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Abstract 14 

San Salvador (Bahamas) is a carbonate island with dozens of flank margin caves formed in the 15 

phreatic zone by fresh seawater mixing within the freshwater lens. These caves have no direct 16 

connection with the sea, and form at or close to the tidally influenced fluctuating water table. After 17 

sea-level fall, in their subaerial parts caves are enlarged mainly by rock dissolution and by erosion 18 

close to the water level, condensation-corrosion and breakdown processes. For understanding the 19 

geomorphological features observed in these caves and how they are related to light attenuation, we 20 

investigated three sampling sites in the tidally influenced zone of Lighthouse Cave, which has been 21 

re-invaded by seawater during the Holocene sea-level highstand. A freshwater lens no longer exists 22 

within or adjacent to the cave. Rock samples were collected above and below the internal lake 23 

shores close to the entrance, and in the twilight and dark zones of this cave. Light and electron 24 

microscopy examinations were conducted for detecting microbial cells, as well as bioconstruction 25 

and bioweathering features. In addition, a high precision laser scanner was used for characterising 26 
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sample microtopography. Our data showed that the microtopography and geomorphology of the 27 

lake shore samples (cave entrance) are dominated by bioweathering, whereas the samples of the 28 

twilight and dark zones are controlled by a combination of both bioweathering and bioconstructive 29 

processes depending on light availability. Bioconstructive structures, such as semi-planar 30 

lamination, at the fluctuating water level of the Lighthouse Cave show that dissolution due to water 31 

mixing of sea and freshwater in the Holocene is no longer the most important speleogenetic process. 32 

We propose that the geomorphological evolution is strongly influenced by the degree of rock 33 

diagenesis more than the initial mechanism of speleogenesis. 34 

 35 

Keywords: Flank margin caves; mixing dissolution; tides; bioconstruction-bioweathering processes 36 

 37 

1. Introduction 38 

San Salvador Island is located in the eastern part of the Bahamas within the Bahamian Archipelago 39 

in the Atlantic Ocean (Fig.1A). This island is about 11 km wide and 19 km long and lies in a 40 

tectonically stable area, which has been influenced by eustatic sea-level change during the 41 

Quaternary. The island is characterised by a sequence of Pleistocene shallow-water carbonate 42 

deposits covering the oceanic crust basement (Meyerhoff and Hatten, 1974; Supko, 1977; Carew 43 

and Mylroie, 1985). The dissolution of Bahamian carbonates produced karstic features such as 44 

karren, shallow depressions, blue holes, and the well-known flank margin caves (Roth et al., 2006; 45 

Labourdette et al., 2007). Flank margin caves (FMC) (Mylroie and Carew,1990; Harris et al., 1995; 46 

Gulley et al., 2016) generally present subhorizontal branches that develop at the edge of the 47 

freshwater lens where the area of vadose/phreatic water mixing and fresh-seawater mixing zones 48 

are superimposed. The water mixing produces a renewed aggressive solution that further dissolves 49 

carbonate, thus forming caves (James and Choquette, 1984; Mylroie and Carew, 1995). FMC 50 

developed in eogenetic limestone (diagenetically immature carbonate rocks with high primary 51 

porosity), such as the case of Lighthouse Cave, have been described from many carbonate islands 52 



(e.g., Mylroie et al., 2001; Vacher and Mylroie, 2002; Mylroie and Mylroie, 2007; Kourampas et 53 

al., 2015) and also on carbonate coasts on large islands or continental margins (D’Angeli et al., 54 

2015b; White and Webb, 2015; Bontognali et al., 2016; De Waele et al., 2017, 2018). Nevertheless, 55 

FMC can also develop in more highly lithified carbonate rocks (telogenetic limestones) (Mylroie et 56 

al., 2008; Otoničar et al., 2010; Ruggieri and De Waele, 2014; D’Angeli et al., 2015a), during past 57 

high sea levels. 58 

FMC in eogenetic rocks are mainly characterised by spongy morphologies, maze areas, dead-end 59 

passages, cuspate walls and irregular chambers that narrow inland. Presence of phreatic dissolution 60 

pockets are common, and the absence of high-velocity structures, turbulent-flow wall sculptures 61 

(i.e., scallops) and stream sediments (Waterstrat et al., 2010) indicates a diffuse or laminar flow 62 

speleogenetic environment. Wave processes are not required in FMC speleogenesis; exclusively sea 63 

level change (mainly due to coastal uplift or eustatic fluctuation) can influence their position 64 

(Mylroie and Carew, 1988). These caves form without entrances; access to them and/or the invasion 65 

of daylight into them, only occurs post-speleogenesis, when denudational processes breach their 66 

tops and/or sides. 67 

It is well known that caves are low energy environments that can preserve fragile speleothems, 68 

sediments, and archaeological remains over long time spans (e.g., Van Hengstum et al., 2011; 69 

Winkler et al., 2016). In addition, they can host unique microbial communities adapted to 70 

subsurface environmental conditions, such as absence of light and low organic matter input 71 

(Tomczyk-Żak and Zielenkiewicz, 2016). In general, the cave entrance (strongly influenced by 72 

surface conditions) and the twilight zone (with limited light penetration but still important 73 

temperature and relative humidity variations) are dominated by phototrophs, whereas the dark zone 74 

