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Abstract

We investigate the trace anomaly of a chiral fermion in dimensional regularization, considering in detail
the simplest case of coupling to an abelian gauge field. We apply the Breitenlohner-Maison/’t Hooft-
Veltman prescription for dealing with the chiral matrix y> and verify that no parity-odd term arises in
the trace anomaly. The issue treated here is analogous to that of a chiral fermion in curved spacetime,
discussed in recent literature. The advantage of having a simplified background minimizes the amount of
algebraic calculations and allows pinpointing better the subtle points carried by dimensional regularization.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The structure of the trace anomaly of a chiral fermion has been the focus of a recent debate.
The main issue concerns the presence or absence of a parity-odd term in the trace anomaly of a
chiral fermion in a curved background. While such a term was conjectured to be a possibility in
certain chiral theories [1], it is generically unexpected for the case of a Weyl fermion. However,
an explicit calculation performed in dimensional regularization seemed to indicate its presence
[2]. Several groups have been unable to verify that claim, either directly or indirectly, [3—8], and
so far the only confirmations [9—11] are from groups related to Ref. [2].
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We believe that the arguments and proofs on the absence of parity-odd terms in the trace
anomaly, discussed in the above papers and references therein, are sufficiently solid. However,
we find it important to clarify as much as possible the calculational details in support of general
arguments, as to debug them (in one sense or the other) from errors. This is particularly desirable
regarding the use of dimensional regularization. Dimensional regularization is notoriously subtle
in chiral theories. In the case of the trace anomaly of a Weyl fermion it has been used in [2]
and [8], with the latter presenting a critical assessment of the former, see also [12]. Here we
wish to offer a similar application of dimensional regularization in the simplified context of a
chiral fermion coupled to an abelian gauge field. The algebraic structure of the Feynman graphs
is simpler compared to the one arising from the coupling to gravity, and all terms entering the
trace anomaly can be computed by hand. The strategy of employing a simplified background
has already been considered in [13] (and [14] for the non-abelian case), where Pauli-Villars
regularization and heat kernel techniques were used to compute the trace anomaly for a Weyl
fermion coupled to a gauge field, thus proving the absence of parity-odd terms in that case. Here
we wish to apply dimensional regularization to the same problem, and check that result. We
report explicitly the technical details of the calculation in dimensional regularization, as they may
contribute to dispel doubts—present in the scientific community, see e.g. Ref. [15]—suggesting
that the issue is still unsettled.

One reason why a CP odd contribution to the trace anomaly cannot appear is related to the CP
invariance of the Weyl fermion lagrangian. If the regularization adopted could manifestly pre-
serve this symmetry, then the absence of CP odd terms in the trace anomaly would be assured.
This is the case discussed in ref. [13], were a regularization with Pauli-Villars fields with Ma-
jorana mass could manifestly preserve CP invariance. However, dimensional regularization does
not preserve chiral properties, and the result is not guaranteed a priori. However, as we shall see,
the use of the charge conjugation matrix C will help in proving the cancellation of the CP odd
terms in dimensional regularization.

In the following, we start by briefly reviewing the lagrangian of a Weyl fermion coupled to an
abelian gauge field and present the corresponding classical conservation laws. Then, we turn to
the perturbative calculations of the anomalies. We first review the well-known case of the chiral
anomaly to set the stage, and then turn to the calculation of the trace anomaly, showing that no
parity-odd term may arise. Finally, we check the Ward identities related to the conservation of
the stress tensor, to make sure that no gravitational anomaly is induced by dimensional regular-
ization. Our conventions follow those of Ref. [13] and are recapitulated in appendix A. We report
the main points of the Breitenlohner-Maison-’t Hooft-Veltman prescription in appendix B, while
computational details are collected in appendices C and D.

2. Lagrangian and classical conservations laws

A Weyl fermion A(x) coupled to an abelian gauge field A, (x) is described by the lagrangian
L=—)Dx ey

with Ip = y9D,,, where D, = 0, — i A, is the gauge covariant derivative Elcting on A. We have
taken XA to be left-handed, A = Pr A, while its Dirac conjugate satisfies A = A Pr, with chiral
projectors defined by

_1 5 _
Pr==|14+y"), Pr =

2 ().
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Chirality forbids a Dirac mass, while a Majorana mass is incompatible with the gauge symmetry.
The gauge current that couples to the abelian gauge field A, is given by

J4=iry®r €)]
and is conserved on-shell because of the gauge symmetry,
9,7 =0. “

It develops a well-known gauge anomaly at the quantum level.

The stress tensor can be obtained by coupling the theory to gravity through a vielbein ¢,“, and

defined by the functional derivative of the action S with respect to the vielbein, T, = é sisa .In
i

the flat space limit, dropping terms that vanish upon the use of the equations of motion, it takes
the form

T = %)_»(yagb + ybga)x 5)
<> <« <« <«
where D, = D, — D, and D, = 9, +iA,. It is manifestly symmetric and satisfies the equations
9T =—J,F* (6)
T¢ =0 7

which are valid on-shell. The first one is due to translational invariance, broken classically by the
background field A, with field strength F,, = 0,Ap — 0pA,4. It does not develop any quantum
anomaly. The second relation follows from the Weyl invariance in curved space and is related
to conformal invariance in flat space. It develops a trace anomaly. In the following, we want to
make sure that this trace anomaly does not contain any parity-odd contribution. Of course, egs.
(4), (6), (7) may be verified directly using the classical equations of motion of A and X.

Let us close this section with a few comments on CP invariance, which help in interpreting
our results on the trace anomaly, as mentioned in the introduction. The Weyl theory breaks parity,
as the parity transformation of a generic Dirac spinor ¥

Y D ) =0, B ) ®)
is incompatible with the chiral properties of the Weyl spinor A (with the constraint A = y°1).
Here x, = (t, —X), 1, is a phase that can be chosen to be either £1 or +i, and = iy¥ is the
matrix that sits in the definition of the Dirac conjugate spinor ({ = ¥’ 8, we follow the notations
spelled out in appendix A of [13]). However, one can combine it with charge conjugation, that
acts on a generic Dirac spinor as

C -
) — Yo )=nC¥" (x) ©)
and that by itself would again be incompatible with the chirality of the Weyl spinor A. The
charge conjugation matrix C satisfies Cy¢C~! = —y¢T, while 1. is an arbitrary phase. The

combination of C and P gives rise to the CP transformation, that is now compatible with the
chiral properties of a Weyl spinor and reads

CcP
AMx) = Aep(xp) =10, CA (x) . (10)
The phase 7., is unobservable for a single fermion and could be set to one. Then, it is easy
to check that the action from the lagrangian (1) is invariant (integrals of total derivatives are
discarded and the jacobian from changing variables from x, to x is unity) if the background
gauge field is also CP transformed as usual.
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3. The chiral anomaly

As a preparation, we start repeating the exercise of computing the chiral anomaly. Though
standard—it is material that may be found on various QFT textbooks— it sets the stage for our
subsequent calculations. We regularize the Feynman diagrams with dimensional regularization,
extended by the Breitenlohner-Maison/’t Hooft-Veltman prescription for dealing with the chiral
matrix y°, see appendix B.

