

+1

ρ

[
η∇2v +

(
ξ + 1

3
η

)
∇(∇ · v)

]
(31)

can describe the dynamics of a generic fluid flow, where η is
the dynamic shear viscosity, ξ represents the second viscos-
ity, ρ is the fluid density, and φ is a scalar potential. Assuming
an inviscid flow, Eq. (31) becomes the Euler equation. If the
fluid flow is isentropic, the velocity can be written in terms of
the velocity potential as v = −∇ψ . With these conditions,
the set of equations that describe the fluid flow read

∂(ρA)

∂t
+ ∇ · (ρAv) = 0, −∂ψ

∂t
+ h + 1

2
(∇ψ)2 + φ = 0,

(32)

where A is the cross-sectional area of the de Laval nozzle and
h denotes the specific enthalpy. To find the wave dynamics,
Eq. (32) must be perturbed, to wit:

− ∂

∂t

{
ρA

c2
s

[
∂(δψ)

∂t
+ v · (∇δψ)

]}

+∇ ·
{
ρA∇δψ −

{
ρA

c2
s

[
∂(δψ)

∂t
+ v · (∇δψ)

]}
v
}

= 0.

(33)

The Venturi effect governs the behaviour of de Laval nozzles.
For fluid flows passing through a strangled part of some tube,
which has variable cross-section A(x), the fluid pressure is
then reduced, and the flow velocity increases. For the case of
nonviscous, adiabatic, and isentropic fluids, consisting of an
ideal gas, with an equation of state p = ρRT , for T denoting
the temperature and R the molar gas constant. Other funda-
mental quantities that characterise the ideal gas are the heat
capacities, to constant pressure (Cp) and constant volume
(CV ), with the property R = Cp −CV . One denotes the adi-
abatic index γ = Cp/CV . An isentropic fluid flow has the
additional property

p = ργ = T
γ

γ−1 , (34)

encoding the shock-free property and flow continuity. The
Mach number, M(x) = ‖v(x)‖/cs(x), is a relevant dimen-
sionless quantity in aerodynamics, measuring the ratio of
flow velocity to the local speed of sound, for c2

s = dp/dρ =
γ RT denoting the (local) speed of sound and x denotes the
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longitudinal nozzle coordinate. The mass flux dm/dt repre-
sents the mass of fluid flowing through the cross-section of
the nozzle per unit of time. An important approximation to be
taken is to assume that the nozzle radius r = r(x) varies suf-
ficiently slowly along the longitudinal direction of the nozzle
axis, x . In such a way, the perturbations of the fluid flow in the
de Laval nozzle can be considered quasi-one-dimensional.
Then, rewriting Eq. (33) in the one-dimensional direction
of propagation, denoting by vx ≡ v the only non-vanishing
component of v, the following equation is obtained, govern-
ing the perturbation of the scalar field:

[(
∂

∂t
+ ∂v

∂x

)
ρA

c2
s

(
∂

∂t
+ v

∂

∂x

)
− ∂

∂x

(
ρA

∂

∂x

)]
δψ = 0.

(35)

Now, analogously to the modes in Eq. (30), if the solutions are
set to be stationary, one can apply a Fourier transformation
to express it in terms of the frequency ω, as

δψ(x, t) = 1

2π

∫
dωe−iωtδψω(x).

Replacing it into Eq. (35), a time-independent differential
equation for the new function δψω can be written as

1

2π

∫
dωe−iωt

{
ρA

(
1 − v2

c2
s

)
d

dx

+
[

d(ρA)

dx
+ 2iω

ρAv

c2
s

− d

dx

(
ρAv2

c2
s

)]
d

dx

+
[
ω2 ρA

c2
s

+ iω
d

dx

(
ρAv

c2
s

)]}
δψω = 0. (36)

Some auxiliary quantities can be employed, to simplify the
analysis [83,84]. The first one encodes a transfer function,
defined as

Hω(x) = √
gc

∫
dteiω[t−F(x)]δψ(t, x), (37)

where gc = ρA/cs and F(x) = ∫
dx |v|/(c2

s − v2). The sec-
ond one consists of a change of coordinate x = x(x�) based
on the definition of Eq. (29) for the metric of an acoustic
black hole with Mach number M. The tortoise coordinate for
the canonical acoustic black hole can be written as

dx�

dx
= cs0

cs(1 − M2)
, (38)

where cs0 denotes the stagnation sound speed, and x� is the
acoustic analog, on the aerodynamics side, of the tortoise
coordinate, with limx→∞ x�(x) = +∞ = − limx→0 x�(x).
Therefore Eq. (36) assumes the form of the Schrödinger equa-
tion (30):
[

d2

dx2
�

+ ω2

c2
s0

− Veff(x�)

]
Hω(x�) = 0, (39)

where the effective potential now reads

Veff(x�) = 1

2gc

d2gc
dx2

�

− 1

4g2
c

(
d2gc
dx�

)2

. (40)

Now that the equations and potentials for both sides – grav-
ity and aerodynamics – have been defined, the procedure to
apply them in an experimental context will be addressed.
First, a clear relation between ρ and gc has to be estab-
lished, and, second, the constraint equations that connect
both Schrödinger-type equations (30, 39), governing the QN
modes, have to be investigated.

As long as the wave dynamics (39) and the effective poten-
tial (40) are expressed in terms of gc, it is convenient that the
de Laval nozzle area be expressed in terms of gc as well. The
longitudinal section area A along the x-axis, relative to the
throat area A�, for a perfect fluid and isentropic flow, can be
described by the following equations:

A

A�

= 1

M

[
2

γ + 1

(
1 + γ − 1

2
M2
)](γ+1)/2(γ−1)

=
(

γ−1
2

)1/2 (
2

γ+1

)(γ+1)/2(γ−1)

(
ρ
ρ0

)

[
1 −

(
ρ
ρ0

)(γ−1)
]1/2 . (41)

Analogously to Ref. [84], hereon the area A and the density
ρ will be measured in units of the throat cross-sectional area,
A�, and total density, ρ0, respectively, in such a way that
A/A� �→ A and ρ/ρ0 �→ ρ. Having fixed the scale to be
used, with the definition (41), the expressions for gc and A

can be written as:

gc = 1

2
ρ

3−γ
2 A, A−1 = ρ

[
1 − ρ(γ−1)

]1/2
. (42)

Therefore, ρ can be put in terms of gc, as:

ρ1−γ = 2g2
c

(
1 −

√
1 − g−2

c

)
. (43)