(characterised by absence of light and stable environmental conditions the year round) is dominated 75 

by chemotrophs (Northup and Lavoie 2001; Mejía-Ortíz et al., 2018; Popović et al., 2019). 76 

Microorganisms interact with minerals and promote bioweathering (Naylor and Viles, 2002) and 77 

biomineralisation processes (Barton and Northup, 2007; Riquelme et al., 2015). They can also have 78 



an important, albeit poorly understood, role in ecosystem engineering (Phillips, 2016). The key 79 

biogenic and biochemical processes that create distinctive morphological features in caves are: i) 80 

microbially-mediated mineral dissolution, and ii) microbially-mediated mineral precipitation 81 

(Riquelme et al., 2015). Sulphur, iron and/or manganese oxidising bacteria in contact with 82 

carbonate rocks, increasing local acidity through redox reactions and secretion of organic acids or 83 

exoenzymes (Sand, 1997), produce intense mineral dissolution (Northup and Lavoie, 2001; Miller 84 

et al., 2014) and secondary mineral deposition such as manganese oxides and moonmilk deposits 85 

(Hill and Forti, 1997; Gradziński et al., 1997; Miller et al., 2012, 2018). Microbially-mediated 86 

precipitation of minerals, especially carbonates, has been frequently observed (Tisato et al., 2015; 87 

Bontognali et al., 2016), but more detailed research is needed to better understand the main 88 

processes involved. For instance, microalgae and cyanobacteria, growing close to cave entrances or 89 

in the twilight zone, can precipitate CaCO3 by fixing carbon dioxide or can trap and bind particles 90 

transported by flowing water or wind (Contos et al., 2001). Most interestingly, “crayback” or 91 

“lobster” biomediated mineral growth known as “cyanobacterial subaerial stromatolites” (in the 92 

twilight zone) have been found in caves in New South Wales, Australia (Cox et al., 1989a, 1989b), 93 

and in Borneo (Lundberg and McFarlane, 2011, 2012). Crusts and coatings of iron-oxyhydroxides 94 

(Peck, 1986; Provencio and Polyak, 2001; Frierdich and Catalano, 2012) and manganese-oxide 95 

crusts have been found on cave walls (Onac et al., 1997; Northup et al., 2000; Lozano and Rossi, 96 

2012). These authors demonstrated that rock weathering is influenced by microbial processes 97 

(Dotson et al., 1999; Northup et al., 2003). In addition, Onac et al. (2001) and Audra et al. (2019) 98 

reported bat guano to be an important source for mineral growth. 99 

To date there have been few investigations on the microbially-mediated processes that operate in 100 

each cave zone, and how they may affect the type and spatial patterns of morphological features in 101 

cave systems (an exception is Coombes et al., 2015). Here we have sought to address some of these 102 

knowledge gaps by investigating the microbiogeomorphic processes developing at the entrance, 103 

twilight and dark zones of a flank margin cave system (Lighthouse Cave) located in the Bahamas. 104 



In addition, we attempted to identify consistent biogeomorphic features and/or processes that can be 105 

associated with ecosystem engineering and likely to construction niches sensu Phillips (2016). 106 

Hence, the aim of this study was to understand how biological processes can influence eogenetic 107 

carbonate rocks in the development of peculiar micromorphological features (e.g., mineral 108 

precipitation, pitting/etching, boreholes) in zones of the cave system with different natural light 109 

conditions, and assess how present (post-mixing) flank margin cave evolution may be influenced by 110 

secondary bioweathering or bioconstruction processes. 111 

 112 

2. Materials and Methods 113 

2.1. Site description and sampling 114 

San Salvador Island has a tropical climate, with daily average temperatures of 25-28°C (Gulley et 115 

al., 2015), generating a very high potential evaporation rate of > 1300 mm/yr (Crump and Gamble, 116 

2004). The Lighthouse Cave is a limestone cave system located on the NE coast of San Salvador 117 

Island (The Bahamas) (Fig.1B), and has no direct connection to the sea. 118 

The cave is 402 m-long, and half of the passages show water bodies still influenced by tidal 119 

fluctuation (1 m range). The water bodies inside the cave have an overall salinity of 33 PSU, 120 

conductivity of 52 mS/cm, 26.6°C, and 7.21 pH (McGee et al., 2010). From the geomorphological 121 

point of view, the cave is composed of one large central chamber, adjacent smaller halls, and 122 

ramifying dead-end branches developed between 2 to 11 m a.s.l., following the flank of a dune, and 123 

mainly formed during 5e high stand. The main entrance and two minor entrances are vadose pits 124 

created after the flank margin cave speleogenesis. The main morphologies are characterised by a 3D 125 

maze and a tubular branch ending abruptly, domes, arches; big halls alternate with small and narrow 126 

passages, and bell holes are clearly visible on the ceilings. Bat guano deposits are abundant in the 127 

twilight zone, close to the cave entrance, and represent the most important source of organic matter 128 

and phosphate minerals in Lighthouse Cave (Onac et al., 2001). 129 



Cave walls are generally white, but dark brown crusts are also visible along the tidal zone (Mylroie, 130 