In order to derive the chiral anomaly, we expand in perturbation theory the expectation value
(J€(x)), of the axial current J¢(x) =i A(x)y¢A(x) in the background of the abelian gauge field
A, and check the Ward identity that follows from eq. (4). Perturbation theory is generated by
setting (J(x)), = (J°(x) eiSint) with Sj,, = f d*x A, (x)J*(x) and using the perturbative prop-
agator

4
AOA()) = f éT;e"’“—»‘”PLP—fPR (11)
where we have kept explicitly both projectors matching the chiral properties of the left-hand side
and denoted px = p,x“°.
The chiral anomaly arises at second order in the gauge field

X 1 X
@), =3 / d*y / d*2 A1) Ap(2) (J@ T ()T (2))

R 4 d*k d*p d*q
= 2/ dy/ dZA“(y)A”(Z)/ et ) et ] @y

% e*ikxeipyeiqz (271)48(4)(]( —p— q)MC“b(p, q) (12)

where the Wick contractions for evaluating the correlator (J¢(x)J(y)J b(z)) in momentum
space’ give rise to the usual triangle diagrams

+ (13)
and produce the expression
b, . f @'l wlyPL( = p)Pry“PLIPry"PL(/ + ¢) PR}
MET o= =1 | Gy PU—pPU+9)7?
+((p.a) < @.b). (14)

' We Fourier transform the three-point function (J"(x)l“(y)]b(z)) by
/ d*x / dty / d*z e eI eI (10 (1) 19 (1) P (@) = @)Wk — p— )M (p.g)

with incoming momentum k at vertex J¢, and outgoing momenta p and ¢ at vertices J¢ and J b, respectively.

4
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External momenta are kept four-dimensional, while the loop momentum / has been extended
to n dimensions by dimensional regularization. It splits into a four-dimensional part (denoted
by a bar) and a (n — 4)-dimensional part (denoted by a hat), as discussed in appendix B, i.e.
I=I+1=10+s (we find it notationally easier to denote the (n — 4)-dimensional part by I=
s). Taking the divergence of eq. (12) is equivalent to contract the above expression by —ik..
Considering cyclicity of the trace, we write it as

d"l w{PrkPL(] — p) PRy PLI PRy" PLU +¢)}
Qm)" P~ p)*( +q)?

+((a) < @.b) (15)

and using the property Pry“ P; = y® Py, which further enforces the indices a, b, ¢ to be four-
dimensional (as they contract with external four-dimensional momenta), leads to

d"l w{kPL(J — p)yPLI7 P + ¢))
Qm)r 21— p)*1 +qg)?

+((r.@) > @) (16)

The above expression contains sixteen terms, obtained by expanding the projectors, but most of
them cancel pairwise. Indeed, considering first parity-even terms, we may use” {ys, y“} =0
together with (y°)% = 1, so that all parity-even terms become equal to

anl wfkd - p))?“l)?”(l+q)}+ a'l w{kdJ —pytlved + p)}
Qo 21— p)2l+q)? Qmyr P —g)*( + p)? )

Then, using the identity ¥ = p +¢ =/ + ¢ — (/] — p) in the first integral, and p + ¢ =/ +
p — (I — ¢) in the second one, allows to remove one of the propagators from the integrands.
The remaining terms cancel out pairwise after changing integration variable / — —[ and using
cyclicity of the trace. Parity-odd terms can be simplified in a similar way, using the following
identities

—ike M (p,q) = —

—ike M (p,q) = —

a7

B == k== g+ =y - p+ U +9r - 2% (18)
W =—vk=—rp+O=vU-9+U+pr —2/%. (19)
At the end one is left with the terms

n S4c7 _ -ar7 -b,7
ik M= [ w{y 34T +4— P d + D70 +4+9)

Qmy P —p32l+q)?
Lfoan oy ¥+ —prtd —H7° 0 +4+9))
@m)" PU—p)U+q)
+((p.a) < @.0)) (20)

where in the second line the properties of 1> have been used to bring two y> matrices together,
leading effectively to the replacement of the factor [ 4- § by [ — 4, thus relating the second line to

2 As explained in appendix B, in parity-even calculations one can use a fully anticommuting 7/5 without running into
any mathematical inconsistency.
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the first one. Let us focus on these first two integrals, and rewrite the denominator in symmetric
form by using the Feynman parametric formula

1—x
|
R TaR = /dx/dy P24 +f) Q1)

where 7 = [ 4+ xq — yp is four dimensional, while f = f(x, y, p,q) = xq> + yp* — (xq — yp)*.
Since the denominator is symmetric in the internal momentum s, only terms having an even
number of s can contribute, otherwise the integral vanishes by symmetric integration. Moreover,
a term like tr ()/5;‘;()7“;‘)71’,5‘) =s*tr (ysy”yb) 0, so that only terms proportional to s> may give
a nonvanishing result. These terms contain traces of > with four-dimensional gamma matrices
and can be evaluated directly. After shifting® the integration variable / — 7, neglecting terms
linear in 7 that vanish by symmetric integration and terms that vanish by contraction with the
antisymmetric Levi-Civita symbol, one obtains for the numerator

—8is?e" pga(x +y) . (22)

Integration over r (with measure d"r = d*7 d"~*s, see appendix C for further details) gives a
finite result since

d"r 52 i
/ Q2m)" (r2+ f)3 =32 23)

and integration over x and y yields % Similar steps hold also for the crossed diagram and lead
to an identical result. Finally, we obtain the finite result

8 1
_ikCMcab(p, q) — _532 5 abcdpch (24)