Then, applying Eq. (43) in Eq. (42), the cross-sectional area
can be expressed as a function of gc

A =
√

2

[
2g2

c

(
1 −

√
1 − g−2

c

)] 1
γ−1

(
1 −

√
1 − g−2

c

)1/2 . (44)

Using the relations for an isentropic flow,

T0

T
= 1 + γ − 1

2
M2,

p0

p
=
(

1 + γ − 1

2
M2
) γ

γ−1

,

ρ0

ρ
=
(

1 + γ − 1

2
M2
) 1

γ−1

, (45)
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with Eq. (43), gc can be expressed in terms of the Mach
number and the heat capacity ratio γ , as:

gc = 1

M

(
1 + γ − 1

2
M2
)

1√
2(γ − 1)

. (46)

Since M = 1 at the event horizon rh , corresponding to the
throat of the de Laval nozzle, gc needs to be finite and greater
than unit, as Eq. (43) requires. Thus, for the air (γ ≈ 1.403):

lim
r→rh

gc = γ + 1

2
√

2
√

γ − 1
= 3√

5
> 1. (47)

This requirement serves as a useful boundary condition for
numerical integrations hereon.

Both Schrödinger-type equations (30, 39) were formu-
lated based on an effective potential and the tortoise coordi-
nate. To find a function gc that produces on the aerodynamical
side the same effective potential as the spherical black hole
wave equation in Eq. (40), the tortoise coordinates of both
equations must be equal. Thus, from Eqs. (38), (43), and (46)
one obtains:

dr� = dx� = cs0

cs

dx

(1 − M2)
= ρ

1−γ
2

1 − M2 dx

=

[
2g2

c

(
1 −

√
1 − g−2

c

)]1/2

1 − 2
γ−1

[
2g2

c

(
1 −

√
1 − g−2

c

)
− 1

]dx . (48)

The de Laval nozzle radius can be expressed by Eq. (29).
Defining

F(r) ≡ √
B(r)/A(r) (49)

to simplify the calculation, Eq. (48) becomes:

dx

dr
=

γ + 1 − 4gc(r)2
(

1 −√
1 − gc(r)−2

)

F(r)(γ − 1)
[
2gc(r)2

(
1 −√

1 − gc(r)−2
)]1/2 .

(50)

To determine the function gc(r), first, Eq. (40) can be rewrit-
ten, making the dependence on r clear, using Eq. (29):

1

2gc(r)

(
F(r)F ′(r)g′

c(r) + F(r)2g′′
c (r)

)
− F2(r)g

′2
c (r)

4g2
c (r)

= Veff(r). (51)

The potential term in Eq. (51), to complete the constraint,
will be replaced by Eq. (28).

Now, to proceed, it will be necessary to solve Eq. (51)
with the potential given in Eq. (28) and boundary conditions
given by Eq. (47). Equation (51) cannot be directly solved
by Runge–Kutta (RK) algorithms, as there are singularities
with gc. To circumvent the singularities, the substitution

gc(r) ≡ λ2(r) (52)

can be used, and Eq. (51) assumes the form

λ′′(r) + F ′(r)
F(r)

λ′(r) − Veff(r)

F2(r)
λ(r) = 0. (53)

Before numerically proceeding, a significant test of con-
sistency can be implemented, by considering the effec-
tive potential (28) associated with the GD-extended hairy
Reissner–Nordström metric (22) in the limit where α → 0
and Q → 0, corresponding to the Schwarzschild-like solu-
tion. In this limit, one obtains

gc = γ + 1

2
√

2
√

γ − 1

�(2 + l)2F1(1 − l, 2 + l, 3, r)

6(l − 1)! r4, (54)

complying with the particular result in Ref. [84] for the
Schwarzschild solution. Equation (53) is not well defined
at the zeros of the equation F(r) = 0, corresponding to rh ,
so the analysis must take place in the region r > rh . Taking
it into account, Eq. (53) is solvable, at least near r ∼ rh , by
the Frobenius method [85], with

λ(r) =
∞∑
k=0

ak(r − rh)
k, (55)

where ak are constants yet to be determined. Using Eq. (55),
Eq. (53) becomes a recurrence equation:

(k + 2)(k + 1)ak+2 = ak
Veff(r)

F2(r)
− (k + 1)ak+1

F ′(r)
F(r)

,

(56)

where, with Eq. (47),

a0 = lim
r→rh

λ(r) =
√

γ + 1

2
√

2
√

γ − 1
,

a1 = 0. (57)

Eq. (53), solved with the boundary conditions (57), has solu-
tions:

λ(r) =
√

γ + 1

2
√

2
√

γ − 1

[
1 + 1

2

Veff(r)

F2(r)
(r − rh)

2

−1

6

Veff(r)

F2(r)

F ′(r)
F(r)

(r − rh)
3 + · · ·

]
. (58)

These conditions are used to allow for the numerical integra-
tion of λ(r) using RK methods, thus finding gc as a function
of r , that reproduces the black hole geometry. Afterward, it
will be necessary to explicitly express gc as a function of
the longitudinal coordinate x of the de Laval nozzle. This is
implemented by using Eq. (50), and subsequently employ-
ing the results in Eq. (44) to plot the profile of the nozzle.
The results heretofore obtained in this section regard arbi-
trary static spherically symmetric spacetimes, for complete-
ness. Hereon we will take the GD-extended hairy Reissner–
Nordström metric (22) and implement the analog gravita-
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tional system, analyzing the properties of the analog GD-de
Laval nozzle and addressing the QN mode frequencies as
well.

4 de Laval nozzle analog of GD-extended
Reissner–Nordström black hole

Having established the analogy between a de Laval noz-
zle and the GD-extended Reissner–Nordström metric (22),
acoustic experiments are not only restricted to the qualitative
point of view but in addition, up to the experimental accu-
racy, numerical exactness can be probed by observing and
measuring features of the fluid propagation in the de Laval
nozzle. Since QN modes are governed by the wave equa-
tion (30) on the gravity side, and by Eq. (39) for acoustic black
hole, the numerical correspondence means that the effective
potential encoding perturbations of some aerodynamic sys-
tem match the effective potential associated with the GD-
extended hairy Reissner–Nordström black hole. Therefore
sound waves propagating in a de Laval nozzle provide a phys-
ical system in the laboratory with the same effective potential
as the GD-extended Reissner–Nordström black hole.