2014). Three replicates from the three different sampling sites (Fig. 2) were collected in Lighthouse 131 

Cave in February 2014 during low tide (local tidal vertical range of ~0.80 m). Three cm-long rock 132 

samples were taken using a geologist hammer and stored in sterile plastic bags. All the rock 133 

samples were collected from calcarenitic eolianite limestone belonging to Owl’s Hole Formation 134 

(Middle Pleistocene age) (Panuska et al., 1999; Kindler et al., 2010). The sampling sites were: i) a 135 

limestone rock exposed in the intertidal zone of a hypersaline lake located in a mangrove forest, 20 136 

m W of the main cave entrance (sampling site: SS1); ii) a limestone wall in the twilight zone of the 137 

cave, 20 m from the entrance, close to the water table, approximately 10-15 cm below mean high 138 

tide level (sampling site: SS2), and iii) a limestone wall near the water table, approximately 25 cm 139 

below high tide level and located ~60 m from the cave entrance (sampling site: SS3).  140 

 141 

2.2. Microtopographic characterisation 142 

To identify the processes involved in the present-day cave evolution, the millimetre-scale 143 

microtopographic irregularities of each rock sample were examined using a high-precision laser 144 

scanner. This instrument minimises measurement errors and resolution problems associated with 145 

conventional roughness meters (Bourke et al., 2008), and creates digital terrain models (DTMs). We 146 

used a micro Epsilon high-precision laser scanner at the University of Glasgow, with a maximum 147 

distance between the laser and sample of ~35 mm. Contour map analyses were performed using the 148 

ArcGIS system. Six profiles (NNE-SSW) were drawn across each rock sample (using a systematic 149 

random sampling design) to measure roughness values (Giaccio et al., 2002; Gomez-Pujol et al., 150 

2006; Naylor et al., 2012; Moses et al., 2014). Roughness values were obtained using the following 151 

ratio, after Whitehouse (2012):  152 
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 153 

2.3. Stereomicroscopy and ESEM analysis 154 



Stereomicroscopy and Environmental Scanning Electron Microscopy (ESEM) investigations were 155 

performed to observe newly formed crystals and recognise microbial communities that contributed 156 

to microtopographic changes on the rock surfaces (Moses et al., 2014; Coombes et al., 2015). These 157 

observations were conducted at the University of Glasgow, based on the methods of Naylor and 158 

Viles (2002) and Coombes et al. (2011, 2015). Three rock chips, ~4 cm2, were studied at each 159 

sampling site (Table 1) to generate semi-quantitative data on biogeomorphological processes 160 

operating in each zone of the cave system. The top surface of each chip was observed using 161 

Olympus SZ x7 and Olympus Bx41 microscopes equipped with an Olympus DP25 camera for the 162 

recognition of biological features, such as photosynthetic-based biofilms, shiny filaments, fossils, 163 

white creamy deposits, and black coatings (after Naylor and Viles, 2002, and Coombes et al., 2011, 164 

2015). Ten random replicate points (without overlap) were chosen on each chip and studied at three 165 

magnifications (×2, ×3.2 and ×5.6), which were the most suitable for capturing the spatial variation 166 

in organisms across all three sampling zones. 167 

The top surface and a cross-section of each chip were subsequently studied using a FEI Quanta 168 

200F Environmental SEM, operated at 20 kV, and equipped with a EDAX Energy Dispersive X-ray 169 

spectrometer (EDS). The chips were uncoated as they were observed in low vacuum mode. 170 

Secondary electron (SE) and backscattered electron (BSE) images were acquired. Ten replicate 171 

points on the top surface of each rock chip were selected randomly (without overlap) to study the 172 

occurrence of bioconstructions (e.g., biochemical encrustations, extracellular polymeric substances 173 

(EPS), microbial filaments, algae, foraminifera, minerals) and bioweathering features (e.g., 174 

microboring, dissolution features, microcracks, biological pitting/etching). Likewise, six replicate 175 

points (without overlap) were chosen from each chip to analyse the same features in cross-section. 176 

The occurrence of features observed by stereomicroscopy and ESEM were classified using 177 

“SACFOR” abundant scale (Hiscock, 1996) with the following classification: superabundant (80-178 

100%), abundant (40-79%), common (20-39%), frequent (10-19%), occasional (5-9%), rare (1-4%) 179 

and absent (0%). This method is used to describe and quantify the abundance of marine benthic 180 



flora and fauna in biological surveys (Jones and Pinn, 2006; Howarth et al., 2011). It has been also 181 

employed in the analysis of micro-scale biological growths involved in weathering and erosive 182 

processes of engineering materials (Coombes et al., 2011). 183 

 184 

2.4. Statistical analysis 185 

Statistical analyses were conducted for the recognition of microbial patterns related to different 186 

natural light conditions throughout the cave system and for understanding the intensity of 187 

bioweathering and bioconstructive processes. The occurrence of biological features in the three 188 

sampling sites (SS1, SS2, SS3), as observed by stereomicroscopy, were first tested for normality 189 

and subsequently analysed using the ANOVA method to check for homogeneity of variance (Table 190 