It has to be inserted in the divergence of (12), that is
d*k d*p d*q
(€ d*y / d*z A.(»)A /
i =5 [ 24 [ 525 [ G | G
x e~ hxelPel m)*s® (k — p — q)k/\/l"“b(p,q)

d*k d*p d*q
abcd 4 4
d d'zA,(»)A
%n? / / ¢ Aa0) ”(Z)f et ) et ] @n)f
x e eiPY el p gy Q)48 D (k- p — g)
4

- _We“’”d / d*y / d4z(BCAa (y)) (BdAb(z))8(4) (y — x)8@(z — x)

= #eabc‘i <8a Ap (x)) (3cAd(x)>

1
= We“b“’ Fap(x) Feq (x) 25)

where in the last line the abelian field strength F,;, = d,Ap — 9pA, is introduced. This is the
correct chiral anomaly, that signals the breakdown of gauge symmetry. It prevents a consistent
quantization of the gauge field, unless other chiral fermions are added to cancel it.

3 We assume that one may shift the momentum integration variable in dimensional regularization, and take it as a
defining property of dimensional regularization, as discussed for example in [16].



F. Bastianelli and L. Chiese Nuclear Physics B 983 (2022) 115914

4. The trace anomaly

We now come to consider the quantum properties of the stress tensor, starting with the calcu-
lation of the trace anomaly in dimensional regularization. The stress tensor of the Weyl fermion
has been defined in equation (5). It is manifestly symmetric and this property is not modified by
dimensional regularization.

To derive the trace anomaly, we express in perturbation theory the expectation value
(TCd(x))A = (T4 (x)e'Sint) of the stress tensor (5) with S, = fd4x Ag(x)J%(x). We find it
convenient to split the stress tensor in powers of the background field A, as

Ted — 754 4 el (26)
where

1., .5 e 1
T5! = (o Hy o). T == (vead+s4ac) 27)

with the current J¢ already defined in (3). Then, at second order in the abelian field A, we
find

) 1. .
(T, = =5 (T6 ) S Sine) + 1 T{ () Sie)

1
=3 / d*y / d*z Ad AR T (x, 3. 2)

R A /d4k d*p [ d%q
- 2/dy/dZA“(y)A”(Z) et )] ent ] @t

x e~ k% 6iPY pi43 Q)48 (k — p — )T (p, g) (28)

where in the second line
rei®(x, y,2) = (T3 @)1 I @)
= 259G =0 (1 @O0 + @ o)
- %8“” (=) (1@ I @)+ I @I @) (29)
while in the last line we have Fourier transformed I'“?“?(x, y, z) into 7°4“?(p, ¢). The matrix

element 79 (p q) = 72‘1‘31“}’ (p.q) + 7}5‘;‘”’ (p, q) is then given by the following two sets of
diagrams

(30)
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(€1Y)
leading respectively to the expressions
. dab
cdab l d"l “/V’(Cl)
= — ) 9 b 32
76" =3 ) Gay Ea=prd—p—gr T (20> @D) 42
with numerator
Nt = | Pr (@ = p =)y + @ = p—g)'y°)
x P Pry“ PL(l = p)Pry" PL(l = p = ) (33)
and
. ‘dab
cdab ! d"l N(Lz)
== — , b 34
To =3 f Gy 0 (0= @.0) (34)
with
Nt = | P (yen™ + i) LI PRy P — )} (35)

The loop momentum [ is extended by dimensional regularization as before and the integration
measure is d"l = d*ld"*s.

Again, using the identities Pry?Pr = y*Pr = Pgry® and Pry®Pgr = y*Pr = PLy?, to-
gether with the idempotence of the projectors, these expressions can be simplified and the number
of projectors reduced to one. Then, the two numerators can be rewritten as

Nl =l e (@ p -7 + @~ p—)'7) T7°0 - p7*d ~ p~ 9
EU ) o ]
=suw{(@-p— 7!+ @ = p—g)'7) 170 = 7T = p—9)|

1 - - - - -
— sy (= p =97+ = p—0)'7) 170 - p7* (0 = p - )|

(36)
and
Nt =] g (70 + 7<) 170 — p)]
= S| (et ) T 0 - p))
B %tr{ys (and + );dnbc) i — 115)} . (37)
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In the above expressions, there is no need of putting a bar over the momenta p and g because,
being external, they are kept four-dimensional and only the internal momentum / is extended
to n dimensions. We also notice that all gamma matrices are effectively reduced to the four-
dimensional ones.

Now, one can show that terms containing traces of >, which would produce parity-odd con-
tributions, cancel with those of the crossed diagrams. This can be done by using the invariance of
the trace under transposition, the known properties of the gamma matrices under transposition,
namely Cy¢C~' = —p4T and Cy>C~! =37 with C the charge conjugation matrix, a shift
on the integration variable, and the property of the anticommutator {)/5, )7“} = 0. It proves that
parity-odd terms do not appear in the expectation value of the stress tensor, and thus in the trace
anomaly. This is a crucial point of our investigation, so let us show in more detail the precise
steps we have been following.

To start with, it is easy to verify that the parity-odd term from eq. (37) vanishes

ari wly (entd 4 pine) Iped - p))
@) 2~ p)?

and similarly for the corresponding crossed term. This implies the vanishing of the parity-odd
part of (34). Now, let us turn to the last line of eq. (36) that also contains )/5

=0 (38)

w1 oy (@ = p— 7+ Q= p— )7 170 = p7*d - p - 9
@y PA=pP0=p—q)
+(p.0<@.b) . (39)

These terms cancel among themselves, as we shall see immediately. As already noticed, the
gamma matrices under the trace are now four-dimensional. Then, using the invariance of the
trace under transposition and the relations involving the charge conjugation matrix C

C);aC71 — _?aT , CJ/SC71 — VST , (40)

one can write
= p—q) w7170 - pi*d - p -}
=@l p—qfuly 70— 0 -p-0)]
=@~ p—q)F tr{(i —p=9 G- PTG DT GHT (VS)T}
=0l -p-gfuld - p-7*d - 7177y’
=—Ql-p-o* uly 70— p- 70 - pi°i] (1)

where in the last line the anticommutator {yS, )7“} = 0 has been used. Following similar steps
one finds

Q= p—o w7 T - pi"d - p g
=—Ql-p-o u{y' 70 - p- 077 - p7°]| “2)

9
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and (39) becomes

a1 w3 (@I=p =) 7+l = p— )7 (0 = p— 7" - p)7°] |

(2m)" P(I—=prl—p—q)?
a1 w{yS (@ =p =gy 7!+l p—'79) 1770 = 70— p— )
(2m)" Pl —qg)*1—p—q)?