4.1 Features of the analog de Laval nozzle

To solve Eq. (53) numerically, combinations of the GD
parameters α, �, and Q in the extended Reissner–Nordström
metric (22), and the multipole orbital quantum number l in
Eq. (28), must be chosen. Reference [52] showed that the
GD hairy parameter � is proportional to α. Therefore one can
assume, without loss of generality, that � = 2α for instance.
Hence we will analyse the properties of the de Laval nozzle
as a function of the GD hairy parameters α, Q, for the wave
modes of degree l = 0 and l = 1. After, when the QN modes
are calculated and related to the nozzle quality factor, mul-
tipole values l = 2, . . . , 6 will be also taken into account,
since they are relevant for the analysis of the overtones. Nev-
ertheless, to investigate the influence of the GD hairy charges
on the profiles of the pressure, Mach number, nozzle shape,
temperature, density, and thrust coefficient of the nozzle, the
s- and p-wave modes are already sufficient. When Eqs. (22)
and (28) are analysed, the range α > 1 does not provide
a reasonable set of solutions, because either it has no real
event horizon radius rh or the effective potential Veff is not
well-behaved. Therefore in all plots that follow, we vary Q
with small values of α < 1 fixed. After, we vary α, for the
fixed value Q = 1. Each set of plots is implemented for the
s-wave modes (l = 0) and the p-wave modes (l = 1). In all
plots that follow in Figs. 1, 2, 3, 4, 5, 6 and 7, the value x = 0
corresponds to the nozzle throat centre, corresponding to the
analog event horizon.

Figure 1 displays the effective potential as a function of
the longitudinal direction of the de Laval nozzle, for sev-
eral choices of GD parameters α and Q. Figure 1a shows
the effective potential for α = 0.1 and the s-wave modes
l = 0, for several values of Q, whereas Fig. 1b exhibits
the case for α = 0.5. In these figures, for all values of
Q � 0.55, the potential is essentially the same for both the
values α = 0.1 and α = 0.5, showing an insignificant influ-
ence of the GD hairy parameterα on the effective potential for
the range Q � 0.55, at least for the s-wave modes. For val-
ues Q = 1, the effective potential reaches a slightly higher
peak Veff(x) = 0.0316 at x = 4.03 in Fig. 1a, whereas
Veff(x) = 0.0331 at x = 2.51, in Fig. 1b. For all values
Q � 0.55, in Fig. 1a–d we verify numerically that the higher
the values of the GD parameter α, the higher the effective
potential peak is, and it occurs in smaller distances along
the nozzle longitudinal axis. An analogous behaviour can be
realized in Fig. 1c, d, now regarding the p-wave mode l = 1,
with the only substantial difference residing in the fact that
the difference between the effective potential for Q = 0.1
and Q = 0.4 is slightly higher for the p-wave mode than for
the s-wave mode. Besides, for the p-wave mode and Q = 1,
the effective potential has two inflection points for α = 0.1,
whereas it has one inflection point for α = 0.5. However,
for the p-wave mode and Q = 1, the peak of the effective
potential is the same for both α = 0.1 and α = 0.5, with
the only difference that occurs at different values of x . It is
straightforward to see that the GD parameter α does not have
the same influence on the results as Q. Although the effective
potential for l = 1 has significant differences for the cases
α = 0.1 and α = 0.5 for the specific case Q = 1, respec-
tively in Fig. 1c, d, the behavior of the effective potential for
Q = 0.1 and Q = 0.4 is practically equal irrespectively the
value of α is. However, for Q = 1 for asymptotically high
values of x , the effective potential profile is slightly higher
for α = 0.1, but still quite similar, following a similar pat-
tern. The parameter α only changes the curve substantially
when Q = 1 and it is not linearly correlated to the point
of inflection, according to Fig. 1e, f. It is also worth men-
tioning that all the peaks of the effective potential in Fig. 1e
are higher than the respective peaks for fixed values of α in
Fig. 1f, indicating that the quantum azimuthal number l alters
the peak configuration.

As the corresponding effective potential governing of per-
turbations in a de Laval nozzle emulates the potential for per-
turbations for the GD-extended hairy Reissner–Nordström
black hole (22), the specific shape of the de Laval nozzle is a
useful quantity that can be obtained. The results are displayed
in Fig. 2.

Figure 2 shows the nozzle shape for a reasonable range
of GD-hairy parameters. The nozzle shape determines how
much thermal energy may be converted into kinetic energy.
The wider the slope of the nozzle shape is, the faster the fluid
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Fig. 1 Effective potential as a function of the longitudinal direction of the de Laval nozzle, for the GD-extended hairy Reissner–Nordström metric
(22)

flows throughout the nozzle, generating more thrust. Focus-
ing on Fig. 2f, even though the effective potential is roughly
similar for different values of α, the eccentricity seems to
have an important role, as the farther from rh , the less ener-

getic flow Veff provides. Figure 2a, b show that for the l = 0
s-wave mode, the influence of the hairy parameter α is almost
null, for each fixed value of Q. Instead, the l = 1 p-wave
mode evinces an important influence of the hairy parame-
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Fig. 2 Nozzle shape as a function of the longitudinal direction of the de Laval nozzle, for the GD-extended hairy Reissner–Nordström metric (22)

ter α: for Q = 1, the nozzle is wider for α = 0.5 than for
α = 0.1, along the longitudinal direction, corresponding to a
lower focal length and lower eccentricity. On the other hand,
the opposite behaviour is verified to the values Q = 0.1 and
Q = 0.4, with the nozzle presenting a higher eccentricity for

higher values of α, as illustrated in Fig. 2c, d. Now, fixing
the value Q = 1, the l = 0 s-wave mode presents a very
slight variation when α varies in the range α ∈ [0.1, 0.8],
as shown in Fig. 2e, although the nozzle shapes of higher
eccentricity are attained for higher values of α. The case of
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the l = 1 p-wave 2f presents a noticeable variation of the
nozzle eccentricity with α varying.