1) (Underwood, 1997; Coombes et al., 2011). Each biological feature observed with 191 

stereomicroscopy (i.e., algae, shiny filaments, fossils, white creamy deposits, black coatings) was 192 

treated as a fixed factor and analysed for all “sampling sites” (SS1, SS2, SS3) and magnifications 193 

(×2, ×3.2, ×5.6) using an Excel data sheet. Sampling sites and magnifications are the two sources of 194 

variation. The comparison of combined “Sampling site observations” x “Magnification 195 

observations” was made using the analysis of variance: single factor. 196 

Biological features observed by ESEM were also analysed (Table 1). We treated each sampling site 197 

individually, separating bioconstructive from bioweathering features and analysed them using the t-198 

Student test (two tailed test: two-samples assuming unequal variance) in two situations (on the top 199 

surface and in cross-section) to understand if their presence is influenced by a specific location and 200 

factor. 201 

 202 

3. Results 203 

3.1. Rock microtopography 204 

The microtopographic analysis performed for all rock samples collected in Lighthouse Cave 205 

revealed differences in the surface microreliefs according to their location. The contour map 206 



analysis showed how microtopography changed within the different cave zones. For each rock 207 

sample (one chip per sampling site; see Table 1), five distinctive classes of microrelief were 208 

established (Table 2): i) sample SS1, located on a karren stone in the intertidal zone of a hypersaline 209 

lake, depicted three classes of relief, ranging from 0  to 4-8 mm; ii) in SS2, collected in the twilight 210 

zone of the cave, we observed the whole range of relief classes (from 0 to >12 mm), and iii) sample 211 

SS3, from the dark cave interior and with the smallest range of roughness values (mean roughness 212 

1.08), four classes of relief (from 0 to 8-12 mm), were noticed (Table 2). 213 

 214 

3.2. Microscopy observations 215 

Different biological features were observed by stereomicroscopy at three different magnifications 216 

(Fig. 3), comprising filaments of staghorn-like algae (Fig. 3A), biofilms of green algae (Fig. 3B) 217 

and biological-like filamentous structures (Fig. 3C). The occurrence of biological features tended to 218 

decrease from site SS1 towards SS3 (Fig. 4), whereas the shiny filaments (Fig. 3D), fossils (Fig. 219 

3E), and black coatings (Fig. 3F) tended to increase towards the cave darkness (Fig. 4). Brown 220 

coatings were reported in all samples. The occurrence of these biological structures was measured 221 

as shown in Figure 4, based on the SACFOR scale. Magnification of x5.6 revealed the most 222 

representative results across all the studied sampling sites. Brown and black coatings showed the 223 

highest occurrence for all the studied samples, contrasting with generic red algae and fossils. 224 

Cladophora algae, white creamy deposits and black coatings were solely observed in SS1, SS2 and 225 

SS3, respectively (Fig. 4). 226 

White creamy deposits (Fig.5A, 5B) were exclusively observed on the chips collected from site 227 

SS2, and are preferentially located along the depressions on the exposed rock surface (Fig.5A). The 228 

EDS microanalysis showed that the creamy white deposits contain the following elements: C, O, Cl, 229 

P, Mg, Ca, Na, S, Al, Si, K, Fe, and Mn (see the green spot in Figure 8). 230 

 231 



ESEM examinations were performed on three chips per sampling site, and the occurrences (%) of 232 

bioconstructive and bioweathering features both on the top surface and in cross-section are reported 233 

respectively in Figure 6 and 7. Generally, bioweathering features were more abundant in the chip 234 

cross-section, probably due to the biological coating observed on the top surface hiding the 235 

dissolution structures. 236 

ESEM images of bioconstructive and bioweathering features are reported in Figure 8. EDS 237 

microanalyses showed that sample SS1 is composed of microcrystalline calcite (Fig. 8B and 238 

corresponding EDS spectra), with abundant salt crystals due to the presence of seawater in the 239 

sample location (Fig. 9A). It was noticed that when biological crusts are less abundant on the 240 

sample surface, salt can easily penetrate up to a depth of ~3.5 mm (Fig. 9). In contrast, when 241 

extensive microbial mats are present on the sample surface, biological pitting and etching solely 242 

extend to a depth of 1-1.5 mm (Fig. 9A). Sample SS2 is characterised by an overall porosity of 12% 243 

and shows the presence of several layers (Fig. 5C), the yellowish layers seem to be more compact 244 

(made of microcrystalline calcite crystals), whereas the white layer is composed of calcite with 245 

copious borings, likely contributing to enhance its porosity (Fig. 5D). Fine layers and aggregates of 246 

Ca-phosphate minerals are present both along the cross-section and on the sample surface, and are 247 

likely related to bat guano deposits. Borings of approximately 0.5 mm diameter are clearly visible 248 

along the cross-section, increasing mineral porosity (Fig. 9B). 249 

The top surface of SS3 is characterised by cubic Ca-phosphate minerals (Fig. 8K and Fig. 9C) and 250 

black coatings of ferromanganese oxides, whereas the inner part is made of carbonate minerals 251 

enriched in Mg and acicular Ca-phosphates (Fig. 8J and Fig. 9C). Endolithic microorganisms able 252 

to pit and etch rocks were also observed (Fig. 8I).  253 

Table 3 summarizes and compares all the results obtained for the rock chips from each sampling 254 

site. 255 

The results of the ANOVA analysis for the biological features observed by stereomicroscopy are 256 

reported in Table 4. The null hypothesis affirms: “The biological features are not influenced by light 257 



attenuation”. The obtained results show Fvalues> Fcritic in almost all biological features of the three 258 

sites. This result means that the null hypothesis can be rejected because the distribution of almost all 259 

the observed biological features is influenced by light attenuation. Only the brown coatings show an 260 