(43)

where in the second line the crossed term has been made explicit. After shifting the integration
variable of the first integral as* / — —I + p + ¢, one finally obtains

a1 oy (@ = p =7+ Q= p—)7) 1770 - 7T = p— )

2m)" 21 —q)>21—p—q)?
a1 oy (@ = p =7+ Q= p— )7 170 = 7 = p - 4)}
Q)" PAd-g*l—p—q)?

(44)

This proves the vanishing of the parity-odd part of (32). Thus, parity-odd terms do not appear
in the expectation value of the stress tensor and in the corresponding trace anomaly. Similar
manipulations with the charge conjugation matrix have been used in [17]. One could interpret
physically these algebraic results by recalling the CP invariance of the unregulated Weyl theory,
which describes a spin 1/2 particle composed of two states, interpretable as a left handed particle
plus its right handed antiparticle, as well-known for the original Weyl theory of the massless
neutrino. These two states of the Weyl theory have chiral effects that balance each other out in
the trace of the stress tensor.

Now, as explained in appendix B, in parity-even calculations one can use a fully anticom-
muting y> without running into any mathematical inconsistency. This implies that in the above
expressions of the numerators /\/("l‘g“b and ./\/(Cz‘iab the four-dimensional gamma matrices can be
replaced by n-dimensional ones, that is

1 .
Negt =suef(@=p—o v+ @—p—'y ) U —p U —p-) @)
and
N(czd)ab Etr{(ycnbd_i_ydnhc) l)/”(l—p)} . (46)

To obtain the trace anomaly, we contract the expectation value (28) with the four-dimensional
metric tensor 7%

4 @ . d*k d*p d*q
o)) =il = =3 [dt [ amme [ S5 [ S8 [

x e Pl Q) sk — p— T (p,q)  47)

where

4 The change of variable can also be written as [—»—I4+p+q, s— —s.

10
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i [ al w{@I—p—Plyid - prid —p—9)

ab — = cdab - __
T(p,q) =0caT (p.q) 4 Q)" l2(l_p)2(l_p_q)2

L e {y?ly*(/ — p)}
2) Q@) 12(1 — p)?

+ (.0 < @.0). (48)

Of course, y* and y” remain essentially four-dimensional as they are contracted with external
gauge fields which are kept four-dimensional. This expression is further simplified by rewriting
[ =] — § and using the identity

J—p-Ql—p—q@ 2 . J=p—Dp+q
Pl-p*l-p—q9?* PQ-p? PFl-p32l-p-q)?
From the first term of the right-hand side we get an expression which cancels the integral in the
second line of (48). A similar identity can be written for the crossed terms. Moreover, the second
term of the above identity gives a term that cancels with a similar one of the crossed diagram. At
the end, one is left with the expression
i [ d" ulsly'd = pytd—p-9)
TP (p. )= — +< , ,b)- 50
P D=5 | Gai U= =p—a? (p.a) < (q.b) (50)
Using the Feynman parametric formula to rewrite the denominator in symmetric form, see ap-
pendix C, the integral becomes

1 1- -
. x d4l dn74s Nab
i | dx dy 7] iy 3 (5D
0 0 (27'[) (27'[)"_ (12+S2+f)

where the integration variable has been shifted by [ — [ + p(x + y) +¢x, f = f(x,y, p.q) =
P2x(1 —x) 4+ y(1 —y) —2xy] + x(1 — x)g*> 4+ 2pgx(1 — x — y), and the numerator becomes

(49)

NP =t {§({ + 5+ px+y) + g0y A +§+ pc+y—1) +4¢x)
xyb(i+¢+p(x+y—1)+q(x—1))} . (52)

By symmetry only terms proportional to even powers of s give a nonvanishing contribution.
There are three terms proportional to 52 and one proportional to s*. After working the traces
out, neglecting linear term in [, replacing [*/> = }—1?)‘”’17, and evaluating the loop integrals us-
ing

d4l_ dn74s s2 . i 53
(27‘[)4 (27-[)11—4 (1_2+S2—}—f)3 = T2 (53)
a*l dn—4s o4 ;

/ (2”)4/ QA R+ ) a2 (54)

we obtain

1 1 1—x
v ab
0 0

11
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where
N =2pp?(2x? + 2y +4xy —3x =3y + 1) + pq’(4x> +4xy —4x — 2y + 1)
+ g% pP(4x? + dxy —4x 4+ 1) + ¢9¢" (4x* — 2x)
— ab(p2(2x2 Fdxy —3x +2y2 =3y + 1)+ ¢22x% — x)
+ pqx® +4xy —4x+ 1) . (56)

Integrating over x and y, the only contribution is from fo dx |, T dy (4x*+4xy—dx+1) = %
Similar steps hold also for the crossed terms and lead to an 1dentlca1 result, so that at the end we
find

TP 0) =15 (q“p" —n“”pq) : (57)
This result has to be inserted in (47) and gives the final expression of the trace anomaly
d*k d*p d*q
T4 —— | d*y / d*z A,(y)A /
( (X) / zZ Aa(y)Ap(2) 2y | @t ] Gy

x e x4 om)* W (k — p — )T (p. @)

1 . . d*k d*p d*q
o [ 4ty [ s aomo [ 55 [ 5 [

x ¢~k gIPY g2 (2745 ( — p— q)(qapb _ nabpq)
1 ,
~ 347 /d4y [ d*z (,7“”33 9 — aga;’) Ag(¥)Ap(2) X

d*k d*p d*q
Qm* ) @m* ) @m)t

- 2417TZ d4 /d4 3aAb()’)> <3aAb(z)) (aaAb(Z)) (abAa (y)>]
x 8@ (y =08 (z - x)

_ 241 2[(3 Ab(x)) (B“Ab(x)) - (8aAb(x)) (8bA“(x))]

1
=25 F (x)Fop(x) . (58)