Now the Mach numberM can be addressed and analysed as
a function of the longitudinal direction of the de Laval nozzle.
Subsonic propagating fluid flows can reach sonic velocities
at the nozzle throat, corresponding to M = 1, constituting
the so-called choked flow. Going through the longitudinal
direction along the nozzle, its cross-sectional area gets larger
and the gas expands, making the flow velocity rise to super-
sonic patterns, with M > 1. Sound waves are not allowed
to propagate in the reverse direction. The transition between
subsonic and supersonic flows can be seen in all the plots in
Fig. 3, around M � 1, characterizing the nozzle sonic point
for sound waves throughout the fluid flow. The multipole l
drastically changes the amount of effective potential, and so
the de Laval nozzle aerodynamical properties are dictated by
the Mach number, as seen in Fig. 3. Figure 3a, b depict the
Mach number for the s-wave mode. For α = 0.1 fixed, Fig. 3a
shows that the lower the value of the charge Q, the faster the
value of the Mach number increases, up to the sonic point at
the nozzle throat. After the throat, the Mach number increases
almost indistinctly for Q = 0.1 and Q = 0.4 up to x ≈ 7.5.
At this point, the Mach number labelled by the green curve
corresponding to Q = 0.4 increases slightly faster than the
one related to Q = 0.1. In the point x ≈ 7.5 along the longi-
tudinal direction of the de Laval nozzle, the Mach number for
Q = 1 increases slower than the Mach number for Q = 0.1
and Q = 0.4 up to x ≈ 7.5. After that, the rate of increment
of the Mach number for Q = 1 escalates. This phenomenon
also happens for α = 0.5 fixed, Fig. 3d, however at lower
paces. It reflects the fact that increasing the hairy parame-
ter α attenuates the rate of increment of the Mach number,
when different values of the black hole charge are taken into
account.

Figure 3c, d display the Mach number for the p-wave
mode. For α = 0.1 fixed, Fig. 3c illustrates a faster incre-
ment of the Mach number for lower values of the charge Q,
up to the sonic point. After it along the longitudinal direction,
the Mach number increases almost indistinctly for Q = 0.1
and Q = 0.4 up to x ≈ 4.4, wherefrom the Mach num-
ber labelled by the green curve corresponding to Q = 0.4
increases slightly faster than the one related to Q = 0.1.
Along the longitudinal direction, the Mach number for Q = 1
increases at a slower rate when compared to the Mach num-
ber profile for Q = 0.1 and Q = 0.4 up to x ≈ 8.2. After this
crossover point, the rate of increment of the Mach number
for Q = 1 is higher, when compared to the other values of
Q here reported. Differently of the s-wave mode, this phe-
nomenon does not occur for α = 0.5, as shown in Fig. 3d,
showing that the Mach number is practically invariant up to
x � 2.1. However, at the crossover point x � 4.2, the influ-
ence of the charge Q steps in and one can realize that the
rate of increment of the Mach number for Q = 1 is higher

than the one for Q = 0.4, which by its turn is slightly higher
than the one for Q = 0.1. Therefore, for the p-wave mode,
different values of α produce a distinct profile. Now Fig. 3e,
f portray the Mach number as a function of the longitudinal
direction of the de Laval nozzle, for the GD-extended hairy
Reissner–Nordström metric (22), for Q = 1 fixed, respec-
tively for l = 0 and l = 1. The s-wave mode in Fig. 3e
show a homogeneous profile for values of α ∈ [0.1, 0.8].
Before reaching the sonic point, the Mach number increases
faster for lower values of α and it has a marginally bigger
magnitude for higher values of α. Beyond the nozzle throat,
corresponding to the sonic point, the Mach number, for the
value α = 0.8, attains lower values when compared to other
values of α up to the crossover point x � 17.4, at which it
reaches the highest values, compared to other values of α. On
the other hand, despite the Mach number increasing faster for
lower values of α up to the sonic point, for the p-wave mode
in Fig. 3f and it has a slightly bigger magnitude for higher
values of α, beyond the sonic point the Mach number starts
to vary substantially for different values of α = 0.8 and there
is no crossover point.

In what follows the plots in Fig. 4 show the pressure rela-
tive to total quantities representing the thermodynamic state
of the reservoir. As the gas exits the de Laval nozzle throat,
the increment in the area permits it to undergo a throttling
Joule–Thomson-type expansion, wherein the gas irreversibly
expands at supersonic speeds from high to low pressure,
thrusting the velocity of the mass flow beyond sonic speed
without a considerable change in kinetic energy. Figure 4a
shows the relative pressure as a function of the longitudinal
direction of the nozzle, for the GD-extended hairy Reissner–
Nordström metric (22), for the s-wave mode, for α = 0.1 and
three different values of Q. The pressure profile is almost
equal for the values Q = 0.1 and Q = 0.4, however, the
relative pressure is lower for Q = 1 up to the nozzle throat,
starting to attain higher values after the sonic point when
compared to Q = 0.1 and Q = 0.4. For all values of Q
addressed, the sonic point is an inflection point for the rel-
ative pressure. These properties also hold for α = 0.5 in
Fig. 4b for the s-wave mode, with the only difference com-
prising the fact that the relative pressure profiles are quite
similar for all values of Q analysed. Figure 4c shows the rel-
ative pressure as a function of the longitudinal direction of
the nozzle, for the GD-extended hairy Reissner–Nordström
metric (22), for the p-wave mode, for α = 0.1 and three
different values of Q. The pressure profile is again almost
equal for the values Q = 0.1 and Q = 0.4, however, the
relative pressure is lower for Q = 1 up to the nozzle throat,
starting to attain higher values after the sonic point when
compared to Q = 0.1 and Q = 0.4. Similarly to the s-wave
mode, the sonic point is an inflection point for the relative
pressure, irrespectively the value of Q. These properties also
hold for α = 0.5 in Fig. 4d for the p-wave mode, being the
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Fig. 3 Mach number as a function of the longitudinal direction of the de Laval nozzle, for the GD-extended hairy Reissner–Nordström metric (22)
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Fig. 4 Relative pressure as a function of the longitudinal direction of the de Laval nozzle, for the GD-extended hairy Reissner–Nordström metric
(22)
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relative pressure profiles quite similar for all values of Q
analysed. In all cases here discussed, as the gas enters the
de Laval nozzle moving at subsonic velocities, as the cross-
sectional area contracts along the nozzle, the gas is forced
to accelerate until the velocity becomes sonic at the nozzle
throat, where the cross-sectional area is the smallest. From
the throat the cross-sectional area then increases along the
longitudinal direction, letting the gas expand and the axial
velocity become progressively more supersonic. Figure 4e, f
show the relative pressure behavior for different values of α,
with Q = 1 fixed, for the l = 0 and l = 1. For all the six plots
in Fig. 4, the relative pressure is asymptotically vanishing for
x � 1 and nearly unit for x → −∞. One can conclude that
the de Laval nozzle will only choke at the throat if the pres-
sure and mass flow through the nozzle are sufficient to reach
sonic speeds. Otherwise, no supersonic flow can be achieved,
and it will act as a Venturi tube. It demands that the entry pres-
sure to the de Laval nozzle be significantly higher than the
ambient one or, equivalently, that the stagnation pressure of
the jet must be higher than the ambient back pressure. The
relative pressure profiles in Fig. 4 are also relevant to deter-
mine the exhaust velocity at the nozzle exit, ve, out of the de
Laval nozzle, generating thrust as