Fvalue< Fcritic, suggesting that their distribution is not influenced by light attenuation. 261 

The results of Student’s t-test analysis of ESEM observations are reported in Tables 5 and 6 262 

(bioconstructive and bioweathering features, respectively). We used Student’s t-test to understand 263 

whether bioconstructive-dissolution features related to the same process. Analysing bioconstructive 264 

features on the top surface and cross-sections from the three sampling sites showed that the P 265 

(probability) values for SS1 and SS2 are higher (Table 5) than the critical value (0.05). This result 266 

means that the t-test analysis is not significant and so it is difficult to reject null hypothesis. 267 

Bioconstructive features in SS1 and SS2 could be related to the same process (i.e., the presence of 268 

blue filaments). Conversely, the P value of SS3 is lower (Table 4) than the critical value (0.05), so 269 

null hypothesis can be rejected because the bioconstructive features might be related to a different 270 

process (i.e., the presence of shiny filaments or Mn-Fe oxide-hydroxide precipitation). Analysing 271 

bioweathering features, we saw that P values are much higher (see Table 6) than P critical value 272 

(0.05), demonstrating the test analysis not to be significant. The same process (i.e., the presence of 273 

microorganisms able to pit and etch the rock) can be responsible for the observed phenomena. 274 

 275 

4. Discussion 276 

Contrasts in light attenuation inside the cave have an important influence on biological colonisation. 277 

Based on visual inspections and microscopy observations, sampling sites SS1 and SS2 are 278 

dominated by phototrophic organisms. Their behaviour affects microtopography, mineralogy and 279 

geochemistry of the rock substrate.  280 

We sought to assess how the micromorphology of karst environments changes across an 281 

environmental and process gradient. Biological features occur in all samples, and three different 282 

associations were recognised using light and scanning electron microscopy, one for each sampling 283 



site. We observed that blue filaments, Cladophora and red algae (including staghorn algae) tend to 284 

decrease in abundance from the hypersaline lake toward the cave interior owing to light attenuation, 285 

whereas shiny filaments, fossils and black coatings tend to increase along the same profile. This 286 

result agrees with Coombes et al. (2015), who studied the Puerto Princesa Underground River in the 287 

Philippines, suggesting that the sensitivity of microbial communities to light strongly influences the 288 

nature and types of biogeomorphological processes that operate in cave systems.  289 

The increase of fossils (in SS3) is related to a marine inflow (through fractures), whereas shiny 290 

filaments and black Mn-coatings might be controlled by microorganisms able to thrive in nutrient-291 

poor dark locations. 292 

Light attenuation plays an important role in influencing the behaviour of biological communities 293 

involved in landform processes, bioweathering and bioconstruction within the underground 294 

environment. As suggested by Phillips (2016), light attenuation is an interesting candidate for 295 

“niche construction”. Niche construction means that biogeomorphic ecosystem engineering 296 

influences natural selection (such as stromatolite formation and/or Ca-nitrate precipitation in dry 297 

cave deposits). As a matter of fact, it is well-known that geomorphic processes (such as 298 

cementation-precipitation, weathering, erosion and deposition) can be both microbially-controlled, -299 

induced, –influenced, and/or abiotic (Viles, 2012).  300 

To provide a clear understanding, the data obtained in this study are separately discussed for each 301 

sampling site, focusing on the main biogeomorphological processes. 302 

 303 

4.1. Sampling site SS1 304 

The microtopography and high surface roughness of the limestone rock from sampling site 1, 305 

located in a hypersaline lake near the cave entrance, were promoted by biological activity as 306 

revealed by microscopy observations (boreholes and pittings). On the top surface of SS1 we also 307 

observed a salt penetration band (~6 mm), as well as changes in rock porosity associated with 308 

endolithic growth. It is well known that salt crystallisation, similar to microgelivation, can actively 309 



contribute to the weathering of rocks, especially through its penetration into pore spaces and rock 310 

fractures (Williams and Robinson, 1998; Matsuoka, 2001; Moses et al., 2014). The depth of 311 

subsurface deterioration depends on parameters such as porosity, permeability, lithology and 312 

moisture, as well as climatic conditions and biological activity (Matsuoka, 2001). Epilithic 313 

organisms may weaken the top surface of rocks (e.g., by boring, pitting and etching), whilst the 314 

endolithic ones (as observed in SS3 samples) may affect the rock just beneath the surface by 315 

enlarging porosity or fractures, through chemical-physical reactions that change their 316 

microenvironment (Friedmann, 1982; Bell, 1993; Viles, 2000; 2012). Phototrophs were the 317 

dominant organisms colonising the rock surface in SS1, and, likely helped by salt penetration and 318 

gastropod grazing activities, contributed in weakening and disaggregating particles, which were 319 

subsequently removed by seawater (wave and tide fluctuations) and/or by wind. These processes 320 

together would have created the observed profile characterised by microvalleys and -ridges. 321 