This is the trace anomaly of a chiral fermion [13]. As one may check, it corresponds precisely
to half the trace anomaly of a Dirac fermion. However, we cannot yet assert with certainty that
this is the exact expression of the trace anomaly of a Weyl fermion without first checking the
conservation of the stress tensor. That is because the Breitenlohner-Maison/’t Hooft-Veltman
scheme breaks n-dimensional Lorentz covariance of chiral theories and the conservation of the
stress tensor is not guaranteed at the quantum level. As a consequence it may happen that to
preserve the conservation one needs to introduce counterterms,” which in turn may modify the
expression of the trace anomaly. As we shall see, this is not the case.

e—ikxei[)yeiqZ(ij)48(4) (k _ p _ q)

5 Conservation is guaranteed, as there are no genuine gravitational anomalies in four dimensions [18].
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5. Stress tensor conservation
The Ward identity associated with the conservation of the stress tensor, corresponding to equa-
tion (6), is
0T, = —FI(Je), . (59)

To check that there are no anomalies associated with this equation we expand both sides of this
equation at second order in the background gauge field, and verify their equality.® For the left-
hand side we get

0T (x)), =~ / d*y / d*z Au () Ap(z) 85 T (x, y, 2)
d*k d*p d*q
_ - 4 4
- fd /d ¢Aa (y)A"(Z)/c * ) emt ] @n)
x e~ 02 Q) s P (k — p — q) (=ike) T (p.q) . (60)

By expanding perturbatively the right-hand side of equation (59) one finds
—F U Je), = —FJe) =i F(JeSit) + . (61)

where S;,; = f d*x Ay (x)J?%(x). Only the second term of the above expansion contributes, since
the first one vanishes, and at second order in the background gauge field it gives

—F () (Jo(x) P = ; / d*y f d*z Aa(y) Ap(2) x
x [ (o2 = o2n) (e 007 (1)) 95 8z = x)
+ (g = sen®®) (eI @) 8 89 (v = 2] (62)
By comparing both sides of equation (59) we obtain the identity
axrcdah(x y,2) = ( dee 8£nde) (T TU()) O 5@ (z — x)
—i (st = sen®) @I @) 0 8D (v —2) (63)
which in momentum space becomes
—ik T (p,q) = (n"qc = 82q*) 1 (p) + (1" pe = 82p”) I @) (64)

where I1¢°(p) is the Fourier transform of the two-point function (J¢(x)J b( y)), whose expres-
sion is
[ () — / d"l w{y*PLlPry"PL(I — p) PR}
-~ @ 12(1 - p)?
where the integration variable / has been extended by dimensional regularization. It is easy to
see that this integral reduces to half the one of the vacuum polarization (photon self-energy), i.e.

(65)

6 In [19] and [20] this strategy was used to determine the structure of the Ward identity for the conservation of the
stress tensor of a Dirac fermion. We do the same thing, but for a Weyl fermion.
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1 [ dn o w{ylyb(d - p))

Hab —
D=3 Gy Ba—pp2
4 I 2 5
"2 ~5a (p“pb - n“bpz) (m +3 —log PP-v+ 10g4rr> (66)

where the limit n — 4 has been taken and y is the Euler-Mascheroni constant. Thus, the right-
hand side of equation (64) yields

i
<qd (papb_nabp2) +nbd (qap2_papq)>x

242
X|——+-—logp"—y +logdn + 0@l —n) |+
4—n 3
i
+ 2(pd(qaqb_nabq2>_I_nad(pbqZ_qbpq))x
24w
2 5
><(4—+§—long—y+log4n+0(4—n)). (67)
—n

Let us now evaluate the left-hand side of equation (64)

n _ 1\¢q,d R AY) acy _ by _
—ikCT“d“b(p,q)z—l d"l wi{[keQl =Kyt + QL= Iy d — py*d - B}

8] @ry 120 — p)2(l — k)2
l/ a"l tr{(knhd-f-)/dkb) lya(l_p)}
1) @nye 21— p)?
+((p.a) < (@.b) (68)

where k = p + g because of momentum conservation. The following two identities can be used
to simplify the calculation

k2l —k) =21k —k*=1>— (I —k)* (69)
k=1-Ud-6 (70)
and one has

_ ichCdab(p, q)

__1 d"l dyacy by 1 B 1
_ 4/(2n)ntriy v — pv'( k)}<(l—p)2(l—k)2 zz(z_p)z)

n acy _ by _ acy] _ b
_1/ d"l (2l—k)d(tr{y I =pr*d—b) w{ly'd - py })
4] Q)

(=p*il-h? 21— p)?

1, [ dl ulyyd—p) 1, [ a'l wigly'd —p)}
4% ) @mr PU-p)? 4 Qu)y"  PU—p)?

P IS /e A Ui D) S Wy B S Vb U D) )
4 Qo 21— qg)? 4 Qo 21 —qg)?

where the first two integrals have been multiplied by two since those of the crossed diagrams
are equal after using the invariance of the trace under transposition and shifting the integration
variable. Tadpole integrals have been neglected because they vanish. The calculation is quite long
and we refer to appendix D for details. Here we give the final result
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. i
—ik T (p, q) = s (qd (p P’ - n“bp2) + (qapz - p”pq) ) x

2 5
(—+——logp —y+log4n+0(4—n)>

4 — 3
i
t a2 (pd (qaqb “ 2) +irf (pbq2 - qbpq)>x
2 5
4T+§—logq —y +logdmr + O(4 —n) (72)

that matches precisely eq. (67), thus verifying the Ward identity (59) at quadratic order in the
background field A,.

6. Conclusions

We have used dimensional regularization to study the trace anomaly of a Weyl fermion cou-
pled to an abelian gauge field, confirming that no parity-odd term arises in its expression, as found
in [13] by Pauli-Villars regularization and heat kernel methods. The resulting expression is gauge
invariant, even though the gauge symmetry is anomalous. It equals half the trace anomaly of a
Dirac fermion. This result matches the analogous case of a chiral fermion in curved spacetime,
which has been much debated in the recent literature, as reviewed in the introduction. The cou-
pling to the abelian gauge field— while interesting in itself—has allowed to expose in a simpler
context the subtle points of dimensional regularization of chiral theories, which become much
more tedious when the coupling to gravity is turned on. We have given a detailed description of
the strategy adopted and the steps needed to calculate the trace anomaly. Our exposition might
be useful for comparing with alternative calculations that one may wish to adopt in verifying that
no parity-odd terms arise in the trace anomaly of a Weyl fermion.
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Appendix A. Conventions