ve =
⎡
⎣ RT

μ

2γ

γ − 1

⎡
⎣1 −

(
p0

p

) γ−1
γ

⎤
⎦
⎤
⎦

1/2

, (59)

where μ is the molecular weight of the gas under scrutiny.
Having the profiles of the relative pressure appearing in
Eq. (59) in Fig. 4a–f for the GD-extended hairy Reissner–
Nordström metric, the influence of the GD hairy parameters
α and Q in the exhaust velocity can be therefore read off Eq.
(59).

Now Fig. 5 shows the relative temperature as a function
of the longitudinal direction of the de Laval nozzle, for the
GD-extended hairy Reissner–Nordström metric (22).

Figure 5a shows the relative temperature as a function of
the longitudinal direction of the nozzle, for the GD-extended
hairy Reissner–Nordström metric (22), for the s-wave mode,
for α = 0.1 and distinct values of Q. The relative tempera-
ture profile is almost equal for all the values of Q analysed.
Nevertheless, the relative temperature is marginally lower
for Q = 1 up to the nozzle throat, starting to reach higher
values after the sonic point, when compared to Q = 0.1
and Q = 0.4, up to the crossover point x � 6.3. From that
point on, the relative temperature is lower for Q = 1 and
also vanishes asymptotically at a lower rate. The analysis
of the s-wave mode, for α = 0.5 in Fig. 5c is quite similar,
with the only substantial difference that the crossover point is
x � 4.0. The p-wave mode analysis emulates the s-wave one
qualitatively, with different crossover points, respectively for
α = 0.1 and α = 0.5. On the other hand, Fig. 5e illustrates
the relative temperature for the s-wave mode for Q = 1

fixed. Although different values of the GD-hairy parameter
α present slightly different profiles near the sonic point and
their asymptotic values are essentially the same, higher val-
ues of α have dominant temperature after the nozzle throat,
x = 0, up to x � 17.2. For x � 17.2, then the relative tem-
perature becomes indistinct for different values of α. Fig-
ure 5f, showing the l = 1 mode, is qualitatively similar to
Fig. 5e, for the l = 0 mode, with the main difference com-
prising the fact that the relative temperatures, for different
values of the hairy parameter α, are drastically lower along
the nozzle longitudinal direction, in general, for the p-wave
mode.

The plots in Fig. 6 depict the relative density as a function
of the longitudinal direction of the de Laval nozzle, for the
GD-extended hairy Reissner–Nordström metric (22). All the
profiles in Fig. 6 mimic the relative pressure profiles, respec-
tively in the plots in Fig. 4. These are the quantities aimed
to be measured in a laboratory. Reinforcing the discussed
behaviour for the multipole parameter l, Fig. 5 shows that
the fluid flow for the s-wave mode (l = 0), by the end of
the de Laval nozzle still has 15.0% the reservoir tempera-
ture, whereas the fluid flow for the p-wave mode (l = 1), in
the same point, has about 0.9% of the reservoir temperature.
This temperature variation is converted into thrust and can be
well used in comparing the QN modes. The analysis of the
Figs. 4 and 6 show that even though the shapes of the nozzles
are different, the different gravitational perturbations from
metric Eq. (22), with the same multipole l, produce almost
the same sound wave in an analog de Laval nozzle.

The thrust coefficients calculated for all the nozzles are
shown in Fig. 7. The efficiency of the nozzle in converting
thermal energy into kinetic energy is related to the thrust
coefficient, CF , defined as

CF = Fthrust
p0A�

, (60)

where the thrust can be described as [86]:

Fthrust = p0A�γ

√
2

γ − 1

(
2

γ + 1

) γ+1
2γ−2

⎡
⎣1 −

(
p

p0

) γ−1
γ

⎤
⎦

1/2

+Ae(pe − pamb), (61)

where pe denotes the pressure at which the gas exits the de
Laval nozzle, pamb stands for the ambient pressure, and Ae

denotes the area of the nozzle endpoint.
The thrust coefficient estimates the force that is ampli-

fied by the expansion of fluid as it flows through the nozzle,
compared to the force triggered if the compression chamber
were connected only to the convergent side and throat, but
not to the divergent one. Dividing the equation by p0A� and
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Fig. 5 Relative temperature as a function of the longitudinal direction of the de Laval nozzle, for the GD-extended hairy Reissner–Nordström
metric (22)
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Fig. 6 Relative density as a function of the longitudinal direction of the de Laval nozzle, for the GD-extended hairy Reissner–Nordström metric
(22)
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considering the nozzle in a vacuum, one obtains

CF (x) = γ

√
2

γ − 1

(
2

γ + 1

) γ+1
2γ−2

⎡
⎣1 −

(
p(x)

p0

) γ−1
γ

⎤
⎦

1/2

+A(x)

A�

p(x)

p0
(62)

Again we use the area A and the pressure measured in units
of the throat cross-sectional area, A�, and total pressure, p0,
respectively, in such a way that A/A� �→ A and p/p0 �→ p.
The thrust coefficient in de Laval nozzles represents the effi-
ciency of throwing gases out of the nozzle, measuring the de
Laval nozzle capacity to turn internal pressure into velocity at
the nozzle exit. A higher value of the thrust coefficient com-
plies with a more effective performance of the de Laval noz-
zle. For the s-wave case in Fig. 7a, c, the asymptotic values
of the thrust coefficient are essentially the same for Q = 0.1
and Q = 0.4, for l = 0. The case Q = 1 has a signifi-
cant change for values in the range x � 5.0: for α = 0.1,
Fig. 7a, the thrust coefficient has a steeper ascent with an
inflection point occurring at x = 3.2, whereas its inflection
point occurs at x = 1.2 for Fig. 7c, for α = 0.5. Never-
theless, their asymptotic values are quite similar, comparing
fixed values of Q respectively for α = 0.1 and α = 0.5. For
Q = 1, for asymptotically large values of x the thrust coeffi-
cient reaches a unique plateau, irrespectively the value of the
GD hair parameter α, as shown in Fig. 7e, f, respectively for
the s- and p-waves. We can numerically check that a sim-
ilar plateau occurs for asymptotically large values of x , for
fixed but arbitrary values of α � 1, for l = 1, as displayed
in Fig. 7c, d, although the behaviour of the thrust coefficient
along the longitudinal coordinate along the nozzle is less uni-
form for α = 0.1 than for α = 0.5, respectively. For α = 0.1,
the p-wave mode reaches higher values faster for Q = 0.1
and Q = 0.4, when compared to Q = 1. Figure 7e, f show
the profile of the thrust coefficient for several values of α,
respectively for the s- and p-wave modes.