 322 

4.2. Sampling site SS2 323 

The SS2 rock chips showed greater roughness (Table 2), and their profile is more pronounced than 324 

SS1 (Table 3). The white creamy deposits observed along the depressions of the chip surface, with a 325 

complex chemistry (O, Cl, C, P, Mg, Ca, Na, S, Al, Si, K, Fe, and Mn), are likely related to bat 326 

guano deterioration. The fine layers and the presence of aggregates of Ca-phosphate minerals 327 

associated with the white deposits support this hypothesis. The rock samples from SS2 are 328 

characterised by laminae with different colours and porosity/permeability as previously described. 329 

The yellowish layers (first and third) (Fig. 9C) are relatively more compact (made of 330 

microcrystalline calcite) and less porous than the second whitish layer in which boreholes occur 331 

extensively (diameter of 10 ± 4 µm). These microcrystalline layers may be the product of 332 

subsequent weathering processes that also changed the primary porosity (Winkler, 1997; Nicholson, 333 

2001; Tuğrul, 2004). 334 



Black (1933) described deposits in Andros Island (Bahamas) whereby trapping and binding 335 

processes involved the presence of cyanobacteria. Thus, the laminations are likely related to 336 

trapping and binding of detrital grains and microfossils supplied by tidal fluctuation and recall 337 

microbialites (Burne and Moore, 1987). Similar dark-brown and reddish crusts were observed along 338 

the intertidal zone in several flank margin caves in Croatia (e.g., Otoničar et al., 2010) and are likely 339 

related to microorganisms such as bacteria and red algae. These laminated deposits can be defined 340 

as a “biological boundstone” according to Black (1933). The organisms involved in its formation 341 

live in dark, quiet, shallow water, and in the tide-influenced twilight zone of the cave environment, 342 

where nutrients are delivered by guano that also behaves as source of acids and organic matter 343 

input. The extensive borings in the whitish layer of the SS2 chip cross-section suggests that 344 

endolithic microorganisms were involved in the formation of these layers (Fig.5D). 345 

 346 

4.3. Sampling site SS3 347 

The sampling site SS3 is located in the deepest and darkest part of Lighthouse Cave. The top 348 

surfaces of SS3 chips showed smoother texture than samples SS1 and SS2 as revealed by high 349 

precision laser scanner measurements (Table 4). Black coatings were observed on the sample 350 

surfaces, mainly composed of cubic Ca-phosphate minerals and Mn-Fe oxides-hydroxides. In 351 

addition, shiny filaments and microfossils were visible. The internal structure of SS3 chips was 352 

characterised by porous carbonate minerals enriched in Mg, and acicular Ca-phosphates with pitted 353 

and etched crystal surfaces, likely caused by endolithic microorganisms. Similar deposits have been 354 

described by Spilde et al. (2009) and were defined as “Speleosols” (i.e., “soil-like materials formed 355 

in caves”). They are made of ferromanganese deposits related to two different processes involving 356 

the activity of Mn-Fe oxidising and acid-producing microbiological communities (Spilde et al., 357 

2005; Miller et al., 2012): 1) alteration of the cave wall, leaching of soluble elements and 358 

subsequent enrichment in Al, Fe, Mn and trace elements, and 2) deposition of secondary minerals 359 

(mainly Mn-Fe oxides-hydroxides). Usually these structures have three components: an external 360 



dark-coating/crust or speleosol, a punk rock (a porous and altered portion of host rock; Hill, 1987) 361 

and bedrock. 362 

 363 

5. Conclusions 364 

Microtopography of the exposed rock surfaces within and close to Lighthouse Cave varies with 365 

location (e.g., entrance, twilight zone or deep into the cave). Going from outside (SS1) to deep 366 

inside (SS3) there is a general flattening of microrelief. 367 

In general, light attenuation, together with organic matter supply, rock type, age, and diagenetic 368 

maturity play an important role in influencing the behaviour of biological communities involved in 369 

rock surface processes. We found that bioweathering is more intense on samples collected outside 370 

the cave (SS1), likely due to the presence of phototrophs that, dissolving and weakening the rock, 371 

disaggregate particles that are subsequently removed by wind erosion, creating typical ridges and 372 

valleys in the rock surface microtopography. Nevertheless, episodic gastropod grazing actions 373 

might “reset and shape” the overall microtopography. Conversely, within the cave environments, 374 

chemotrophs facilitate both bioweathering (endolithic boreholes) and bioconstructive processes by 375 

dissolving mineral grains and/or inducing secondary mineral precipitation (e.g., Mn-Fe oxides-376 

hydroxides), respectively. 377 

The above described biogeomorphological structures, especially the ones found along the cave 378 

walls (SS2-SS3) at the fluctuating water level, testify that, nowadays in this peculiar flank margin 379 

cave, dissolution/corrosion processes due to fresh seawater mixing are less active. 380 