We use a mostly plus Minkowski metric 7,; and gamma matrices satisfying
ey =2 (73)
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The hermitian and traceless chiral matrix > is defined as

i . .
v = gr€acary vyt =—iy’yly?y’ (74)
with the symbol €,.4 normalized as €g123 = —1 and €123 — 1. In particular, one has

tr (y yaybycyd) = dieabed. (75)
The conjugate Dirac spinor A is defined using 8 =iy by

r=1"8. (76)
The charge conjugation matrix C is defined to satisfy

Cy*c ' =—ypT (77

Appendix B. The Breitenlohner-Maison-’t Hooft- Veltman prescription

Dimensional regularization is subtle in chiral theories. The main problem concerns the exten-
sion of purely four-dimensional quantities to n dimensions, such as the chiral matrix y> and the
Levi-Civita symbol €,p4. In four dimensions we define y> by eq. (74), so that it squares to the
identity and anticommutes with the other gamma matrices

v’y =0. (78)

In n dimensions there are n gamma matrices satisfying the Clifford algebra

(y%, yby =20, a,b=0,1,...n (a,b+5) (79)

and the simplest thing one could try is to extend (78) to n dimensions, but a fully anticommuting
y> would lead to inconsistency for parity-odd calculations, i.e. calculations involving an odd
number of > matrices [21-24].

In [25] ’t Hooft and Veltman proposed a generalization of 1> to n dimensions such that y> an-
ticommutes with the first four gamma matrices and commutes with the remaining n — 4 matrices,
and derived the standard chiral anomaly within this scheme. This proposal was further developed
by Breitenlohner and Maison [21], who proved its consistency to all orders in perturbation theory.

According to this scheme, the n-dimensional Minkowski spacetime splits into the product of
a four-dimensional subspace and a (n — 4)-dimensional subspace. Any n-dimensional object,
such as metric tensor, gamma matrices, momenta, etc., decomposes into a four-dimensional part
(denoted by a bar) and a (n — 4)-dimensional part (denoted by a hat), for instance

N =TTy =gyt Pt =t (80)

Contractions of indices belonging to different subspaces vanish. The chiral matrix > is defined
as in four dimensions by (74)

i 01 a-
y = Eeabcdy“ybycyd =—ip'p'y%p? (81)

where €454 1s purely four-dimensional, and anticommutes with the gamma matrices of the four-
dimensional subspace, while it commutes with those belonging to the (n — 4)-dimensional one
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{ys,f“} —0 fora=0,1,2,3
(82)
[)/5, )9“] —0 fora>4.

This prescription is such to preserve the square of > to unity and the cyclicity of the trace.
It breaks n-dimensional Lorentz covariance for chiral objects and, as a consequence, spurious
noncovariant terms may appear in the calculations, which however are expected to be removable
by finite noncovariant counterterms.

The Breitenlohner-Maison prescription is not the unique one for dealing with > in di-
mensional regularization, and a comparison between different proposals can be found in [22].
However, among these, only the Breitenlohner-Maison scheme has been shown to give mathe-
matically consistent results at arbitrary loop orders [21,26].

At this stage, we wish to stress an important remark. As explained above, a prescription for

y> in n dimensions is necessary to overcome inconsistencies in parity-odd calculations. How-

ever, whenever parity-even calculations are concerned, in which traces containing only an even
number of > matrices appear, no such inconsistencies arise, and one can safely extend (78) to n
dimensions and use the square (y°)% = 1 to completely eliminate y> from the traces [22-24].
We conclude this appendix collecting a list of useful relations. The metric tensor is split as
nab — ﬁab 4 ﬁub with
™ =n, A =4 Awd®=n—4,  fwi®=0. (83)

The last shows that contractions between indices belonging to different subspaces vanish.
Any vector decomposes as

k=& + & (84)
and metric tensors act as projectors onto different subspaces

K =nky,  ka=nak’.  ka=iak’,  ke=iak’. =+,

K = kka =n"kakp = napk K", K = kak® = 7" kaks = Tlapk“ K",

k* = kok® = 1% kakp = Hapk“k?,  fapk” =0,  fHapk” =0. (85)

Gamma matrices decompose as

y =747 (86)
and satisfy

by =2m®,  y'a=n,  uy=0,

PP = =20 v =7 =4 wpt =0,

peP =P =20 v =7 Pa=n—4,  wpt=0,

Feph=0. 7% =0. 87)

The matrix y° is defined as in four dimensions, see eq. (81). It anticommutes with the gamma
matrices of the four-dimensional subspace and commutes with those of the (n — 4)-dimensional
subspace

{ys,?”]=0, [7/5,7?"]=0 (88)

which implies
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{VSJH}:{VS,);“} =2y°p1, [VS,V“]=[75,J7“]=2V517“- (89)

From the definition of 7 in (81), its square (%)% = 1, and the definition of the chiral projec-

tors (2), one can derive the following identities
PRry“PL=y“PL = Pry“, PLy“Pr=y“Pr=PLy". 90

At last, we list the explicit expression of traces involving two, four, and six gamma matrices
in n even dimensions

tw(yty?) =22y o1
(v Py y ) =22 — eyt + ninbe) 92)
r(ylyyaylyPy®) =22 (%0 nbs — ytenabyls 4 pleysn st

_ nda nefnbg + ndanebnfg _ ndanegnfb

+ neandfnbg _ 77eozna’bnfg + 77eana’gnfb

_ ndfnebnag + 77dfnabneg _ nefnabndg

+ nefndbnag _ 77afndbneg + nafnebndg) ) (93)
Appendix C. Loop integrals and dimensional regularization

In order to combine propagator denominators in loop integrals, we have used Feynman para-
metric formulae

1
1 1
- 4
AB O/dx XA+ (1 —x)B]? ©4)

1 1—x
1 1

—_Zfdx/dy 3
ABC J J [xA+yB+(1—x—y)C]

95)

which make the denominators quadratic functions of the loop integration variable / used in the
main text. Then, one completes the square and shifts the integration variable to absorb linear
terms in /. The denominator takes the form (12 + f)™, where m =2, 3 and f is a function of the
Feynman parameters and external momenta. Performing integration over the loop momentum
I, terms with odd powers of [ in the numerator vanish by symmetry. Symmetry allows also to
replace