4.2 QN modes and frequencies

Having addressed the main features of the analog de Laval
nozzle, the QN mode frequencies can be calculated. A com-
plex QN frequency ωn characterises a QN mode, appearing
in the Schrödinger-like equation (30), in the gravity side, and
in Eq. (39), regarding the aerodynamical analog. Although
deriving the QN modes analytically can be an extremely intri-
cate task, some approximation techniques can be employed.
Among them, the Mashhoon procedure will be used hereon,
due to clarity and reasonability [87]. The relevant QN bound-
ary conditions for asymptotically flat black holes, as the one
here investigated, are consistent from the astrophysical point
of view [88]. Most of the complicacy involved in calculat-

ing QN modes of several black holes arises from the fact
that the effective potential slowly decays when it approaches
the radial infinity asymptotically. Due to a branch cut, GWs
backscatter off the effective potential, producing backward
tails. The Mashhoon method avoids ill features and QN mode
frequencies can be accurately computed by a Pöschl–Teller
effective potential, which decays exponentially for r� → ∞,

VPT(r�) = V0

cosh2[γ(r� − r�0)]
, (63)

where V0 = V (r0) represents the height of the potential and

γ =
√

1

2V0
lim
r→r0

d2V

dr2
�

. (64)

The boundary conditions for the Schrödinger-like equation
are compatible with a vanishing wave function at the bound-
ary. Hence the QN modes are reduced to the bound states
for an inverse (V �→ −V ) effective potential. The QN mode
frequencies read [87–89]

ωn =
√
V0 − γ2

4
+ iγ

(
n + 1

2

)
. (65)

The natural number n in Eq. (65) is the overtone [88,89].
Table 1 displays the QN mode frequencies for the GD-
extended hairy Reissner–Nordström metric, for several val-
ues of l and n, for different values of the GD hairy parameter
α regulating the tensor-vacuum. For fixed values of α, the
higher the value of l, the greater Re(ωn) is. For fixed values
of the multipole l, corresponding to fixed values of Re(ωn),
the higher the overtone and the greater Im(ωn) are. For both
l and n simultaneously fixed, the higher the value of α > 0,
the lower both Re(ωn) and Im(ωn) are.

Since the value α = 0 corresponds to the well-known
Schwarzschild case, to avoid redundancy with the literature
it is not listed in Table 1. Compared to the Schwarzschild case
and even to other GD-black hole solutions, as the one in Ref.
[59], the quality factor for the GD-extended hairy Reissner–
Nordström metric (22) is the largest for higher overtones,
indicating the influence of the GD hairy parameters here
are consonant with experimental aspects of the analog de
Laval nozzle. The QN mode frequencies of GD-extended
hairy Reissner–Nordström metric have a noticeable deviation
when compared to the Schwarzschild QN mode frequencies,
increasing for greater values of n. Figures 8 and 9 depict the
real and imaginary values of the QN mode frequencies for
several values of l, for different overtones, respectively for
α = 0.1 and α = 0.5.

As posed in Ref. [72], the nozzle quality factor qn ∼
Re(ωn)/Im(ωn) is a quantity that is proportional to the num-
ber of oscillation cycles in the damping process. Since the
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Fig. 7 Thrust coefficient as a function of the longitudinal direction of the de Laval nozzle, for the GD-extended hairy Reissner–Nordström metric
(22)
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Table 1 QN modes frequencies (2Mω) for the GD-extended hairy Reissner–Nordström metric, for varying value of α and Q = 1, for several
overtones and quantum azimuthal numbers l = 0, 1, . . . , 6

l n α = 0.1 α = 0.2 α = 0.4 α = 0.6 α = 0.8

0 0 0.2802 + 0.2192i 0.2802 + 0.2221i 0.2807 + 0.2255i 0.2826 + 0.2221i 0.2814 + 0.2156i

1 0 0.7599 + 0.1918i 0.7536 + 0.1964i 0.7501 + 0.2011i 0.7581 + 0.1981i 0.7678 + 0.1872i

1 1 0.7599 + 0.5753i 0.7536 + 0.5893i 0.7501 + 0.6033i 0.7581 + 0.5942i 0.7678 + 0.5617i

2 0 1.2470 + 0.1870i 1.2361 + 0.1919i 1.2299 + 0.1967i 1.2437 + 0.1938i 1.2606 + 0.1825i

2 1 1.2470 + 0.5609i 1.2361 + 0.5756i 1.2299 + 0.5900i 1.2437 + 0.5814i 1.2606 + 0.5474i

2 2 1.2470 + 0.9349i 1.2361 + 0.9593i 1.2299 + 0.9833i 1.2437 + 0.9690i 1.2606 + 0.9123i

3 0 1.7375 + 0.1855i 1.7222 + 0.1904i 1.7135 + 0.1953i 1.7330 + 0.1925i 1.7568 + 0.1810i

3 1 1.7375 + 0.5565i 1.7222 + 0.5713i 1.7135 + 0.5859i 1.7330 + 0.5775i 1.7568 + 0.5430i

3 2 1.7375 + 0.9275i 1.7222 + 0.9522i 1.7135 + 0.9765i 1.7330 + 0.9625i 1.7568 + 0.9050i

3 3 1.7375 + 1.2985i 1.7222 + 1.3331i 1.7135 + 1.3671i 1.7330 + 1.3475i 1.7568 + 1.2669i

4 0 2.2295 + 0.1849i 2.2097 + 0.1898i 2.1985 + 0.1947i 2.2236 + 0.1919i 2.2544 + 0.1804i

4 1 2.2295 + 0.5546i 2.2097 + 0.5695i 2.1985 + 0.5842i 2.2236 + 0.5758i 2.2544 + 0.5411i

4 2 2.2295 + 0.9244i 2.2097 + 0.9492i 2.1985 + 0.9736i 2.2236 + 0.9597i 2.2544 + 0.9018i