In addition, we propose that the geomorphological evolution is strongly influenced by the degree of 381 

rock diagenesis (eogenetic (immature) limestones in Lighthouse Cave vs. telogenetic (mature) 382 

limestones of Puerto Princesa Underground River) more than the initial mechanism of 383 

speleogenesis. 384 
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Figure 2.  404 
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Table 1. 406 

Method Number of chips studied from 

each sampling site 

Number of observations per 

chip 

Laser scanner 1 1 

Roughness measurements 1 6 

Light microscopy 3 10 

ESEM (surface) 3 10 

ESEM (cross-section) 3 6 

 407 



Table 2.  408 

Sampling 

site 

Stereomicroscopy image DTM Contour map analysis Microrelief classes 

scale 

GIS Contour Map Analysis Surface roughness 

value and 

representative profile 
Total area [mm

2
] Total area (%) 

per microrelief 

class 

SS1 

 
 

 

407 ±3 

1) 36.0 ±0.5 

2) 53.0 ±0.3 

3) 11.0 ±0.2 

4) 0 

5) 0 

1.15 – 1.33 

 

SS2 

 

 

 

369 ±6 

1) 13 ±0.8 

2) 1.5 ±0.8 

3) 15.0 ±2 

4) 51.5 ±0.6 

5) 19.0 ±0.07 

1.43 – 2.17 

 

SS3 

 

 

 

382 ±2 

1) 0.4 ±1 

2) 15.0 ±0.2 

3) 77.0 ±0.3 

4) 7.6 ±0.09 

5) 0 

1.03 – 1.13 
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Figure 4.  413 
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Figure 5.  416 
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Figure 6.  419 
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Figure 7.  422 
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Figure 8.   425 
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Figure 9.  428 
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Table 3.  430 

 SS1 SS2 SS3 

Sampling Site • hypersaline lake 

located in a 

mangrove forest 20 

m W of the main 

cave entrance 

• limestone wall in the 

twilight zone of the 

cave, 20 m from the 

entrance, close to the 

water table, 

approximately 10-15 

cm below mean high 

tide level 

• limestone wall near 

the water table, 

approximately 25 

cm below high tide 

level and located 

~60 m from the cave 

entrance 

Rock Characteristics • Salt penetration band 

• Pitted and etched 

band 

• Semi-parallel 

laminae (yellowish 

and whitish) 

• Endolithic 

microboring 

• Black coatings of 

Mn-Fe oxides-

hydroxides covering 

Mg-enriched 

carbonate rocks 

Rock Properties • Salt minerals 

promote rock 

weathering and 

changes in porosity 

and permeability 

• Creamy deposits (O, 

Cl, C, P, Mg, Ca, 

Na, S, Al, K, Fe, 

Mn) 

• Ca-phosphate 

minerals 

• Ca-phosphate 

minerals 

• Mn-Fe oxides-

hydroxides 

• Fossils 

Weathered Rind • Green brownish 

crust 

• Brown-reddish crust 

and depression filled 

by creamy white 

deposits 

• Dark-brownish crust 

and black coatings 

Dominant Microbial 

features 

• Cladophora algae 

• Staghorn algae 

• Red algae  

• Blue filaments 

• Brown coatings 

 

 

• Red algae 

• Brown coatings 

 

• Brown coatings 

• Likely microbial 

organisms associated 

with shiny filaments 

Microtopography 

(Roughness value = RV) 

• Valleys and Ridges  

• RV 1.15-1.33 

• Well-developed 

ridges and troughs  

• RV 1.43-2.17 

• Flat surface 

• RV 1.03-1.13 

 431 

432 



Table 4.  433 

Biological features df W df B ms W ms B F crit F P 

Blue filaments 6 2 8 416 5.14 156 <0.000 

Cladophora algae 6 2 5 624 5.14 401.28 <0.000 

Staghorn algae 6 2 3 644 5.14 724.75 < 0.000 

Red algae 6 2 19 150 5.14 23.31 0.0015 

Shiny filaments 6 2 33 202 5.14 18.24 0.0028 

Fossils 6 2 8 16 5.14 5.61 0.042 

White creamy deposits 6 2 <1 213 5.14 961 <0.000 

Brown coatings 6 2 2 2 5.14 3 0.125 

 434 

435 



Table 5.  436 

Bioconstructive fts. df Ms Mc Vt t-crit t-value P 

SS1 16 2.2 0.9 5.2 2.12 1.25 0.23 

SS2 16 2.4 0.9 3.1 2.12 1.88 0.08 

SS3 16 3.5 1.1 5.3 2.12 2.25 0.04 

df = Degrees of freedom; Ms = mean bioconstructive features observed on the top surface; Mc = mean bioconstructive 437 

features observed along the cross-section; Vt = total variance; t-crit = t value critic; t- value = t- value obtained from 438 

statistical analysis; P = probability. 439 

 440 

441 



Table 6.  442 

Bioweathering 

features 
df Ms Mc Vt t-crit t-value P 

SS1 6 4.7 3.5 6.6 2.44 0.68 0.52 

SS2 6 4.7 4.5 4.9 2.44 0.16 0.87 

SS3 6 4.7 5 3.8 2.44 -0.18 0.86 

 443 

444 



Figure and table captions 445 

Figure 1. A) Location of San Salvador Island, Bahamas, and B) Lighthouse Cave on the NE coast of 446 