1
1407 — —yb1? (96)
n

11014 —

ab ncd + nacnbd + 77adnbc) (97)

n(n+2) 4(”

where n is the spacetime dimension. It is most convenient to evaluate the integrals by Wick-
rotating the integration variable to Euclidean space, i.e. by replacing [° — i1°.
In the following table we collect n-dimensional integrals in Minkowski space

d"l 1 i F(m—%)(l)’"‘% ©8)
Qo (2+ f)"  @4m: Tm \f
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/ a2 _ i nlm-3-1D (l S (99)
Qm)yt (24 fym @m)22  T(m) f
d"l 14 B i nn+2) F(m—%—Z) (l>m—%—2 (100)
Q2+ )" 4y 4 T(m) f

where the overall factor i comes from the Wick rotation of the integration variable. We need also
the following expansion

re- %) n—4 2
fZ—% - 4 —

—log f —y +logdm + O(4 —n) (101)
n

where y is the Euler-Mascheroni constant. Thanks to this table we can easily evaluate integrals
appearing in the calculations.
Splitting the loop momentum / =/ + s we can evaluate the integrals

d*l d" s 52 (102)
et ] Cry Tt @52+ f)3
and
/ d*l / d" s s4 (103)
Qm* ) Qo) 2 +s2+ f)3
Let us first perform integration over s and define t =12 + f
s s> n—4 TG-%) <1>4_% (104)
Q)4 (s2 4+1)3 2(471)# INE)) t
then, integrating over [
d*l 1P Te-Y (1)2—’5 (105)
QO @+ 5 @I TE-H\f)
Putting everything together and using the expansion (101) we get the finite result
a*l d" s 52 . i (106)
em* ) Qo 2452+ f)3 T 32a?
Following similar steps one has
d"ts st (n—4Hn-2)TG—-7) <1>3—% 107,
Q)4 (s2 +1)3 (47.[)%4 ra) t

from the integration over s, and

fdﬁ 1 F(l—%)(l)l_% (108)
Qm* 24 35 @Go)?TE-5H \f

from integrating over /. Putting everything together we obtain the finite result

d*l d" s s o ¥ (109)
Qo) Qu)t 2 +s2+ )3 32x2
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We notice that the factor (n — 4) arising from the integration over s kills the singularity in the
expansion (101) and cancels all other terms, once the limit n — 4 is taken, leading to a finite
result.

For completeness, we collect here the relevant integrals employed during the calculations
derived from the above table

(ot ()
n eor @+ \n Jumiz T@ \f

j r(—1
B (4;)% (1 B %> fl—%z

i ore-b
C(4mE s

i 2
n—4 16n2f <—n —logf—y +logdnr + 04 —n)>

f

(110)

art 1 i TQ@ )(_)2"
Qmyr (2+ )2 @m? TR \f

nd i 2

:4@(m—logf—y+log47t+0(4—n)> (111)
a2 i o aT@Q=%) (1\72
Qo 2+ )3 @m)r2 TG) <?)

not L (2 —log f — y+10g47t+0(4—n)> (112)

1672

Appendix D. Stress tensor conservation

Let us compute

S Y N R A
ik, Tedab — 2 (zn)ntr<y Iy“d—py°d k))<(l—p)2(l—k)2 12(l—p)2)

(113a)
L[ wl{yd = pyPd =b}  uwlly*d - py’)
2m)" (= p)>( —k)? 12(1 — p)?
(113b)
1, [ dl wl{y?ly*d - p)}
Tk / Qo BU-pP? (13
U [ d'1 tw{gly®d —p))
+3 TR " (113d)
1 a"l w{y?lyb( — )
28 @y Ea—gr (13
U [ d"l w{ply"( — @)}
A ] Gay T EU=q? (1130
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The terms (113c) and (113e) have the same structure of the integral appearing in the vacuum
polarization (photon self-energy) and yield

1
i b d d 2
a4 (o9 =2 [ drace=1x
0
2
X (4— —log f —y +logdm + 0(4—n)> (114a)
—n
1

! bd 2
+87T—2(p+61)“(q q“ —n"q )/dxX(x—l)x
0

2
X <4——10gg—)/+10g4n+0(4—n)) (114b)
—n

where f = f(x, p) = p?>x(1—x), g = g(q, x) = g>x(1 —x), y is the Euler-Mascheroni constant
and we have rewritten k = p + g due to momentum conservation.
Let us consider (113d). Using Feynman parametric formula (94) it becomes

1 ,,d/ / d"l w{g( + px)yd + px — 1)}
(115)
Q)" 12+ f)?

where f = f(x, p) = p>x(1 — x) and integration variable shifted by / — [ + px. Then, we
evaluate the trace

vy vy e ) s pee— D) = |y y Ty e} (qel sle +aep s pex 6= D)
(116)

where linear terms in / have been neglected because they vanish by symmetric integration. After
replacing [ rl, — %nfglz, using (92), (110) and (111) we obtain

1
[ 2
- l—znbd(anpz —2pqpa) /dx x(r =D —"— —log f —y +logdr + 04 —n) ).
167 4—n
(117)
By an analogous reasoning, we can compute (1 13f) which yields
) 1
Y ad(y b 2 b _ i _ _
Ten2" 2p’q°—2pqq dx x(x—1) logg — v +logdm + 04 —n)
(118)
where g = g(g, x) = ¢*x(1 — x).

Let us now consider the first integral of (113b), after using the Feynman parametric formula
and shifting the integration variable / — [ 4+ p + gx, this becomes

21



F. Bastianelli and L. Chiese Nuclear Physics B 983 (2022) 115914

1
1 d"l d wf{y( +¢x)y"(/ + 4 — 1)}
_Z/dx/ oy (2l+p+q(2x— 1)) e (119)
0

where g = g(g, x) = ¢>x(1 — x). Terms proportional to (2x — 1) vanish by integrating over x.
The integral proportional to p¢ has the same structure of the photon self-energy and yields

1
i 2
—Wpd (qaqb nq 2>fdx x(x—1) (—n —logg —y +logdn + 04 —n))

0
(120)
Now, we evaluate
__/dx/ d"l tr )/ (l—i—qx))/ (l‘i‘Q(x_l))} (121)
(271)" (% +9)?
Let us compute the trace using (92)
]y yy a a0+ - ), =
=28 (U+g0)" (g = ) + A +g0) U +q = D) =
—1 (1 +q) U +qx—1))). (122)

Since the integral is non zero only if even powers of [ appear in the numerator, we keep only
terms of this trace with one /, and obtain