4 3 2.2295 + 1.2942i 2.2097 + 1.3289i 2.1985 + 1.3630i 2.2236 + 1.3436i 2.2544 + 1.2626i

4 4 2.2295 + 1.6639i 2.2097 + 1.7086i 2.1985 + 1.7525i 2.2236 + 1.7275i 2.2544 + 1.6233i

5 0 2.7221 + 0.1846i 2.6978 + 0.1895i 2.6841 + 0.1944i 2.7150 + 0.1917i 2.7526 + 0.1800i

5 1 2.7221 + 0.5537i 2.6978 + 0.5686i 2.6841 + 0.5833i 2.7150 + 0.5750i 2.7526 + 0.5401i

5 2 2.7221 + 0.9228i 2.6978 + 0.9477i 2.6841 + 0.9721i 2.7150 + 0.9583i 2.7526 + 0.9002i

5 3 2.7221 + 1.2919i 2.6978 + 1.3267i 2.6841 + 1.3609i 2.7150 + 1.3416i 2.7526 + 1.2603i

5 4 2.7221 + 1.6610i 2.6978 + 1.7058i 2.6841 + 1.7498i 2.7150 + 1.7249i 2.7526 + 1.6204i

5 5 2.7221 + 2.0302i 2.6978 + 2.0849i 2.6841 + 2.1386i 2.7150 + 2.1083i 2.7526 + 1.9805i

6 0 3.2151 + 0.1844i 3.1864 + 0.1894i 3.1702 + 0.1942i 3.2067 + 0.1915i 3.2512 + 0.1799i

6 1 3.2151 + 0.5531i 3.1864 + 0.5681i 3.1702 + 0.5827i 3.2067 + 0.5745i 3.2512 + 0.5396i

6 2 3.2151 + 0.9219i 3.1864 + 0.9468i 3.1702 + 0.9712i 3.2067 + 0.9575i 3.2512 + 0.8993i

6 3 3.2151 + 1.2906i 3.1864 + 1.3255i 3.1702 + 1.3597i 3.2067 + 1.3405i 3.2512 + 1.2590i

6 4 3.2151 + 1.6594i 3.1864 + 1.7042i 3.1702 + 1.7482i 3.2067 + 1.7234i 3.2512 + 1.6188i

6 5 3.2151 + 2.0281i 3.1864 + 2.0829i 3.1702 + 2.1367i 3.2067 + 2.1064i 3.2512 + 1.9785i

6 6 3.2151 + 2.3969i 3.1864 + 2.4616i 3.1702 + 2.5252i 3.2067 + 2.4894i 3.2512 + 2.3382i

QN ringing is everywhere concealed by noise after a few
damping periods, it is crucial to engineer a de Laval noz-
zle that produces QN modes compatible with higher values
of the quality factor, to effectively detect the QN ringing. In
what concerns Figs. 8, 9 and 10, we can analyse the spectrum
of QN modes that is more favourable to providing a quality
factor that is appropriate for experimental apparatuses.

Figure 10 depicts the QN modes for the GD-extended
hairy Reissner–Nordström metric, with a large superposi-
tion of QN modes for increasing values of the overtones n,
contrasted to the Schwarzschild QN mode frequencies, for
several values of the GD hairy parameter α regulating the
tensor-vacuum. For each fixed value of n, the quality factor
increases as a function of the multipole l to a great extent.
For fixed values of l, the higher the overtone, the lower the
quality factor is. Interestingly, for fixed values of l and n, the
higher the GD hairy charge α, the higher the quality factor
of the nozzle is. In this way, the QN ringing can be better
detected for higher values of the GD parameter α, for each
fixed value of l in all overtones.

Fig. 8 QN modes frequencies, for several overtones, for Q =
0.1, 0.4, 1.0 and α = 0.1. The dotted vertical lines correspond, from
the left to the right, to l = 0, 1, . . . , 6 and the first point on the left
corresponds to the s-wave l = 0 for n = 0
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Fig. 9 QN modes frequencies, for several overtones, for Q =
0.1, 0.4, 1.0 and α = 0.5. The dotted vertical lines correspond, from
the left to the right, to l = 0, 1, . . . , 6, and the first point on the left
corresponds to the s-wave l = 0 for n = 0

Fig. 10 QN modes frequencies, for several overtones. The coloured
lines for a given pair (l, n) correspond to a fixed α, for Q = 1. The dotted
vertical lines correspond, from the left to the right, to l = 0, 1, . . . , 6,
and the first point on the left corresponds to the s-wave l = 0 for n = 0

5 Conclusions

Acoustic black holes can be realized by stable transonic
fluid flows in a de Laval nozzle. GD-extended Reissner–
Nordström black hole solutions were used here to define
the properties of an analog de Laval nozzle in the labora-
tory. The QN modes and frequencies of sound waves in the
analog de Laval nozzle were then computed and that could
provide ways of testing experimentally potential features of
the corresponding GD-extended black holes. In fact, the wave
equation for gravitational perturbations can be mapped into
the wave equation of the aerodynamical systems with sim-
ilar effective potentials. It was then shown how the values
of the black hole hairy parameters α and Q determines the
nozzle shape and consequently affects the pressure, Mach
number, temperature, density, and the thrust coefficient, for

both s- and p-wave modes. The QN modes were finally com-
puted for different values of the parameters α and Q, for sev-
eral overtones, and compared to the Schwarzschild case. The
quality factor of the nozzle was also analysed in terms of the
QN mode frequencies. The QN modes correspond to spin-
0 perturbations. Any realistic GW, corresponding to spin-2
perturbations, have no analog gravity in the nozzle.

A possible extension of the present work would be to
consider analog models of GD-extended black holes with
rotation. This will require finding a way to map the gravi-
tational perturbations into quasi-one-dimensional transonic
fluid flows that can be realised in a laboratory.
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Appendix A: Analytical solution for λ(r)

From Eq. (56), written again below, our goal is to expand
λ(r) by the Frobenius method.

(n + 2)(n + 1)an+2 = Veff(r)

F(r)2 an

−F ′(r)
F(r)

(n + 1)an+1 (A1)
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For a convergent series, one can separate it into even and odd
powers, as:

λ(r) =
∞∑
k=0

ak(r − rh)
k

= a0 + a1(r − rh) +
∞∑
k=1

a2k(r − rh)
2k

+
∞∑
k=1

a2k+1(r − rh)
2k+1, (A2)

With initial conditions (57), the series can be expanded as:

ak = (−1)kV a0

k! Fk

2
3
4
5
6
7
8
9

10
11
...