San Salvador (the red star shows the position of the cave). 447 

 448 

Figure 2. Lighthouse Cave plan (modified from Roth, 2004) and location of sampling sites above 449 

present sea level (red stars). The images on the right show the sampling sites SS1, SS2, SS3. 450 

Hammer represents the scale of the pictures. 451 

 452 

Table 1. Number of rock chips and observations performed for each analysis. 453 

 454 

Table 2. Contour map analysis of rock samples from each sampling site. The most representative 455 

rock chip is shown using stereomicroscopy and DTM images. In addition, microrelief classes scale 456 

(1. green, 2. yellow, 3. orange, 4. brown, 5. white), the respective area for each microrelief class, the 457 

surface roughness, and representative profile are also reported.  458 

 459 

Figure 3. Biological features observed by stereomicroscopy. A) Site SS1: staghorn algae (red algae) 460 

and Cladophora algae are clearly visible; B) Site SS1: Cladophora algae; C) Site SS2: blueish 461 

biological-like filament; D) Site SS3: several tiny shiny filaments are clearly visible in the white 462 

square; E) Site SS3: a small fossil (juvenile stage foraminifera) is visible against the brownish 463 

background; F) Site SS3: black coatings (blue arrows). 464 

 465 

Figure 4. Occurrence of micro-scale biological features observed by stereomicroscopy (x5.6). Three 466 

chips were analysed per sampling site (SS1, SS2 and SS3). Ten points were observed on each chip 467 

(without overlap), giving thirty points for each sampling site (at x5.6 the area of an analysed spot is 468 

6 mm
2
). An occurrence of 100% means that a biological feature is observed in all ten points of each 469 



chip. These measurements were based on the SACFOR scale: superabundant (80-100%), abundant 470 

(40-79%), common (20-39%), frequent (10-19%), occasional (5-9%), rare (1-4%) and absent (0%). 471 

 472 

Figure 5. Stereomicroscopy images of site SS2; A) White creamy deposits located along the 473 

depressions on exposed rock surfaces. B) Detail of A; C) Cross-section of SS2 showing several 474 

layers with different colours; the whitish layer is extensively bored; D) Detail of C showing 475 

microboring. 476 

 477 

Figure 6. Histogram showing the occurrence of bioconstructive and bioweathering features 478 

observed on the chip top surfaces from each sampling site (SS1, SS2 and SS3). We analysed three 479 

chips from each sampling site, using ESEM. 480 

 481 

Figure 7. Histogram showing the occurrence of bioconstructive and bioweathering features along 482 

the chip cross-sections from each sampling site (SS1, SS2 and SS3) using ESEM. 483 

 484 

Figure 8. ESEM images of bioconstructive and bioweathering features on chip top surfaces and 485 

cross-sections. All are BSE images unless stated otherwise. The coloured dots represent the position 486 

where EDS spectra were obtained. A) Bioconstructions on the top surface of SS1, particularly 487 

mineralised filaments; B) Biological pitting and etching in the cross-section of SS1; C) Dissolution 488 

features (black arrows) and boring (black square) in cross-section of SS1; D) Foraminifera on the 489 

top-surface of SS2. The black arrow indicates white creamy deposits (that in the BSE image have a 490 

dark grey colour); E) Two foraminifera on the top surface of SS2; F) White creamy deposits on the 491 

top surface of SS2 (these white deposits are dark in BSE); G) Manganese oxides in the cross-section 492 

of SS3 (SE image); J) Acicular crystals of Ca-phosphate on the top surface of SS3; K) Cubic 493 

crystals of Ca-phosphate on the top surface of SS3; I) Microboring caused by endolithic organisms 494 

on mineral grains in the cross-section of SS3. 495 



Figure 9. ESEM-BSE images of representative cross-sections from the three sampling sites (SS1, 496 

SS2 and SS3). A) salt penetration band (SPB) is observed on the surface of SS1; B) biological 497 

pitting (due to microalgal growth) is visible (black arrows); C) SS2 is characterised by several 498 

layers of calcite with different porosity and permeability. Borings are clearly visible along the 499 

cross-section in the second layer; D) the top surface of SS3 is characterised by cubic Ca-phosphates 500 

and black coating of Mn-Fe oxides, whereas the inner part is made of carbonates enriched with Mg 501 

and acicular Ca-phosphates. 502 

 503 

Table 3. Short description of the main results for the three sampling sites from Lighthouse Cave, 504 

regarding rock characteristics and properties, weathered rind, dominant microbial features, and 505 

microtopography values. 506 

 507 

Table 4. Statistical results obtained using the ANOVA test for the occurrence of biological features 508 

as observed by stereomicroscopy. df W = degrees of freedom within group; df B = degrees of 509 

freedom between groups; ms W = mean square variance within group; ms B = mean square 510 

variance between groups; F = ratio of variance; P = significance. 511 

 512 

Table 5. Student’s t-test (two tailed test: two-samples assuming unequal variance) analysis of 513 

bioconstructive features observed using ESEM in each sampling site. 514 

 515 

Table 6. Student’s t-test (two tailed test: two-samples assuming unequal variance) analysis of 516 

bioweathering features observed using ESEM in each sample.  517 

518 
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