1

d'l ldlaqb + ldlbqa _ nabldlq
dx(2 1 =0 123
/ e )/(2 Iz 2+ (129

0

which vanishes by integration over x.
Let us now focus on the second integral of (113b) which can be rewritten as

1
n a _ b
1fdx/ T ol 4 p@x—1)— ) i+ poy U+ poc— D)y’ (124)
4 QY
0

2+ f)?

with f = f(x, p) = p?>x(1 — x). By following a similar reasoning as before, the unique non zero
term is

1

] 2
! d(p”pb n“’p 2>/dxx(x—l)<—n—logf y+10g47r+0(4—n)>

82!
0
(125)
Let us now evaluate (113a) and start from the first term
1 [ am wfydly*d — pvbd -
1 iyl d —pytd —b} 126)

Q2m)" (= pPl—k?
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Introducing Feynman parameter and shifting / — [ + p 4 gx, this becomes

(127)

_1/1d / d"l w{y’d+p+g0r'd +¢0r" (I +¢(x— 1))}
a) )y P+
0

where g = g(g,x) = ¢g>x(1 — x). In evaluating the trace we neglect terms containing an odd
number of / because they vanish by symmetric integration. Thus, one has

tr Iydyey“yfybyg} (lelfqg(x — D) Hlelgqpx+1flg(p+qx)e+(P+qx)eq rxqe(x — 1)).

(128)
By symmetric integration we can replace [,/ — %nablz, use (93) and compute

tr{ydy"y”yfybyg}lelfqg(x —1)
= %lztr [deey"yfybyg} Nefqe(x — 1)
= %lzz% (1" @ =ma e = D+ (1 = 2)g" (= D + 1@ = mg"(x = 1))
= (% - 1) 292 (n"q" (x = 1) =g (e = D +ng"(x = 1)) . (129)
tr {VdVeVanVth}lflg(P +qx)e = %lztr [dee)/“yfy”yg} Nfe(P+qx)e
= <% - 1) 252 (0 (p + )" = 0" (p+ 0" + 0 (p+ )" . (130)
tr{ydyey“yfybyg} lelgqpx = %ﬂtr{ydyeyayfybyg} Negd fX
= <% - 1) 2312 (n‘lbq”x +negby — n“qux) . (131)

Putting everything together we find

(3 - 1)2312(;7“”(qd(x —1 +p") + nd“(—p” +qPx— 1)) 0% (g% (x + 1) + p“)).

n
(132)
Integrating over / using (110), one obtains
_ 1
’ /dx(n“b (4 =1+ p?)+n% (=P +4" = 1)+
1672
0
db ( a a 2
+7% (g (x+1)+p))g T —logg—y +logdw + 04 —m) ) . (133)

From the term with no [ we obtain
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{deeyayfy"y } (P +qx)e qrgex(x — 1) = (134)
—22x(x—1)((p+qx)d <2qa b nabq2)+
+(p+gx)° (2qdqb b 2) + 7 (qz(p +qx)? =24 (p + qx)q) ) (135)

and after integrating over / using (111)

1

/dx x(x—1)x

0

1
1672
x ((p +gx)? (Zq“qb ab 2) +(p +qx)* (Zq q ‘“’qz) +

+n? (qz(p +gx)" —2¢"(p + qx)q) ) x

2
X (4——10gg—7/+10g471+0(4—n)) . (136)
—n

By adding (114b), (118), (120), (133) and (136) we obtain

1

/dx x(x—1)x

0

1
1672
» (4pd(qaqb ab 2>+4nad (qub_qbpq)+
(Zx—l)( n%4gbq? — nq d +2qaqqu+nbdqaq2)>
2
X <m—logg—y+log47r+0(4—n)> (137)

and after integrating over x

i
o <pd (qaqb _nabq2> 4+ <q2pb _qbpq))x

2 5
<4—+§—10gq —y~|—10g4n~|—0(4—n)) (138)

Let us now consider the second term of (113a)

1 dnt wly Iy d = py"d - k)} 139
(2m)" 12(1 - p)?
Making use of Feynman parametric formula for rewriting the denominator and shifting the inte-
gration variable [ — [ + px, this becomes

n d _ _
/ /(dl w{y 0+ poy'd +p - 1D)y'7 —g+p - D)} (140)

2m)" >+ f)?
As before, we keep only terms containing an even number of /, and they are
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tr{ydyeyayfybyg} X

x (lel f(=q + pCc = D) el p (= D) + 1l pex+
+ pexp(x = (=g + px = D)) (141)
We compute
ey ly yy vy el (=g + ple = 1) =

2 n
= (Z 1282 (0" px = D =) =P (P =D =@ + " (P~ 1) =) ,

n
(142)
el vty y vty el - D =
2 n
= (2= 1)282 (s p"x = D) + 0" pP (= D) = plx = 1)) (143)
n

2 n
w{y ey y v v fipteper = (5 = 0232 (0 plx =™ pla 0 pix) . (144)

After putting everything together and integrating over /, one has

S
- 161712 /dx<’7ab (de - qd) + 7 (Pb(x -2)— qh) + P (px + q“))f x
0

x (é—logf—y+log4n+0(4—n)> . (145)
From the term with no / one obtains
wlylyy vy pexp s = (=g + px = 1)y =
=2%x(x = D( (=g +px = 1)’ (2p"p" =9 p?) +

+ (=g + px — 1))? (217“17” - n“”pz) — P ppr(x — 1)+ (219“1761 - q“pz))
(146)
and integrating over [

1
Ten? dx x(x —1)x
T
0

X ((—q +px —1))P (ZP“pd - n“dpz) + (=g + px —1))? (2p“pb - n“bpz) +
— " pp*(x — 1) + ™ (217“1%1 — q“pz) ) x
X (%—logf—y+log4n+0(4—n)>. (147)
Adding (114a), (117), (125), (145) and (147), we obtain
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Ton? dx x(x —1)x
T
0

% (_4qa’ (papb _nabp2> — 4y (qap2_papq>+
+02x—1) <2papbpd — b p? pd — i pa 2 _pbnadPZ))X
2
X <4— —log f —y +logdmr + 0(4—n)) (148)
—n

and integrating over x

i
i <qd <papb _nabp2) 4t <qap2 _papq>>x

2 5
X (4— +3 —log p* — y + logdn + O(4—n)> ) (149)
—n

The final result in momentum space is given by the sum of (138) and (149) which leads to
(72).
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