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
F ′

V + F ′2
F ′3 + 2VF ′

V 2 + F ′4 + 3VF ′2
F ′5 + 4VF ′3 + 3V 2F ′

V 3 + F ′6 + 5VF ′4 + 6V 2F ′2
F ′7 + 6VF ′5 + 10V 2F ′3 + 4V 3F ′

V 4 + F ′8 + 7VF ′6 + 15V 2F ′4 + 10V 3F ′2
F ′9 + 8VF ′7 + 21V 2F ′5 + 20V 3F ′3 + 5V 4F ′

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

position k−2

, for k ≥ 2.

For k even, it wits

a2k = (−1)2kV a0

(2k)! F2k

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
V + F ′2

V 2 + F ′4 + 3VF ′2
V 3 + F ′6 + 5VF ′4 + 6V 2F ′2

V 4 + F ′8 + 7VF ′6 + 15V 2F ′4 + 10V 3F ′2
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

position (k−1)

, for k ≥ 2 even,

whereas for k odd it yields:

a2k+1 = (−1)2k+1a0VF ′

(2k + 1)! F2k+1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
F ′2 + 2V

F ′4 + 4VF ′2 + 3V 2

F ′6 + 6VF ′4 + 10V 2F ′2 + 4V 3

F ′8 + 8VF ′6 + 21V 2F ′4 + 20V 3F ′2 + 5V 4

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

position (k−1)

, for k ≥ 2 odd.

Hence, the equations for each parity of k can be obtained.

For even coefficients, one can write

a2k = (−1)2kV a0

(2k)! F2k

k−1∑
n=0

V nF ′2k−2n−2C even
n (k − 1) (A3)

where C even
n (x) reads

C even
n (x) = lim

m→x

(−1)n�(2n − 2m)

�(n + 1)�(n − 2m)
, for x ≥ n. (A4)

It is worth illustrating the lowest degree terms
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C even
0 (x) = 1

C even
1 (x) = (2x − 1)

C even
2 (x) = (x − 1)(2x − 3)

C even
3 (x) = (x − 2)(2x − 5)(2x − 3)/3

C even
4 (x) = (x − 3)(x − 2)(2x − 7)(2x − 5)/6

C even
5 (x) = (x − 4)(x − 3)(2x − 9)(2x − 7)(2x − 5)/30

...

Therefore, the coefficient a2k reads

a2k = a0

(2k)!
Veff

F ′2

(F ′

F
)2k k−1∑

n=0

(
Veff

F ′2

)n

C even
n (k − 1).

(A5)

Now, for k odd, following a similar methodology, the coeffi-
cient a2k+1 wits

a2k+1 = −a0

(2k + 1)!
Veff

F ′2

(F ′

F
)2k+1 k−1∑

n=0

(
Veff

F ′2

)n

C odd
n (k − 1), (A6)

where

C odd
n (x) = lim

m→x

(−1)n�(2n − 2m − 1)

�(n + 1)�(n − 2m − 1)
, for x ≥ n,

(A7)

whose lowest degree terms read

C odd
0 (x) = 1

C odd
1 (x) = 2x

C odd
2 (x) = (x − 1)(2x − 1)

C odd
3 (x) = (x − 2)(x − 1)(2x − 3) 2/3

C odd
4 (x) = (x − 3)(x − 2)(2x − 5)(2x − 3)/6

C odd
5 (x) = (x − 4)(x − 3)(x − 2)(2x − 7)(2x − 5) 2/30

...

Putting these results together yields

λ(r)

a0
= 1 +

∞∑
k=1

{[
1

(2k)!
Veff

F ′2

(F ′

F
)2k k−1∑

n=0

(
Veff

F ′2

)n

×C even
n (k − 1)

]
(r − rh)

2k−

−
[

1

(2k + 1)!
Veff

F ′2

(F ′

F
)2k+1 k−1∑

n=0

(
Veff

F ′2

)n

×C odd
n (k − 1)

]
(r − rh)

2k+1
}

. (A8)

To make the construction of Eq. (A8), Tables 2 and 3 contain
values of C even

n (x) and C odd
n (x):

A test of convergence can proceed, assuming that Veff =
F = F ′ = 1. Therefore, the series converges if

lim
x→∞

1

(2x)!
x∑

n=0

C even
n (x) = 0, (A9)

lim
x→∞

1

(2x + 1)!
x∑

n=0

C odd
n (x) = 0. (A10)

Equations (A9, A10) can be numerically verified, as

x 1
(2x)!

∑x
n=0 C even

n (x) 1
(2x+1)!

∑x
n=0 C odd

n (x)

0 1 1
1 1 5.0 × 10−1

2 2.1 × 10−1 6.7 × 10−2

3 1.8 × 10−2 4.2 × 10−3

4 8.4 × 10−4 1.5 × 10−4

5 2.5 × 10−5 3.6 × 10−6

6 4.9 × 10−7 6.1 × 10−8

7 7.0 × 10−9 7.5 × 10−10

8 7.6 × 10−11 7.3 × 10−12

9 6.5 × 10−13 5.6 × 10−14

10 4.5 × 10−15 3.5 × 10−16

.

.

.
.
.
.

.

.

.
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Table 2 Values of C even
n (x)

x ↓ n → 0 1 2 3 4 5 6 7 8 9 10 . . .

0 1

1 1 1

2 1 3 1

3 1 5 6 1

4 1 7 15 10 1

5 1 9 28 35 15 1

6 1 11 45 84 70 21 1

7 1 13 66 165 210 126 28 1

8 1 15 91 286 495 462 210 36 1

9 1 17 120 455 1,001 1,287 924 330 45 1

10 1 19 153 680 1,820 3,003 3,003 1,716 495 55 1

.

.

.

Table 3 Values of C odd
n (x)

x ↓ n → 0 1 2 3 4 5 6 7 8 9 10 . . .

0 1

1 1 2

2 1 4 3

3 1 6 10 4

4 1 8 21 20 5

5 1 10 36 56 35 6

6 1 12 55 120 126 56 7

7 1 14 78 220 330 252 84 8

8 1 16 105 364 715 792 462 120 9

9 1 18 136 560 1,365 2,002 1,716 792 165 10

10 1 20 171 816 2,380 4,368 5,005 3,432 1,287 220 11

.

.

.

As we can see, it numerically converges.
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